mct-nightly 2.2.0.20240923.519__tar.gz → 2.2.0.20240924.500__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/PKG-INFO +1 -1
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/PKG-INFO +1 -1
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +8 -3
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +3 -1
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +37 -15
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +26 -23
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +43 -39
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/LICENSE.md +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/README.md +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/SOURCES.txt +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/gradual_activation_quantization.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/util.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/verify_packages.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/setup.cfg +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/setup.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/gptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/gptq/test_annealing_cfg.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/gptq/test_gradual_act_quantization.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/trainable_infrastructure/test_linear_annealing.py +0 -0
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.2.0.
|
30
|
+
__version__ = "2.2.0.20240924.000500"
|
@@ -145,9 +145,14 @@ def _run_operation(n: BaseNode,
|
|
145
145
|
else:
|
146
146
|
out_tensors_of_n_float = op_func(input_tensors, *op_call_args, **functional_kwargs)
|
147
147
|
else:
|
148
|
-
|
149
|
-
|
150
|
-
|
148
|
+
if isinstance(op_func, PytorchQuantizationWrapper) and isinstance(n, FunctionalNode) and n.functional_op is not torch.gather:
|
149
|
+
# in wrapped nodes, the op args & kwargs are already in the PytorchQuantizationWrapper.
|
150
|
+
# Temporary patch: for torch.gather this is not the case, so need to merge inputs.
|
151
|
+
out_tensors_of_n_float = op_func(*input_tensors)
|
152
|
+
else:
|
153
|
+
merged_inputs, functional_kwargs = _merge_inputs(n, input_tensors, op_call_args, functional_kwargs.copy(),
|
154
|
+
tensor_input_allocs=_tensor_input_allocs)
|
155
|
+
out_tensors_of_n_float = op_func(*merged_inputs, **functional_kwargs)
|
151
156
|
|
152
157
|
# Add a fake quant node if the node has an activation threshold.
|
153
158
|
out_tensors_of_n = out_tensors_of_n_float
|
@@ -50,9 +50,11 @@ if FOUND_TORCH:
|
|
50
50
|
for attr in weight_quantizers if isinstance(attr, int)}
|
51
51
|
# When wrapping functional nodes, need to set call args\kwargs in wrapper, because they
|
52
52
|
# are used during wrapper call method.
|
53
|
+
# Temporary patch: for torch.gather this is not the case, so args & kwargs shouldn't be
|
54
|
+
# saved in the warpper.
|
53
55
|
func_node_kwargs = {OP_CALL_ARGS: node.op_call_args,
|
54
56
|
OP_CALL_KWARGS: node.op_call_kwargs
|
55
|
-
} if isinstance(node, FunctionalNode) else {}
|
57
|
+
} if isinstance(node, FunctionalNode) and not node.functional_op is torch.gather else {}
|
56
58
|
return PytorchQuantizationWrapper(module, weight_quantizers, weights_values,
|
57
59
|
is_inputs_as_list=node.inputs_as_list,
|
58
60
|
**func_node_kwargs)
|
@@ -24,6 +24,23 @@ from model_compression_toolkit.target_platform_capabilities.target_platform.op_q
|
|
24
24
|
|
25
25
|
tp = mct.target_platform
|
26
26
|
|
27
|
+
OPSET_NO_QUANTIZATION = "NoQuantization"
|
28
|
+
OPSET_QUANTIZATION_PRESERVING = "QuantizationPreserving"
|
29
|
+
OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS = "DimensionManipulationOpsWithWeights"
|
30
|
+
OPSET_DIMENSION_MANIPULATION_OPS = "DimensionManipulationOps"
|
31
|
+
OPSET_MERGE_OPS = "MergeOps"
|
32
|
+
OPSET_CONV = "Conv"
|
33
|
+
OPSET_FULLY_CONNECTED = "FullyConnected"
|
34
|
+
OPSET_ANY_RELU = "AnyReLU"
|
35
|
+
OPSET_ADD = "Add"
|
36
|
+
OPSET_SUB = "Sub"
|
37
|
+
OPSET_MUL = "Mul"
|
38
|
+
OPSET_DIV = "Div"
|
39
|
+
OPSET_PRELU = "PReLU"
|
40
|
+
OPSET_SWISH = "Swish"
|
41
|
+
OPSET_SIGMOID = "Sigmoid"
|
42
|
+
OPSET_TANH = "Tanh"
|
43
|
+
|
27
44
|
|
28
45
|
def get_tp_model() -> TargetPlatformModel:
|
29
46
|
"""
|
@@ -189,6 +206,10 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
189
206
|
const_config_input16_per_tensor],
|
190
207
|
base_config=const_config_input16_per_tensor)
|
191
208
|
|
209
|
+
qpreserving_const_config = const_config.clone_and_edit(enable_activation_quantization=False,
|
210
|
+
quantization_preserving=True)
|
211
|
+
qpreserving_const_config_options = tp.QuantizationConfigOptions([qpreserving_const_config])
|
212
|
+
|
192
213
|
# Create a TargetPlatformModel and set its default quantization config.
|
193
214
|
# This default configuration will be used for all operations
|
194
215
|
# unless specified otherwise (see OperatorsSet, for example):
|
@@ -207,39 +228,40 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
207
228
|
|
208
229
|
# May suit for operations like: Dropout, Reshape, etc.
|
209
230
|
default_qco = tp.get_default_quantization_config_options()
|
210
|
-
tp.OperatorsSet(
|
231
|
+
tp.OperatorsSet(OPSET_NO_QUANTIZATION,
|
211
232
|
default_qco.clone_and_edit(enable_activation_quantization=False)
|
212
233
|
.clone_and_edit_weight_attribute(enable_weights_quantization=False))
|
213
|
-
tp.OperatorsSet(
|
234
|
+
tp.OperatorsSet(OPSET_QUANTIZATION_PRESERVING,
|
214
235
|
default_qco.clone_and_edit(enable_activation_quantization=False,
|
215
236
|
quantization_preserving=True)
|
216
237
|
.clone_and_edit_weight_attribute(enable_weights_quantization=False))
|
217
|
-
tp.OperatorsSet(
|
238
|
+
tp.OperatorsSet(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, qpreserving_const_config_options)
|
239
|
+
tp.OperatorsSet(OPSET_DIMENSION_MANIPULATION_OPS,
|
218
240
|
default_qco.clone_and_edit(enable_activation_quantization=False,
|
219
241
|
quantization_preserving=True,
|
220
242
|
supported_input_activation_n_bits=(8, 16))
|
221
243
|
.clone_and_edit_weight_attribute(enable_weights_quantization=False))
|
222
|
-
tp.OperatorsSet(
|
244
|
+
tp.OperatorsSet(OPSET_MERGE_OPS, const_configuration_options_inout16_per_tensor)
|
223
245
|
|
224
246
|
# Create Mixed-Precision quantization configuration options from the given list of OpQuantizationConfig objects
|
225
247
|
mixed_precision_configuration_options = tp.QuantizationConfigOptions(mixed_precision_cfg_list,
|
226
248
|
base_config=base_config)
|
227
249
|
|
228
250
|
# Define operator sets that use mixed_precision_configuration_options:
|
229
|
-
conv = tp.OperatorsSet(
|
230
|
-
fc = tp.OperatorsSet(
|
251
|
+
conv = tp.OperatorsSet(OPSET_CONV, mixed_precision_configuration_options)
|
252
|
+
fc = tp.OperatorsSet(OPSET_FULLY_CONNECTED, mixed_precision_configuration_options)
|
231
253
|
|
232
254
|
# Define operations sets without quantization configuration
|
233
255
|
# options (useful for creating fusing patterns, for example):
|
234
|
-
any_relu = tp.OperatorsSet(
|
235
|
-
add = tp.OperatorsSet(
|
236
|
-
sub = tp.OperatorsSet(
|
237
|
-
mul = tp.OperatorsSet(
|
238
|
-
div = tp.OperatorsSet(
|
239
|
-
prelu = tp.OperatorsSet(
|
240
|
-
swish = tp.OperatorsSet(
|
241
|
-
sigmoid = tp.OperatorsSet(
|
242
|
-
tanh = tp.OperatorsSet(
|
256
|
+
any_relu = tp.OperatorsSet(OPSET_ANY_RELU)
|
257
|
+
add = tp.OperatorsSet(OPSET_ADD, const_configuration_options_inout16)
|
258
|
+
sub = tp.OperatorsSet(OPSET_SUB, const_configuration_options_inout16)
|
259
|
+
mul = tp.OperatorsSet(OPSET_MUL, const_configuration_options_inout16)
|
260
|
+
div = tp.OperatorsSet(OPSET_DIV, const_configuration_options)
|
261
|
+
prelu = tp.OperatorsSet(OPSET_PRELU)
|
262
|
+
swish = tp.OperatorsSet(OPSET_SWISH)
|
263
|
+
sigmoid = tp.OperatorsSet(OPSET_SIGMOID)
|
264
|
+
tanh = tp.OperatorsSet(OPSET_TANH)
|
243
265
|
|
244
266
|
# Combine multiple operators into a single operator to avoid quantization between
|
245
267
|
# them. To do this we define fusing patterns using the OperatorsSets that were created.
|
@@ -35,6 +35,10 @@ else:
|
|
35
35
|
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import get_tp_model
|
36
36
|
import model_compression_toolkit as mct
|
37
37
|
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4 import __version__ as TPC_VERSION
|
38
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import OPSET_NO_QUANTIZATION, \
|
39
|
+
OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
|
40
|
+
OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
|
41
|
+
OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH
|
38
42
|
|
39
43
|
tp = mct.target_platform
|
40
44
|
|
@@ -74,10 +78,8 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
74
78
|
Dropout,
|
75
79
|
MaxPooling2D,
|
76
80
|
tf.split,
|
77
|
-
tf.gather,
|
78
81
|
tf.cast,
|
79
82
|
tf.unstack,
|
80
|
-
tf.compat.v1.gather,
|
81
83
|
tf.__operators__.getitem,
|
82
84
|
tf.strided_slice]
|
83
85
|
quantization_preserving_list_16bit_input = [Reshape,
|
@@ -90,11 +92,12 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
90
92
|
no_quant_list.append(SSDPostProcess)
|
91
93
|
|
92
94
|
with keras_tpc:
|
93
|
-
tp.OperationsSetToLayers(
|
94
|
-
tp.OperationsSetToLayers(
|
95
|
-
tp.OperationsSetToLayers(
|
96
|
-
tp.OperationsSetToLayers(
|
97
|
-
tp.OperationsSetToLayers(
|
95
|
+
tp.OperationsSetToLayers(OPSET_NO_QUANTIZATION, no_quant_list)
|
96
|
+
tp.OperationsSetToLayers(OPSET_QUANTIZATION_PRESERVING, quantization_preserving)
|
97
|
+
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS, quantization_preserving_list_16bit_input)
|
98
|
+
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [tf.gather, tf.compat.v1.gather])
|
99
|
+
tp.OperationsSetToLayers(OPSET_MERGE_OPS, [tf.stack, tf.concat, Concatenate])
|
100
|
+
tp.OperationsSetToLayers(OPSET_CONV,
|
98
101
|
[Conv2D,
|
99
102
|
DepthwiseConv2D,
|
100
103
|
Conv2DTranspose,
|
@@ -111,23 +114,23 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
111
114
|
DepthwiseConv2D: KERAS_DEPTHWISE_KERNEL,
|
112
115
|
tf.nn.depthwise_conv2d: KERAS_DEPTHWISE_KERNEL}, default_value=KERAS_KERNEL),
|
113
116
|
BIAS_ATTR: DefaultDict(default_value=BIAS)})
|
114
|
-
tp.OperationsSetToLayers(
|
117
|
+
tp.OperationsSetToLayers(OPSET_FULLY_CONNECTED, [Dense],
|
115
118
|
attr_mapping={KERNEL_ATTR: DefaultDict(default_value=KERAS_KERNEL),
|
116
119
|
BIAS_ATTR: DefaultDict(default_value=BIAS)})
|
117
|
-
tp.OperationsSetToLayers(
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
tp.OperationsSetToLayers(
|
125
|
-
tp.OperationsSetToLayers(
|
126
|
-
tp.OperationsSetToLayers(
|
127
|
-
tp.OperationsSetToLayers(
|
128
|
-
tp.OperationsSetToLayers(
|
129
|
-
tp.OperationsSetToLayers(
|
130
|
-
tp.OperationsSetToLayers(
|
131
|
-
tp.OperationsSetToLayers(
|
120
|
+
tp.OperationsSetToLayers(OPSET_ANY_RELU, [tf.nn.relu,
|
121
|
+
tf.nn.relu6,
|
122
|
+
tf.nn.leaky_relu,
|
123
|
+
ReLU,
|
124
|
+
LeakyReLU,
|
125
|
+
tp.LayerFilterParams(Activation, activation="relu"),
|
126
|
+
tp.LayerFilterParams(Activation, activation="leaky_relu")])
|
127
|
+
tp.OperationsSetToLayers(OPSET_ADD, [tf.add, Add])
|
128
|
+
tp.OperationsSetToLayers(OPSET_SUB, [tf.subtract, Subtract])
|
129
|
+
tp.OperationsSetToLayers(OPSET_MUL, [tf.math.multiply, Multiply])
|
130
|
+
tp.OperationsSetToLayers(OPSET_DIV, [tf.math.divide, tf.math.truediv])
|
131
|
+
tp.OperationsSetToLayers(OPSET_PRELU, [PReLU])
|
132
|
+
tp.OperationsSetToLayers(OPSET_SWISH, [tf.nn.swish, tp.LayerFilterParams(Activation, activation="swish")])
|
133
|
+
tp.OperationsSetToLayers(OPSET_SIGMOID, [tf.nn.sigmoid, tp.LayerFilterParams(Activation, activation="sigmoid")])
|
134
|
+
tp.OperationsSetToLayers(OPSET_TANH, [tf.nn.tanh, tp.LayerFilterParams(Activation, activation="tanh")])
|
132
135
|
|
133
136
|
return keras_tpc
|
@@ -29,6 +29,10 @@ from model_compression_toolkit.target_platform_capabilities.constants import KER
|
|
29
29
|
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import get_tp_model
|
30
30
|
import model_compression_toolkit as mct
|
31
31
|
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4 import __version__ as TPC_VERSION
|
32
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import OPSET_NO_QUANTIZATION, \
|
33
|
+
OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
|
34
|
+
OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
|
35
|
+
OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH
|
32
36
|
|
33
37
|
tp = mct.target_platform
|
34
38
|
|
@@ -65,49 +69,49 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
65
69
|
BIAS_ATTR: DefaultDict(default_value=BIAS)}
|
66
70
|
|
67
71
|
with pytorch_tpc:
|
68
|
-
tp.OperationsSetToLayers(
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
tp.OperationsSetToLayers(
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
tp.OperationsSetToLayers(
|
72
|
+
tp.OperationsSetToLayers(OPSET_NO_QUANTIZATION, [torch.Tensor.size,
|
73
|
+
equal,
|
74
|
+
argmax,
|
75
|
+
topk])
|
76
|
+
tp.OperationsSetToLayers(OPSET_QUANTIZATION_PRESERVING, [Dropout,
|
77
|
+
dropout,
|
78
|
+
split,
|
79
|
+
chunk,
|
80
|
+
unbind,
|
81
|
+
MaxPool2d])
|
82
|
+
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS, [Flatten,
|
83
|
+
flatten,
|
84
|
+
operator.getitem,
|
85
|
+
reshape,
|
86
|
+
unsqueeze,
|
87
|
+
squeeze,
|
88
|
+
permute,
|
89
|
+
transpose])
|
90
|
+
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [gather])
|
91
|
+
tp.OperationsSetToLayers(OPSET_MERGE_OPS,
|
88
92
|
[torch.stack, torch.cat, torch.concat, torch.concatenate])
|
89
93
|
|
90
|
-
tp.OperationsSetToLayers(
|
94
|
+
tp.OperationsSetToLayers(OPSET_CONV, [Conv2d, ConvTranspose2d],
|
91
95
|
attr_mapping=pytorch_linear_attr_mapping)
|
92
|
-
tp.OperationsSetToLayers(
|
96
|
+
tp.OperationsSetToLayers(OPSET_FULLY_CONNECTED, [Linear],
|
93
97
|
attr_mapping=pytorch_linear_attr_mapping)
|
94
|
-
tp.OperationsSetToLayers(
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
98
|
+
tp.OperationsSetToLayers(OPSET_ANY_RELU, [torch.relu,
|
99
|
+
ReLU,
|
100
|
+
ReLU6,
|
101
|
+
LeakyReLU,
|
102
|
+
relu,
|
103
|
+
relu6,
|
104
|
+
leaky_relu,
|
105
|
+
tp.LayerFilterParams(Hardtanh, min_val=0),
|
106
|
+
tp.LayerFilterParams(hardtanh, min_val=0)])
|
103
107
|
|
104
|
-
tp.OperationsSetToLayers(
|
105
|
-
tp.OperationsSetToLayers(
|
106
|
-
tp.OperationsSetToLayers(
|
107
|
-
tp.OperationsSetToLayers(
|
108
|
-
tp.OperationsSetToLayers(
|
109
|
-
tp.OperationsSetToLayers(
|
110
|
-
tp.OperationsSetToLayers(
|
111
|
-
tp.OperationsSetToLayers(
|
108
|
+
tp.OperationsSetToLayers(OPSET_ADD, [operator.add, add])
|
109
|
+
tp.OperationsSetToLayers(OPSET_SUB, [operator.sub, sub, subtract])
|
110
|
+
tp.OperationsSetToLayers(OPSET_MUL, [operator.mul, mul, multiply])
|
111
|
+
tp.OperationsSetToLayers(OPSET_DIV, [operator.truediv, div, divide])
|
112
|
+
tp.OperationsSetToLayers(OPSET_PRELU, [PReLU, prelu])
|
113
|
+
tp.OperationsSetToLayers(OPSET_SWISH, [SiLU, silu, Hardswish, hardswish])
|
114
|
+
tp.OperationsSetToLayers(OPSET_SIGMOID, [Sigmoid, sigmoid])
|
115
|
+
tp.OperationsSetToLayers(OPSET_TANH, [Tanh, tanh])
|
112
116
|
|
113
117
|
return pytorch_tpc
|
File without changes
|
File without changes
|
{mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/SOURCES.txt
RENAMED
File without changes
|
File without changes
|
{mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/requires.txt
RENAMED
File without changes
|
{mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/top_level.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|