mct-nightly 2.2.0.20240923.519__tar.gz → 2.2.0.20240924.500__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (562) hide show
  1. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/PKG-INFO +1 -1
  2. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/__init__.py +1 -1
  4. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +8 -3
  5. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +3 -1
  6. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +37 -15
  7. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +26 -23
  8. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +43 -39
  9. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/LICENSE.md +0 -0
  10. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/README.md +0 -0
  11. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/SOURCES.txt +0 -0
  12. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/dependency_links.txt +0 -0
  13. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/requires.txt +0 -0
  14. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/mct_nightly.egg-info/top_level.txt +0 -0
  15. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/constants.py +0 -0
  16. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/__init__.py +0 -0
  17. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/analyzer.py +0 -0
  18. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/__init__.py +0 -0
  19. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  20. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  21. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  22. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  23. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  24. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  25. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  26. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  27. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  28. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  29. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/framework_info.py +0 -0
  30. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  31. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  32. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  33. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  34. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  35. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  36. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  37. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  38. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  39. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  40. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  41. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  42. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  43. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  44. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  45. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  46. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  47. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  48. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  49. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  50. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  51. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  52. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  53. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  54. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  55. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  56. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  57. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  58. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  59. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  60. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  61. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  62. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  63. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  64. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  65. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  66. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
  67. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  68. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  69. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  70. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  71. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  72. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  73. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  74. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  75. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  76. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  77. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  78. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  79. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  80. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  81. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  82. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/model_collector.py +0 -0
  83. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/model_validation.py +0 -0
  84. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  85. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  86. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  87. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  88. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  89. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  90. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  91. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  92. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  93. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  94. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  95. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  96. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  97. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  98. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  99. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  100. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  101. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  102. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  103. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  104. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  105. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  106. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  107. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
  108. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  109. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  110. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  111. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  112. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  113. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  114. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  115. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  116. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  117. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  118. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  119. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  120. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  121. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  122. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  123. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  124. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  125. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  126. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  127. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  128. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  129. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  130. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  131. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  132. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  133. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  134. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  135. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  136. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  137. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  138. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  139. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  140. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  141. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  142. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  143. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  144. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  145. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  146. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  147. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  148. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  149. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  150. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  151. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  152. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  153. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  154. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/user_info.py +0 -0
  155. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  156. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  157. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  158. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  159. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  160. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/__init__.py +0 -0
  161. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  162. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  163. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  164. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  165. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  166. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  167. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  168. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/constants.py +0 -0
  169. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  170. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  171. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  172. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  173. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  174. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  175. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  176. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  177. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  178. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  179. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  180. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  181. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  182. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  183. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  184. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  185. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  186. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  187. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  188. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  189. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  190. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  191. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  192. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  193. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  194. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  195. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  196. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  197. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  198. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  199. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  200. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  201. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  202. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  203. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  204. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  205. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  206. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  207. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  208. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  209. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  210. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  211. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  212. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  213. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  214. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  215. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  216. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  217. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  218. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  219. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  220. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  221. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  222. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  223. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  224. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  225. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  226. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  227. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  228. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  229. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  230. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  231. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  232. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  233. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  234. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  235. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  236. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  237. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  238. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  239. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  240. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  241. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  242. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  243. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  244. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  245. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  246. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  247. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  248. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  249. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  250. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  251. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  252. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  253. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  254. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  255. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  256. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  257. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  258. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  259. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  260. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  261. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  262. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  263. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  264. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  265. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  266. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  267. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  268. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  269. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  270. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  271. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  272. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  273. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  274. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  275. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  276. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  277. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  278. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  279. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  280. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  281. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  282. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/core/runner.py +0 -0
  283. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/__init__.py +0 -0
  284. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  285. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  286. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  287. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  288. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  289. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  290. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  291. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  292. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  293. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  294. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  295. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  296. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  297. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  298. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  299. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  300. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  301. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  302. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  303. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  304. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  305. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  306. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  307. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  308. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  309. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  310. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  311. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  312. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  313. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  314. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  315. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  316. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  317. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  318. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  319. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  320. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/defaultdict.py +0 -0
  321. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/__init__.py +0 -0
  322. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  323. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  324. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  325. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  326. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  327. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  328. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  329. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  330. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  331. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  332. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  333. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  334. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  335. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  336. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  337. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  338. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  339. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  340. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  341. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  342. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  343. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  344. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  345. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  346. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  347. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  348. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  349. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  350. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  351. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  352. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/__init__.py +0 -0
  353. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  354. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  355. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  356. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  357. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  358. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  359. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  360. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  361. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  362. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  363. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  364. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  365. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  366. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  367. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  368. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  369. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  370. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  371. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  372. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  373. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  374. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  375. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  376. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  377. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  378. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  379. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  380. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  381. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  382. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  383. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  384. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/gradual_activation_quantization.py +0 -0
  385. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  386. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  387. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  388. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  389. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  390. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  391. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  392. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  393. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  394. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/gptq/runner.py +0 -0
  395. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/logger.py +0 -0
  396. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/metadata.py +0 -0
  397. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/pruning/__init__.py +0 -0
  398. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  399. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  400. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  401. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  402. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/__init__.py +0 -0
  403. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  404. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  405. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  406. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  407. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/ptq/runner.py +0 -0
  408. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/__init__.py +0 -0
  409. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/common/__init__.py +0 -0
  410. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  411. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  412. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  413. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  414. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  415. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  416. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  417. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  418. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  419. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  420. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  421. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  422. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  423. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  424. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  425. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  426. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  427. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  428. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  429. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  430. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  431. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  432. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  433. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  434. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  435. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  436. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  437. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  438. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  439. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  440. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  441. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  442. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  443. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  444. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  445. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  446. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  447. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  448. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  449. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  450. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  451. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  452. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  453. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  454. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  455. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  456. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  457. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  458. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  459. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  460. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  461. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  462. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  463. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  464. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  465. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  466. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  467. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  468. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  469. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  470. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  471. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  472. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  473. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  474. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  475. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  476. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  477. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  478. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  479. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  480. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  481. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  482. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  483. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  484. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
  485. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  486. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  487. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  488. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  489. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  490. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  491. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  492. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  493. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  494. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  495. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  496. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  497. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  498. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  499. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  500. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  501. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  502. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  503. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  504. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  505. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  506. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  507. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  508. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  509. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  510. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  511. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  512. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  513. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  514. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  515. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  516. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  517. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  518. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  519. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  520. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  521. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  522. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  523. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  524. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  525. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  526. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/trainable_infrastructure/pytorch/util.py +0 -0
  527. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/verify_packages.py +0 -0
  528. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/__init__.py +0 -0
  529. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  530. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/constants.py +0 -0
  531. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  532. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  533. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  534. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  535. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  536. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  537. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  538. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  539. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  540. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  541. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  542. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  543. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  544. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  545. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  546. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  547. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  548. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  549. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  550. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  551. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  552. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  553. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  554. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/setup.cfg +0 -0
  555. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/setup.py +0 -0
  556. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/__init__.py +0 -0
  557. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/__init__.py +0 -0
  558. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/gptq/__init__.py +0 -0
  559. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/gptq/test_annealing_cfg.py +0 -0
  560. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/gptq/test_gradual_act_quantization.py +0 -0
  561. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/trainable_infrastructure/__init__.py +0 -0
  562. {mct-nightly-2.2.0.20240923.519 → mct-nightly-2.2.0.20240924.500}/tests_pytest/pytorch/trainable_infrastructure/test_linear_annealing.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20240923.519
3
+ Version: 2.2.0.20240924.500
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20240923.519
3
+ Version: 2.2.0.20240924.500
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20240923.000519"
30
+ __version__ = "2.2.0.20240924.000500"
@@ -145,9 +145,14 @@ def _run_operation(n: BaseNode,
145
145
  else:
146
146
  out_tensors_of_n_float = op_func(input_tensors, *op_call_args, **functional_kwargs)
147
147
  else:
148
- merged_inputs, functional_kwargs = _merge_inputs(n, input_tensors, op_call_args, functional_kwargs.copy(),
149
- tensor_input_allocs=_tensor_input_allocs)
150
- out_tensors_of_n_float = op_func(*merged_inputs, **functional_kwargs)
148
+ if isinstance(op_func, PytorchQuantizationWrapper) and isinstance(n, FunctionalNode) and n.functional_op is not torch.gather:
149
+ # in wrapped nodes, the op args & kwargs are already in the PytorchQuantizationWrapper.
150
+ # Temporary patch: for torch.gather this is not the case, so need to merge inputs.
151
+ out_tensors_of_n_float = op_func(*input_tensors)
152
+ else:
153
+ merged_inputs, functional_kwargs = _merge_inputs(n, input_tensors, op_call_args, functional_kwargs.copy(),
154
+ tensor_input_allocs=_tensor_input_allocs)
155
+ out_tensors_of_n_float = op_func(*merged_inputs, **functional_kwargs)
151
156
 
152
157
  # Add a fake quant node if the node has an activation threshold.
153
158
  out_tensors_of_n = out_tensors_of_n_float
@@ -50,9 +50,11 @@ if FOUND_TORCH:
50
50
  for attr in weight_quantizers if isinstance(attr, int)}
51
51
  # When wrapping functional nodes, need to set call args\kwargs in wrapper, because they
52
52
  # are used during wrapper call method.
53
+ # Temporary patch: for torch.gather this is not the case, so args & kwargs shouldn't be
54
+ # saved in the warpper.
53
55
  func_node_kwargs = {OP_CALL_ARGS: node.op_call_args,
54
56
  OP_CALL_KWARGS: node.op_call_kwargs
55
- } if isinstance(node, FunctionalNode) else {}
57
+ } if isinstance(node, FunctionalNode) and not node.functional_op is torch.gather else {}
56
58
  return PytorchQuantizationWrapper(module, weight_quantizers, weights_values,
57
59
  is_inputs_as_list=node.inputs_as_list,
58
60
  **func_node_kwargs)
@@ -24,6 +24,23 @@ from model_compression_toolkit.target_platform_capabilities.target_platform.op_q
24
24
 
25
25
  tp = mct.target_platform
26
26
 
27
+ OPSET_NO_QUANTIZATION = "NoQuantization"
28
+ OPSET_QUANTIZATION_PRESERVING = "QuantizationPreserving"
29
+ OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS = "DimensionManipulationOpsWithWeights"
30
+ OPSET_DIMENSION_MANIPULATION_OPS = "DimensionManipulationOps"
31
+ OPSET_MERGE_OPS = "MergeOps"
32
+ OPSET_CONV = "Conv"
33
+ OPSET_FULLY_CONNECTED = "FullyConnected"
34
+ OPSET_ANY_RELU = "AnyReLU"
35
+ OPSET_ADD = "Add"
36
+ OPSET_SUB = "Sub"
37
+ OPSET_MUL = "Mul"
38
+ OPSET_DIV = "Div"
39
+ OPSET_PRELU = "PReLU"
40
+ OPSET_SWISH = "Swish"
41
+ OPSET_SIGMOID = "Sigmoid"
42
+ OPSET_TANH = "Tanh"
43
+
27
44
 
28
45
  def get_tp_model() -> TargetPlatformModel:
29
46
  """
@@ -189,6 +206,10 @@ def generate_tp_model(default_config: OpQuantizationConfig,
189
206
  const_config_input16_per_tensor],
190
207
  base_config=const_config_input16_per_tensor)
191
208
 
209
+ qpreserving_const_config = const_config.clone_and_edit(enable_activation_quantization=False,
210
+ quantization_preserving=True)
211
+ qpreserving_const_config_options = tp.QuantizationConfigOptions([qpreserving_const_config])
212
+
192
213
  # Create a TargetPlatformModel and set its default quantization config.
193
214
  # This default configuration will be used for all operations
194
215
  # unless specified otherwise (see OperatorsSet, for example):
@@ -207,39 +228,40 @@ def generate_tp_model(default_config: OpQuantizationConfig,
207
228
 
208
229
  # May suit for operations like: Dropout, Reshape, etc.
209
230
  default_qco = tp.get_default_quantization_config_options()
210
- tp.OperatorsSet("NoQuantization",
231
+ tp.OperatorsSet(OPSET_NO_QUANTIZATION,
211
232
  default_qco.clone_and_edit(enable_activation_quantization=False)
212
233
  .clone_and_edit_weight_attribute(enable_weights_quantization=False))
213
- tp.OperatorsSet("QuantizationPreserving",
234
+ tp.OperatorsSet(OPSET_QUANTIZATION_PRESERVING,
214
235
  default_qco.clone_and_edit(enable_activation_quantization=False,
215
236
  quantization_preserving=True)
216
237
  .clone_and_edit_weight_attribute(enable_weights_quantization=False))
217
- tp.OperatorsSet("DimensionManipulationOps",
238
+ tp.OperatorsSet(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, qpreserving_const_config_options)
239
+ tp.OperatorsSet(OPSET_DIMENSION_MANIPULATION_OPS,
218
240
  default_qco.clone_and_edit(enable_activation_quantization=False,
219
241
  quantization_preserving=True,
220
242
  supported_input_activation_n_bits=(8, 16))
221
243
  .clone_and_edit_weight_attribute(enable_weights_quantization=False))
222
- tp.OperatorsSet("MergeOps", const_configuration_options_inout16_per_tensor)
244
+ tp.OperatorsSet(OPSET_MERGE_OPS, const_configuration_options_inout16_per_tensor)
223
245
 
224
246
  # Create Mixed-Precision quantization configuration options from the given list of OpQuantizationConfig objects
225
247
  mixed_precision_configuration_options = tp.QuantizationConfigOptions(mixed_precision_cfg_list,
226
248
  base_config=base_config)
227
249
 
228
250
  # Define operator sets that use mixed_precision_configuration_options:
229
- conv = tp.OperatorsSet("Conv", mixed_precision_configuration_options)
230
- fc = tp.OperatorsSet("FullyConnected", mixed_precision_configuration_options)
251
+ conv = tp.OperatorsSet(OPSET_CONV, mixed_precision_configuration_options)
252
+ fc = tp.OperatorsSet(OPSET_FULLY_CONNECTED, mixed_precision_configuration_options)
231
253
 
232
254
  # Define operations sets without quantization configuration
233
255
  # options (useful for creating fusing patterns, for example):
234
- any_relu = tp.OperatorsSet("AnyReLU")
235
- add = tp.OperatorsSet("Add", const_configuration_options_inout16)
236
- sub = tp.OperatorsSet("Sub", const_configuration_options_inout16)
237
- mul = tp.OperatorsSet("Mul", const_configuration_options_inout16)
238
- div = tp.OperatorsSet("Div", const_configuration_options)
239
- prelu = tp.OperatorsSet("PReLU")
240
- swish = tp.OperatorsSet("Swish")
241
- sigmoid = tp.OperatorsSet("Sigmoid")
242
- tanh = tp.OperatorsSet("Tanh")
256
+ any_relu = tp.OperatorsSet(OPSET_ANY_RELU)
257
+ add = tp.OperatorsSet(OPSET_ADD, const_configuration_options_inout16)
258
+ sub = tp.OperatorsSet(OPSET_SUB, const_configuration_options_inout16)
259
+ mul = tp.OperatorsSet(OPSET_MUL, const_configuration_options_inout16)
260
+ div = tp.OperatorsSet(OPSET_DIV, const_configuration_options)
261
+ prelu = tp.OperatorsSet(OPSET_PRELU)
262
+ swish = tp.OperatorsSet(OPSET_SWISH)
263
+ sigmoid = tp.OperatorsSet(OPSET_SIGMOID)
264
+ tanh = tp.OperatorsSet(OPSET_TANH)
243
265
 
244
266
  # Combine multiple operators into a single operator to avoid quantization between
245
267
  # them. To do this we define fusing patterns using the OperatorsSets that were created.
@@ -35,6 +35,10 @@ else:
35
35
  from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import get_tp_model
36
36
  import model_compression_toolkit as mct
37
37
  from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4 import __version__ as TPC_VERSION
38
+ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import OPSET_NO_QUANTIZATION, \
39
+ OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
40
+ OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
41
+ OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH
38
42
 
39
43
  tp = mct.target_platform
40
44
 
@@ -74,10 +78,8 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
74
78
  Dropout,
75
79
  MaxPooling2D,
76
80
  tf.split,
77
- tf.gather,
78
81
  tf.cast,
79
82
  tf.unstack,
80
- tf.compat.v1.gather,
81
83
  tf.__operators__.getitem,
82
84
  tf.strided_slice]
83
85
  quantization_preserving_list_16bit_input = [Reshape,
@@ -90,11 +92,12 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
90
92
  no_quant_list.append(SSDPostProcess)
91
93
 
92
94
  with keras_tpc:
93
- tp.OperationsSetToLayers("NoQuantization", no_quant_list)
94
- tp.OperationsSetToLayers("QuantizationPreserving", quantization_preserving)
95
- tp.OperationsSetToLayers("DimensionManipulationOps", quantization_preserving_list_16bit_input)
96
- tp.OperationsSetToLayers("MergeOps", [tf.stack, tf.concat, Concatenate])
97
- tp.OperationsSetToLayers("Conv",
95
+ tp.OperationsSetToLayers(OPSET_NO_QUANTIZATION, no_quant_list)
96
+ tp.OperationsSetToLayers(OPSET_QUANTIZATION_PRESERVING, quantization_preserving)
97
+ tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS, quantization_preserving_list_16bit_input)
98
+ tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [tf.gather, tf.compat.v1.gather])
99
+ tp.OperationsSetToLayers(OPSET_MERGE_OPS, [tf.stack, tf.concat, Concatenate])
100
+ tp.OperationsSetToLayers(OPSET_CONV,
98
101
  [Conv2D,
99
102
  DepthwiseConv2D,
100
103
  Conv2DTranspose,
@@ -111,23 +114,23 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
111
114
  DepthwiseConv2D: KERAS_DEPTHWISE_KERNEL,
112
115
  tf.nn.depthwise_conv2d: KERAS_DEPTHWISE_KERNEL}, default_value=KERAS_KERNEL),
113
116
  BIAS_ATTR: DefaultDict(default_value=BIAS)})
114
- tp.OperationsSetToLayers("FullyConnected", [Dense],
117
+ tp.OperationsSetToLayers(OPSET_FULLY_CONNECTED, [Dense],
115
118
  attr_mapping={KERNEL_ATTR: DefaultDict(default_value=KERAS_KERNEL),
116
119
  BIAS_ATTR: DefaultDict(default_value=BIAS)})
117
- tp.OperationsSetToLayers("AnyReLU", [tf.nn.relu,
118
- tf.nn.relu6,
119
- tf.nn.leaky_relu,
120
- ReLU,
121
- LeakyReLU,
122
- tp.LayerFilterParams(Activation, activation="relu"),
123
- tp.LayerFilterParams(Activation, activation="leaky_relu")])
124
- tp.OperationsSetToLayers("Add", [tf.add, Add])
125
- tp.OperationsSetToLayers("Sub", [tf.subtract, Subtract])
126
- tp.OperationsSetToLayers("Mul", [tf.math.multiply, Multiply])
127
- tp.OperationsSetToLayers("Div", [tf.math.divide, tf.math.truediv])
128
- tp.OperationsSetToLayers("PReLU", [PReLU])
129
- tp.OperationsSetToLayers("Swish", [tf.nn.swish, tp.LayerFilterParams(Activation, activation="swish")])
130
- tp.OperationsSetToLayers("Sigmoid", [tf.nn.sigmoid, tp.LayerFilterParams(Activation, activation="sigmoid")])
131
- tp.OperationsSetToLayers("Tanh", [tf.nn.tanh, tp.LayerFilterParams(Activation, activation="tanh")])
120
+ tp.OperationsSetToLayers(OPSET_ANY_RELU, [tf.nn.relu,
121
+ tf.nn.relu6,
122
+ tf.nn.leaky_relu,
123
+ ReLU,
124
+ LeakyReLU,
125
+ tp.LayerFilterParams(Activation, activation="relu"),
126
+ tp.LayerFilterParams(Activation, activation="leaky_relu")])
127
+ tp.OperationsSetToLayers(OPSET_ADD, [tf.add, Add])
128
+ tp.OperationsSetToLayers(OPSET_SUB, [tf.subtract, Subtract])
129
+ tp.OperationsSetToLayers(OPSET_MUL, [tf.math.multiply, Multiply])
130
+ tp.OperationsSetToLayers(OPSET_DIV, [tf.math.divide, tf.math.truediv])
131
+ tp.OperationsSetToLayers(OPSET_PRELU, [PReLU])
132
+ tp.OperationsSetToLayers(OPSET_SWISH, [tf.nn.swish, tp.LayerFilterParams(Activation, activation="swish")])
133
+ tp.OperationsSetToLayers(OPSET_SIGMOID, [tf.nn.sigmoid, tp.LayerFilterParams(Activation, activation="sigmoid")])
134
+ tp.OperationsSetToLayers(OPSET_TANH, [tf.nn.tanh, tp.LayerFilterParams(Activation, activation="tanh")])
132
135
 
133
136
  return keras_tpc
@@ -29,6 +29,10 @@ from model_compression_toolkit.target_platform_capabilities.constants import KER
29
29
  from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import get_tp_model
30
30
  import model_compression_toolkit as mct
31
31
  from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4 import __version__ as TPC_VERSION
32
+ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import OPSET_NO_QUANTIZATION, \
33
+ OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
34
+ OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
35
+ OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH
32
36
 
33
37
  tp = mct.target_platform
34
38
 
@@ -65,49 +69,49 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
65
69
  BIAS_ATTR: DefaultDict(default_value=BIAS)}
66
70
 
67
71
  with pytorch_tpc:
68
- tp.OperationsSetToLayers("NoQuantization", [torch.Tensor.size,
69
- equal,
70
- argmax,
71
- topk])
72
- tp.OperationsSetToLayers("QuantizationPreserving", [Dropout,
73
- dropout,
74
- split,
75
- chunk,
76
- unbind,
77
- gather,
78
- MaxPool2d])
79
- tp.OperationsSetToLayers("DimensionManipulationOps", [Flatten,
80
- flatten,
81
- operator.getitem,
82
- reshape,
83
- unsqueeze,
84
- squeeze,
85
- permute,
86
- transpose])
87
- tp.OperationsSetToLayers("MergeOps",
72
+ tp.OperationsSetToLayers(OPSET_NO_QUANTIZATION, [torch.Tensor.size,
73
+ equal,
74
+ argmax,
75
+ topk])
76
+ tp.OperationsSetToLayers(OPSET_QUANTIZATION_PRESERVING, [Dropout,
77
+ dropout,
78
+ split,
79
+ chunk,
80
+ unbind,
81
+ MaxPool2d])
82
+ tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS, [Flatten,
83
+ flatten,
84
+ operator.getitem,
85
+ reshape,
86
+ unsqueeze,
87
+ squeeze,
88
+ permute,
89
+ transpose])
90
+ tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [gather])
91
+ tp.OperationsSetToLayers(OPSET_MERGE_OPS,
88
92
  [torch.stack, torch.cat, torch.concat, torch.concatenate])
89
93
 
90
- tp.OperationsSetToLayers("Conv", [Conv2d, ConvTranspose2d],
94
+ tp.OperationsSetToLayers(OPSET_CONV, [Conv2d, ConvTranspose2d],
91
95
  attr_mapping=pytorch_linear_attr_mapping)
92
- tp.OperationsSetToLayers("FullyConnected", [Linear],
96
+ tp.OperationsSetToLayers(OPSET_FULLY_CONNECTED, [Linear],
93
97
  attr_mapping=pytorch_linear_attr_mapping)
94
- tp.OperationsSetToLayers("AnyReLU", [torch.relu,
95
- ReLU,
96
- ReLU6,
97
- LeakyReLU,
98
- relu,
99
- relu6,
100
- leaky_relu,
101
- tp.LayerFilterParams(Hardtanh, min_val=0),
102
- tp.LayerFilterParams(hardtanh, min_val=0)])
98
+ tp.OperationsSetToLayers(OPSET_ANY_RELU, [torch.relu,
99
+ ReLU,
100
+ ReLU6,
101
+ LeakyReLU,
102
+ relu,
103
+ relu6,
104
+ leaky_relu,
105
+ tp.LayerFilterParams(Hardtanh, min_val=0),
106
+ tp.LayerFilterParams(hardtanh, min_val=0)])
103
107
 
104
- tp.OperationsSetToLayers("Add", [operator.add, add])
105
- tp.OperationsSetToLayers("Sub", [operator.sub, sub, subtract])
106
- tp.OperationsSetToLayers("Mul", [operator.mul, mul, multiply])
107
- tp.OperationsSetToLayers("Div", [operator.truediv, div, divide])
108
- tp.OperationsSetToLayers("PReLU", [PReLU, prelu])
109
- tp.OperationsSetToLayers("Swish", [SiLU, silu, Hardswish, hardswish])
110
- tp.OperationsSetToLayers("Sigmoid", [Sigmoid, sigmoid])
111
- tp.OperationsSetToLayers("Tanh", [Tanh, tanh])
108
+ tp.OperationsSetToLayers(OPSET_ADD, [operator.add, add])
109
+ tp.OperationsSetToLayers(OPSET_SUB, [operator.sub, sub, subtract])
110
+ tp.OperationsSetToLayers(OPSET_MUL, [operator.mul, mul, multiply])
111
+ tp.OperationsSetToLayers(OPSET_DIV, [operator.truediv, div, divide])
112
+ tp.OperationsSetToLayers(OPSET_PRELU, [PReLU, prelu])
113
+ tp.OperationsSetToLayers(OPSET_SWISH, [SiLU, silu, Hardswish, hardswish])
114
+ tp.OperationsSetToLayers(OPSET_SIGMOID, [Sigmoid, sigmoid])
115
+ tp.OperationsSetToLayers(OPSET_TANH, [Tanh, tanh])
112
116
 
113
117
  return pytorch_tpc