mct-nightly 2.2.0.20240911.455__tar.gz → 2.2.0.20240913.457__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (551) hide show
  1. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/PKG-INFO +1 -1
  2. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/__init__.py +1 -1
  4. mct-nightly-2.2.0.20240913.457/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +73 -0
  5. mct-nightly-2.2.0.20240913.457/model_compression_toolkit/core/common/quantization/core_config.py +48 -0
  6. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/debug_config.py +12 -17
  7. mct-nightly-2.2.0.20240913.457/model_compression_toolkit/core/common/quantization/quantization_config.py +92 -0
  8. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +2 -2
  9. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +19 -14
  10. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/runner.py +4 -4
  11. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantization_facade.py +1 -1
  12. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +1 -1
  13. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/ptq/keras/quantization_facade.py +1 -1
  14. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +1 -1
  15. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/quantization_facade.py +1 -1
  16. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/pytorch/quantization_facade.py +1 -1
  17. mct-nightly-2.2.0.20240911.455/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -87
  18. mct-nightly-2.2.0.20240911.455/model_compression_toolkit/core/common/quantization/core_config.py +0 -52
  19. mct-nightly-2.2.0.20240911.455/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -134
  20. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/LICENSE.md +0 -0
  21. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/README.md +0 -0
  22. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/mct_nightly.egg-info/SOURCES.txt +0 -0
  23. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/mct_nightly.egg-info/dependency_links.txt +0 -0
  24. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/mct_nightly.egg-info/requires.txt +0 -0
  25. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/mct_nightly.egg-info/top_level.txt +0 -0
  26. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/constants.py +0 -0
  27. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/__init__.py +0 -0
  28. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/analyzer.py +0 -0
  29. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/__init__.py +0 -0
  30. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  31. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  32. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  33. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  34. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  35. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  36. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  37. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  38. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  39. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  40. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/framework_info.py +0 -0
  41. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  42. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  43. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  44. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  45. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  46. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  47. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  48. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  49. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  50. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  51. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  52. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  53. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  54. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  55. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  56. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  57. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  58. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  59. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  60. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  61. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  62. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  63. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  64. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  65. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  66. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  67. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  68. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  69. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  70. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  71. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  72. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  73. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  74. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  75. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  76. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  77. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
  78. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  79. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  80. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  81. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  82. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  83. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  84. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  85. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  86. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  87. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  88. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  89. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  90. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  91. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  92. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/model_collector.py +0 -0
  93. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/model_validation.py +0 -0
  94. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  95. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  96. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  97. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  98. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  99. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  100. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  101. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  102. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  103. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  104. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  105. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  106. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  107. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  108. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  109. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  110. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  111. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  112. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  113. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  114. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  115. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  116. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  117. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
  118. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  119. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  120. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  121. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  122. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  123. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  124. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  125. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  126. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  127. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  128. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  129. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  130. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  131. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  132. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  133. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  134. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  135. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  136. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  137. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  138. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  139. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  140. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  141. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  142. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  143. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  144. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  145. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  146. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  147. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  148. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  149. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  150. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  151. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  152. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  153. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  154. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  155. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  156. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  157. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  158. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  159. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  160. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/user_info.py +0 -0
  161. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  162. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  163. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  164. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  165. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  166. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/__init__.py +0 -0
  167. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  168. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  169. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  170. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  171. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  172. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  173. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  174. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/constants.py +0 -0
  175. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  176. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  177. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  178. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  179. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  180. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  181. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  182. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  183. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  184. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  185. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  186. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  187. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  188. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  189. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  190. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  191. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  192. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  193. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  194. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  195. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  196. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  197. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  198. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  199. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  200. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  201. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  202. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  203. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  204. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  205. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  206. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  207. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  208. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  209. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  210. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  211. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  212. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  213. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  214. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  215. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  216. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  217. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  218. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  219. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  220. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  221. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  222. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  223. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  224. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  225. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  226. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  227. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  228. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  229. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  230. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  231. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  232. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  233. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  234. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  235. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  236. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  237. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  238. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  239. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  240. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  241. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  242. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  243. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  244. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  245. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  246. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  247. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  248. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  249. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  250. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  251. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  252. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  253. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  254. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  255. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  256. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  257. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  258. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  259. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  260. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  261. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  262. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  263. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  264. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  265. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  266. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  267. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  268. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  269. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  270. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  271. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  272. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  273. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  274. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  275. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  276. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  277. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  278. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  279. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  280. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  281. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  282. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  283. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  284. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  285. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  286. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  287. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  288. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/__init__.py +0 -0
  289. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  290. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  291. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  292. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  293. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  294. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  295. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  296. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  297. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  298. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  299. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  300. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  301. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  302. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  303. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  304. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  305. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  306. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  307. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  308. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  309. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  310. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  311. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  312. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  313. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  314. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  315. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  316. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  317. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  318. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  319. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  320. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  321. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  322. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  323. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  324. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  325. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/defaultdict.py +0 -0
  326. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/__init__.py +0 -0
  327. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  328. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  329. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  330. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  331. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  332. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  333. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  334. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  335. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  336. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  337. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  338. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  339. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  340. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  341. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  342. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  343. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  344. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  345. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  346. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  347. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  348. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  349. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  350. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  351. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  352. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  353. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  354. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  355. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  356. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  357. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  358. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/__init__.py +0 -0
  359. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  360. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  361. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  362. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  363. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  364. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  365. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  366. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  367. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  368. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  369. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  370. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  371. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  372. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  373. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  374. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  375. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  376. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  377. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  378. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  379. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  380. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  381. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  382. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  383. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  384. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  385. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  386. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  387. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  388. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  389. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  390. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  391. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  392. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  393. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  394. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  395. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  396. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  397. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/gptq/runner.py +0 -0
  398. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/logger.py +0 -0
  399. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/metadata.py +0 -0
  400. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/pruning/__init__.py +0 -0
  401. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  402. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  403. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  404. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  405. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/ptq/__init__.py +0 -0
  406. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  407. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  408. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/ptq/runner.py +0 -0
  409. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/__init__.py +0 -0
  410. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/common/__init__.py +0 -0
  411. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  412. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  413. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  414. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  415. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  416. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  417. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  418. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  419. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  420. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  421. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  422. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  423. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  424. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  425. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  426. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  427. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  428. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  429. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  430. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  431. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  432. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  433. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  434. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  435. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  436. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  437. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  438. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  439. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  440. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  441. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  442. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  443. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  444. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  445. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  446. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  447. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  448. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  449. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  450. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  451. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  452. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  453. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  454. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  455. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  456. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  457. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  458. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  459. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  460. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  461. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  462. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  463. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  464. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  465. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  466. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  467. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  468. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  469. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  470. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  471. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  472. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  473. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  474. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  475. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  476. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  477. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  478. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  479. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  480. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  481. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  482. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  483. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  484. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  485. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  486. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  487. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  488. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  489. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  490. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  491. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  492. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  493. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  494. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  495. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  496. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  497. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  498. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  499. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  500. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  501. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  502. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  503. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  504. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  505. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  506. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  507. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  508. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  509. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  510. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  511. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  512. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  513. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  514. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  515. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  516. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  517. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  518. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  519. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  520. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  521. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  522. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  523. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/verify_packages.py +0 -0
  524. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/__init__.py +0 -0
  525. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  526. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/common/constants.py +0 -0
  527. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  528. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  529. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  530. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  531. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  532. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  533. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  534. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  535. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  536. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  537. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  538. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  539. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  540. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  541. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  542. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  543. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  544. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  545. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  546. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  547. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  548. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  549. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  550. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/setup.cfg +0 -0
  551. {mct-nightly-2.2.0.20240911.455 → mct-nightly-2.2.0.20240913.457}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20240911.455
3
+ Version: 2.2.0.20240913.457
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20240911.455
3
+ Version: 2.2.0.20240913.457
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20240911.000455"
30
+ __version__ = "2.2.0.20240913.000457"
@@ -0,0 +1,73 @@
1
+ # Copyright 2021 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from dataclasses import dataclass, field
17
+ from typing import List, Callable, Optional
18
+ from model_compression_toolkit.constants import MP_DEFAULT_NUM_SAMPLES, ACT_HESSIAN_DEFAULT_BATCH_SIZE
19
+ from model_compression_toolkit.core.common.mixed_precision.distance_weighting import MpDistanceWeighting
20
+
21
+
22
+ @dataclass
23
+ class MixedPrecisionQuantizationConfig:
24
+ """
25
+ Class with mixed precision parameters to quantize the input model.
26
+
27
+ Args:
28
+ compute_distance_fn (Callable): Function to compute a distance between two tensors. If None, using pre-defined distance methods based on the layer type for each layer.
29
+ distance_weighting_method (MpDistanceWeighting): MpDistanceWeighting enum value that provides a function to use when weighting the distances among different layers when computing the sensitivity metric.
30
+ num_of_images (int): Number of images to use to evaluate the sensitivity of a mixed-precision model comparing to the float model.
31
+ configuration_overwrite (List[int]): A list of integers that enables overwrite of mixed precision with a predefined one.
32
+ num_interest_points_factor (float): A multiplication factor between zero and one (represents percentage) to reduce the number of interest points used to calculate the distance metric.
33
+ use_hessian_based_scores (bool): Whether to use Hessian-based scores for weighted average distance metric computation.
34
+ norm_scores (bool): Whether to normalize the returned scores for the weighted distance metric (to get values between 0 and 1).
35
+ refine_mp_solution (bool): Whether to try to improve the final mixed-precision configuration using a greedy algorithm that searches layers to increase their bit-width, or not.
36
+ metric_normalization_threshold (float): A threshold for checking the mixed precision distance metric values, In case of values larger than this threshold, the metric will be scaled to prevent numerical issues.
37
+ hessian_batch_size (int): The Hessian computation batch size. used only if using mixed precision with Hessian-based objective.
38
+ """
39
+
40
+ compute_distance_fn: Optional[Callable] = None
41
+ distance_weighting_method: MpDistanceWeighting = MpDistanceWeighting.AVG
42
+ num_of_images: int = MP_DEFAULT_NUM_SAMPLES
43
+ configuration_overwrite: Optional[List[int]] = None
44
+ num_interest_points_factor: float = field(default=1.0, metadata={"description": "Should be between 0.0 and 1.0"})
45
+ use_hessian_based_scores: bool = False
46
+ norm_scores: bool = True
47
+ refine_mp_solution: bool = True
48
+ metric_normalization_threshold: float = 1e10
49
+ hessian_batch_size: int = ACT_HESSIAN_DEFAULT_BATCH_SIZE
50
+ _is_mixed_precision_enabled: bool = field(init=False, default=False)
51
+
52
+ def __post_init__(self):
53
+ # Validate num_interest_points_factor
54
+ assert 0.0 < self.num_interest_points_factor <= 1.0, \
55
+ "num_interest_points_factor should represent a percentage of " \
56
+ "the base set of interest points that are required to be " \
57
+ "used for mixed-precision metric evaluation, " \
58
+ "thus, it should be between 0 to 1"
59
+
60
+ def set_mixed_precision_enable(self):
61
+ """
62
+ Set a flag in mixed precision config indicating that mixed precision is enabled.
63
+ """
64
+ self._is_mixed_precision_enabled = True
65
+
66
+ @property
67
+ def is_mixed_precision_enabled(self):
68
+ """
69
+ A property that indicates whether mixed precision quantization is enabled.
70
+
71
+ Returns: True if mixed precision quantization is enabled
72
+ """
73
+ return self._is_mixed_precision_enabled
@@ -0,0 +1,48 @@
1
+ # Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from dataclasses import dataclass, field
16
+ from typing import Optional
17
+
18
+ from model_compression_toolkit.core.common.quantization.bit_width_config import BitWidthConfig
19
+ from model_compression_toolkit.core.common.quantization.quantization_config import QuantizationConfig
20
+ from model_compression_toolkit.core.common.quantization.debug_config import DebugConfig
21
+ from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import MixedPrecisionQuantizationConfig
22
+
23
+
24
+ @dataclass
25
+ class CoreConfig:
26
+ """
27
+ A dataclass to hold the configurations classes of the MCT-core.
28
+
29
+ Args:
30
+ quantization_config (QuantizationConfig): Config for quantization.
31
+ mixed_precision_config (MixedPrecisionQuantizationConfig): Config for mixed precision quantization.
32
+ If None, a default MixedPrecisionQuantizationConfig is used.
33
+ bit_width_config (BitWidthConfig): Config for manual bit-width selection.
34
+ debug_config (DebugConfig): Config for debugging and editing the network quantization process.
35
+ """
36
+
37
+ quantization_config: QuantizationConfig = field(default_factory=QuantizationConfig)
38
+ mixed_precision_config: MixedPrecisionQuantizationConfig = field(default_factory=MixedPrecisionQuantizationConfig)
39
+ bit_width_config: BitWidthConfig = field(default_factory=BitWidthConfig)
40
+ debug_config: DebugConfig = field(default_factory=DebugConfig)
41
+
42
+ @property
43
+ def is_mixed_precision_enabled(self) -> bool:
44
+ """
45
+ A property that indicates whether mixed precision is enabled.
46
+ """
47
+ return bool(self.mixed_precision_config and self.mixed_precision_config.is_mixed_precision_enabled)
48
+
@@ -13,29 +13,24 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
-
16
+ from dataclasses import dataclass, field
17
17
  from typing import List
18
18
 
19
19
  from model_compression_toolkit.core.common.network_editors.edit_network import EditRule
20
20
 
21
21
 
22
+ @dataclass
22
23
  class DebugConfig:
23
24
  """
24
- A class for MCT core debug information.
25
- """
26
- def __init__(self,
27
- analyze_similarity: bool = False,
28
- network_editor: List[EditRule] = [],
29
- simulate_scheduler: bool = False):
30
- """
25
+ A dataclass for MCT core debug information.
31
26
 
32
- Args:
27
+ Args:
28
+ analyze_similarity (bool): Whether to plot similarity figures within TensorBoard (when logger is
29
+ enabled) or not. Can be used to pinpoint problematic layers in the quantization process.
30
+ network_editor (List[EditRule]): A list of rules and actions to edit the network for quantization.
31
+ simulate_scheduler (bool): Simulate scheduler behavior to compute operators' order and cuts.
32
+ """
33
33
 
34
- analyze_similarity (bool): Whether to plot similarity figures within TensorBoard (when logger is
35
- enabled) or not. Can be used to pinpoint problematic layers in the quantization process.
36
- network_editor (List[EditRule]): A list of rules and actions to edit the network for quantization.
37
- simulate_scheduler (bool): Simulate scheduler behaviour to compute operators order and cuts.
38
- """
39
- self.analyze_similarity = analyze_similarity
40
- self.network_editor = network_editor
41
- self.simulate_scheduler = simulate_scheduler
34
+ analyze_similarity: bool = False
35
+ network_editor: List[EditRule] = field(default_factory=list)
36
+ simulate_scheduler: bool = False
@@ -0,0 +1,92 @@
1
+ # Copyright 2021 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from dataclasses import dataclass, field
17
+ import math
18
+ from enum import Enum
19
+
20
+ from model_compression_toolkit.constants import MIN_THRESHOLD
21
+
22
+
23
+ class QuantizationErrorMethod(Enum):
24
+ """
25
+ Method for quantization threshold selection:
26
+
27
+ NOCLIPPING - Use min/max values as thresholds.
28
+
29
+ MSE - Use mean square error for minimizing quantization noise.
30
+
31
+ MAE - Use mean absolute error for minimizing quantization noise.
32
+
33
+ KL - Use KL-divergence to make signals distributions to be similar as possible.
34
+
35
+ Lp - Use Lp-norm to minimizing quantization noise.
36
+
37
+ HMSE - Use Hessian-based mean squared error for minimizing quantization noise. This method is using Hessian scores to factorize more valuable parameters when computing the error induced by quantization.
38
+
39
+ """
40
+
41
+ NOCLIPPING = 0
42
+ MSE = 1
43
+ MAE = 2
44
+ KL = 4
45
+ LP = 5
46
+ HMSE = 6
47
+
48
+
49
+ @dataclass
50
+ class QuantizationConfig:
51
+ """
52
+ A class that encapsulates all the different parameters used by the library to quantize a model.
53
+
54
+ Examples:
55
+ You can create a quantization configuration to apply to a model. For example, to quantize a model's weights and
56
+ activations using thresholds, with weight threshold selection based on MSE and activation threshold selection
57
+ using NOCLIPPING (min/max), while enabling relu_bound_to_power_of_2 and weights_bias_correction,
58
+ you can instantiate a quantization configuration like this:
59
+
60
+ >>> import model_compression_toolkit as mct
61
+ >>> qc = mct.core.QuantizationConfig(activation_error_method=mct.core.QuantizationErrorMethod.NOCLIPPING, weights_error_method=mct.core.QuantizationErrorMethod.MSE, relu_bound_to_power_of_2=True, weights_bias_correction=True)
62
+
63
+
64
+ The QuantizationConfig instance can then be used in the quantization workflow,
65
+ such as with Keras in the function: :func:~model_compression_toolkit.ptq.keras_post_training_quantization`.
66
+
67
+ """
68
+
69
+ activation_error_method: QuantizationErrorMethod = QuantizationErrorMethod.MSE
70
+ weights_error_method: QuantizationErrorMethod = QuantizationErrorMethod.MSE
71
+ relu_bound_to_power_of_2: bool = False
72
+ weights_bias_correction: bool = True
73
+ weights_second_moment_correction: bool = False
74
+ input_scaling: bool = False
75
+ softmax_shift: bool = False
76
+ shift_negative_activation_correction: bool = True
77
+ activation_channel_equalization: bool = False
78
+ z_threshold: float = math.inf
79
+ min_threshold: float = MIN_THRESHOLD
80
+ l_p_value: int = 2
81
+ linear_collapsing: bool = True
82
+ residual_collapsing: bool = True
83
+ shift_negative_ratio: float = 0.05
84
+ shift_negative_threshold_recalculation: bool = False
85
+ shift_negative_params_search: bool = False
86
+ concat_threshold_update: bool = False
87
+
88
+
89
+ # Default quantization configuration the library use.
90
+ DEFAULTCONFIG = QuantizationConfig(QuantizationErrorMethod.MSE, QuantizationErrorMethod.MSE,
91
+ relu_bound_to_power_of_2=False, weights_bias_correction=True,
92
+ weights_second_moment_correction=False, input_scaling=False, softmax_shift=False)
@@ -360,7 +360,7 @@ def shift_negative_function(graph: Graph,
360
360
  graph=graph,
361
361
  quant_config=core_config.quantization_config,
362
362
  tpc=graph.tpc,
363
- mixed_precision_enable=core_config.mixed_precision_enable)
363
+ mixed_precision_enable=core_config.is_mixed_precision_enabled)
364
364
 
365
365
  for candidate_qc in pad_node.candidates_quantization_cfg:
366
366
  candidate_qc.activation_quantization_cfg.enable_activation_quantization = False
@@ -377,7 +377,7 @@ def shift_negative_function(graph: Graph,
377
377
  graph=graph,
378
378
  quant_config=core_config.quantization_config,
379
379
  tpc=graph.tpc,
380
- mixed_precision_enable=core_config.mixed_precision_enable)
380
+ mixed_precision_enable=core_config.is_mixed_precision_enabled)
381
381
 
382
382
  original_non_linear_activation_nbits = non_linear_node_cfg_candidate.activation_n_bits
383
383
  # The non-linear node's output should be float, so we approximate it by using 16bits quantization.
@@ -80,16 +80,19 @@ def _build_input_alloc_and_call_args(n: Node, input_tensors_in_node_kwargs: Dict
80
80
  tensor_input_alloc = []
81
81
  op_call_args = list(n.args)
82
82
  if inputs_as_list:
83
- op_call_args.pop(0)
83
+ # input tensors are a list in the first argument -> remove from op_call_args and go over
84
+ # the tensors in that list.
85
+ _args = op_call_args.pop(0)
84
86
  else:
85
- for in_node in n.all_input_nodes:
86
- # The extra for loop is used to tackle the case of the same input tensor for this node (e.g. torch.add(x, x)).
87
- for i, arg in enumerate(n.args):
88
- if arg == in_node:
89
- tensor_input_alloc.append(i)
90
- for k, arg in input_tensors_in_node_kwargs.items():
91
- if arg == in_node:
92
- tensor_input_alloc.append(k)
87
+ _args = n.args
88
+ for in_node in n.all_input_nodes:
89
+ # The extra for loop is used to tackle the case of the same input tensor for this node (e.g. torch.add(x, x)).
90
+ for i, arg in enumerate(_args):
91
+ if arg == in_node:
92
+ tensor_input_alloc.append(i)
93
+ for k, arg in input_tensors_in_node_kwargs.items():
94
+ if arg == in_node:
95
+ tensor_input_alloc.append(k)
93
96
 
94
97
  return op_call_args, tensor_input_alloc
95
98
 
@@ -253,11 +256,8 @@ def nodes_builder(model: GraphModule,
253
256
  node_kwargs[k] = v
254
257
 
255
258
  # Check if node's first input argument is a list of input fx nodes, such as torch.cat:
256
- is_first_input_list_of_nodes = is_instance_first_arg(node, (list, tuple)) and all(
259
+ inputs_as_list = is_instance_first_arg(node, (list, tuple)) and all(
257
260
  [isinstance(n, Node) for n in node.args[0]])
258
- is_placeholder_a_list = is_instance_first_arg(node, Node) and \
259
- node.args[0].op == PLACEHOLDER and node.args[0].meta[TYPE] in (list, tuple)
260
- inputs_as_list = is_first_input_list_of_nodes or is_placeholder_a_list
261
261
 
262
262
  # Build tensor_input_alloc required for the model builder. All input nodes are received as a list in the builder,
263
263
  # so tensor_input_alloc is used to allocate each input tensor in the correct place in the node's args & kwargs.
@@ -333,7 +333,12 @@ def edges_builder(model: GraphModule,
333
333
  if input_node in fx_node_2_graph_node:
334
334
  # n_edges_for_input_node is for the case that the input node appears more than
335
335
  # once as the input of the node, for example add(x, x)
336
- n_edges_for_input_node = sum([1 for a in node.args if input_node == a])
336
+ if node in fx_node_2_graph_node and isinstance(fx_node_2_graph_node[node], FunctionalNode) and \
337
+ fx_node_2_graph_node[node].inputs_as_list:
338
+ _args = node.args[0]
339
+ else:
340
+ _args = node.args
341
+ n_edges_for_input_node = sum([1 for a in _args if input_node == a])
337
342
  n_edges_for_input_node = max(n_edges_for_input_node, 1)
338
343
 
339
344
  dst_index = node.all_input_nodes.index(input_node)
@@ -119,7 +119,7 @@ def core_runner(in_model: Any,
119
119
  tpc,
120
120
  core_config.bit_width_config,
121
121
  tb_w,
122
- mixed_precision_enable=core_config.mixed_precision_enable,
122
+ mixed_precision_enable=core_config.is_mixed_precision_enabled,
123
123
  running_gptq=running_gptq)
124
124
 
125
125
  hessian_info_service = HessianInfoService(graph=graph, representative_dataset_gen=representative_data_gen,
@@ -136,7 +136,7 @@ def core_runner(in_model: Any,
136
136
  ######################################
137
137
  # Finalize bit widths
138
138
  ######################################
139
- if core_config.mixed_precision_enable:
139
+ if core_config.is_mixed_precision_enabled:
140
140
  if core_config.mixed_precision_config.configuration_overwrite is None:
141
141
 
142
142
  filter_candidates_for_mixed_precision(graph, target_resource_utilization, fw_info, tpc)
@@ -161,7 +161,7 @@ def core_runner(in_model: Any,
161
161
  else:
162
162
  bit_widths_config = []
163
163
 
164
- tg = set_bit_widths(core_config.mixed_precision_enable,
164
+ tg = set_bit_widths(core_config.is_mixed_precision_enabled,
165
165
  tg,
166
166
  bit_widths_config)
167
167
 
@@ -175,7 +175,7 @@ def core_runner(in_model: Any,
175
175
  fw_info=fw_info,
176
176
  fw_impl=fw_impl)
177
177
 
178
- if core_config.mixed_precision_enable:
178
+ if core_config.is_mixed_precision_enabled:
179
179
  # Retrieve lists of tuples (node, node's final weights/activation bitwidth)
180
180
  weights_conf_nodes_bitwidth = tg.get_final_weights_config(fw_info)
181
181
  activation_conf_nodes_bitwidth = tg.get_final_activation_config()
@@ -199,7 +199,7 @@ if FOUND_TF:
199
199
  KerasModelValidation(model=in_model,
200
200
  fw_info=DEFAULT_KERAS_INFO).validate()
201
201
 
202
- if core_config.mixed_precision_enable:
202
+ if core_config.is_mixed_precision_enabled:
203
203
  if not isinstance(core_config.mixed_precision_config, MixedPrecisionQuantizationConfig):
204
204
  Logger.critical("Given quantization config for mixed-precision is not of type 'MixedPrecisionQuantizationConfig'. "
205
205
  "Ensure usage of the correct API for keras_post_training_quantization "
@@ -165,7 +165,7 @@ if FOUND_TORCH:
165
165
 
166
166
  """
167
167
 
168
- if core_config.mixed_precision_enable:
168
+ if core_config.is_mixed_precision_enabled:
169
169
  if not isinstance(core_config.mixed_precision_config, MixedPrecisionQuantizationConfig):
170
170
  Logger.critical("Given quantization config for mixed-precision is not of type 'MixedPrecisionQuantizationConfig'. "
171
171
  "Ensure usage of the correct API for 'pytorch_gradient_post_training_quantization' "
@@ -124,7 +124,7 @@ if FOUND_TF:
124
124
  KerasModelValidation(model=in_model,
125
125
  fw_info=fw_info).validate()
126
126
 
127
- if core_config.mixed_precision_enable:
127
+ if core_config.is_mixed_precision_enabled:
128
128
  if not isinstance(core_config.mixed_precision_config, MixedPrecisionQuantizationConfig):
129
129
  Logger.critical("Given quantization config to mixed-precision facade is not of type "
130
130
  "MixedPrecisionQuantizationConfig. Please use keras_post_training_quantization "
@@ -96,7 +96,7 @@ if FOUND_TORCH:
96
96
 
97
97
  fw_info = DEFAULT_PYTORCH_INFO
98
98
 
99
- if core_config.mixed_precision_enable:
99
+ if core_config.is_mixed_precision_enabled:
100
100
  if not isinstance(core_config.mixed_precision_config, MixedPrecisionQuantizationConfig):
101
101
  Logger.critical("Given quantization config to mixed-precision facade is not of type "
102
102
  "MixedPrecisionQuantizationConfig. Please use "
@@ -176,7 +176,7 @@ if FOUND_TF:
176
176
  KerasModelValidation(model=in_model,
177
177
  fw_info=DEFAULT_KERAS_INFO).validate()
178
178
 
179
- if core_config.mixed_precision_enable:
179
+ if core_config.is_mixed_precision_enabled:
180
180
  if not isinstance(core_config.mixed_precision_config, MixedPrecisionQuantizationConfig):
181
181
  Logger.critical("Given quantization config to mixed-precision facade is not of type "
182
182
  "MixedPrecisionQuantizationConfig. Please use keras_post_training_quantization API,"
@@ -145,7 +145,7 @@ if FOUND_TORCH:
145
145
  f"If you encounter an issue, please open an issue in our GitHub "
146
146
  f"project https://github.com/sony/model_optimization")
147
147
 
148
- if core_config.mixed_precision_enable:
148
+ if core_config.is_mixed_precision_enabled:
149
149
  if not isinstance(core_config.mixed_precision_config, MixedPrecisionQuantizationConfig):
150
150
  Logger.critical("Given quantization config to mixed-precision facade is not of type "
151
151
  "MixedPrecisionQuantizationConfig. Please use pytorch_post_training_quantization API,"
@@ -1,87 +0,0 @@
1
- # Copyright 2021 Sony Semiconductor Israel, Inc. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- from typing import List, Callable
17
-
18
- from model_compression_toolkit.constants import MP_DEFAULT_NUM_SAMPLES, ACT_HESSIAN_DEFAULT_BATCH_SIZE
19
- from model_compression_toolkit.core.common.mixed_precision.distance_weighting import MpDistanceWeighting
20
-
21
-
22
- class MixedPrecisionQuantizationConfig:
23
-
24
- def __init__(self,
25
- compute_distance_fn: Callable = None,
26
- distance_weighting_method: MpDistanceWeighting = MpDistanceWeighting.AVG,
27
- num_of_images: int = MP_DEFAULT_NUM_SAMPLES,
28
- configuration_overwrite: List[int] = None,
29
- num_interest_points_factor: float = 1.0,
30
- use_hessian_based_scores: bool = False,
31
- norm_scores: bool = True,
32
- refine_mp_solution: bool = True,
33
- metric_normalization_threshold: float = 1e10,
34
- hessian_batch_size: int = ACT_HESSIAN_DEFAULT_BATCH_SIZE):
35
- """
36
- Class with mixed precision parameters to quantize the input model.
37
-
38
- Args:
39
- compute_distance_fn (Callable): Function to compute a distance between two tensors. If None, using pre-defined distance methods based on the layer type for each layer.
40
- distance_weighting_method (MpDistanceWeighting): MpDistanceWeighting enum value that provides a function to use when weighting the distances among different layers when computing the sensitivity metric.
41
- num_of_images (int): Number of images to use to evaluate the sensitivity of a mixed-precision model comparing to the float model.
42
- configuration_overwrite (List[int]): A list of integers that enables overwrite of mixed precision with a predefined one.
43
- num_interest_points_factor (float): A multiplication factor between zero and one (represents percentage) to reduce the number of interest points used to calculate the distance metric.
44
- use_hessian_based_scores (bool): Whether to use Hessian-based scores for weighted average distance metric computation.
45
- norm_scores (bool): Whether to normalize the returned scores for the weighted distance metric (to get values between 0 and 1).
46
- refine_mp_solution (bool): Whether to try to improve the final mixed-precision configuration using a greedy algorithm that searches layers to increase their bit-width, or not.
47
- metric_normalization_threshold (float): A threshold for checking the mixed precision distance metric values, In case of values larger than this threshold, the metric will be scaled to prevent numerical issues.
48
- hessian_batch_size (int): The Hessian computation batch size. used only if using mixed precision with Hessian-based objective.
49
-
50
- """
51
-
52
- self.compute_distance_fn = compute_distance_fn
53
- self.distance_weighting_method = distance_weighting_method
54
- self.num_of_images = num_of_images
55
- self.configuration_overwrite = configuration_overwrite
56
- self.refine_mp_solution = refine_mp_solution
57
-
58
- assert 0.0 < num_interest_points_factor <= 1.0, "num_interest_points_factor should represent a percentage of " \
59
- "the base set of interest points that are required to be " \
60
- "used for mixed-precision metric evaluation, " \
61
- "thus, it should be between 0 to 1"
62
- self.num_interest_points_factor = num_interest_points_factor
63
-
64
- self.use_hessian_based_scores = use_hessian_based_scores
65
- self.norm_scores = norm_scores
66
- self.hessian_batch_size = hessian_batch_size
67
-
68
- self.metric_normalization_threshold = metric_normalization_threshold
69
-
70
- self._mixed_precision_enable = False
71
-
72
- def set_mixed_precision_enable(self):
73
- """
74
- Set a flag in mixed precision config indicating that mixed precision is enabled.
75
- """
76
-
77
- self._mixed_precision_enable = True
78
-
79
- @property
80
- def mixed_precision_enable(self):
81
- """
82
- A property that indicates whether mixed precision quantization is enabled.
83
-
84
- Returns: True if mixed precision quantization is enabled
85
-
86
- """
87
- return self._mixed_precision_enable
@@ -1,52 +0,0 @@
1
- # Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- from model_compression_toolkit.core.common.quantization.bit_width_config import BitWidthConfig
16
- from model_compression_toolkit.core.common.quantization.quantization_config import QuantizationConfig
17
- from model_compression_toolkit.core.common.quantization.debug_config import DebugConfig
18
- from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import MixedPrecisionQuantizationConfig
19
-
20
-
21
- class CoreConfig:
22
- """
23
- A class to hold the configurations classes of the MCT-core.
24
- """
25
- def __init__(self,
26
- quantization_config: QuantizationConfig = None,
27
- mixed_precision_config: MixedPrecisionQuantizationConfig = None,
28
- bit_width_config: BitWidthConfig = None,
29
- debug_config: DebugConfig = None
30
- ):
31
- """
32
-
33
- Args:
34
- quantization_config (QuantizationConfig): Config for quantization.
35
- mixed_precision_config (MixedPrecisionQuantizationConfig): Config for mixed precision quantization.
36
- If None, a default MixedPrecisionQuantizationConfig is used.
37
- bit_width_config (BitWidthConfig): Config for manual bit-width selection.
38
- debug_config (DebugConfig): Config for debugging and editing the network quantization process.
39
- """
40
- self.quantization_config = QuantizationConfig() if quantization_config is None else quantization_config
41
- self.bit_width_config = BitWidthConfig() if bit_width_config is None else bit_width_config
42
- self.debug_config = DebugConfig() if debug_config is None else debug_config
43
-
44
- if mixed_precision_config is None:
45
- self.mixed_precision_config = MixedPrecisionQuantizationConfig()
46
- else:
47
- self.mixed_precision_config = mixed_precision_config
48
-
49
- @property
50
- def mixed_precision_enable(self):
51
- return self.mixed_precision_config is not None and self.mixed_precision_config.mixed_precision_enable
52
-