mct-nightly 2.1.0.20240807.445__tar.gz → 2.1.0.20240808.431__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/PKG-INFO +1 -1
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/mct_nightly.egg-info/PKG-INFO +1 -1
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/mct_nightly.egg-info/SOURCES.txt +1 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/constants.py +14 -1
- mct-nightly-2.1.0.20240808.431/model_compression_toolkit/core/common/fusion/graph_fuser.py +135 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +4 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/debug_config.py +4 -1
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +29 -1
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/runner.py +21 -1
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantization_facade.py +13 -11
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +13 -11
- mct-nightly-2.1.0.20240808.431/model_compression_toolkit/metadata.py +88 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/ptq/keras/quantization_facade.py +12 -10
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +12 -12
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/quantization_facade.py +8 -8
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/quantization_facade.py +8 -8
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +10 -13
- mct-nightly-2.1.0.20240808.431/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +97 -0
- mct-nightly-2.1.0.20240808.431/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +54 -0
- mct-nightly-2.1.0.20240808.431/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +54 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/common/constants.py +3 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/common/core_report_generator.py +9 -1
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/common/framework_report_utils.py +5 -14
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/common/tensorboard_utils.py +30 -5
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +2 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/keras/keras_report_utils.py +3 -1
- mct-nightly-2.1.0.20240808.431/model_compression_toolkit/xquant/keras/tensorboard_utils.py +181 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +2 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +3 -2
- mct-nightly-2.1.0.20240808.431/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +193 -0
- mct-nightly-2.1.0.20240807.445/model_compression_toolkit/metadata.py +0 -29
- mct-nightly-2.1.0.20240807.445/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -81
- mct-nightly-2.1.0.20240807.445/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -48
- mct-nightly-2.1.0.20240807.445/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -47
- mct-nightly-2.1.0.20240807.445/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -84
- mct-nightly-2.1.0.20240807.445/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -87
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/LICENSE.md +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/README.md +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/setup.cfg +0 -0
- {mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/setup.py +0 -0
{mct-nightly-2.1.0.20240807.445 → mct-nightly-2.1.0.20240808.431}/mct_nightly.egg-info/SOURCES.txt
RENAMED
@@ -37,6 +37,7 @@ model_compression_toolkit/core/common/collectors/mean_collector.py
|
|
37
37
|
model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py
|
38
38
|
model_compression_toolkit/core/common/collectors/statistics_collector.py
|
39
39
|
model_compression_toolkit/core/common/fusion/__init__.py
|
40
|
+
model_compression_toolkit/core/common/fusion/graph_fuser.py
|
40
41
|
model_compression_toolkit/core/common/fusion/layer_fusing.py
|
41
42
|
model_compression_toolkit/core/common/graph/__init__.py
|
42
43
|
model_compression_toolkit/core/common/graph/base_graph.py
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.1.0.
|
30
|
+
__version__ = "2.1.0.20240808.000431"
|
@@ -130,4 +130,17 @@ GPTQ_HESSIAN_NUM_SAMPLES = 32
|
|
130
130
|
MP_DEFAULT_NUM_SAMPLES = 32
|
131
131
|
|
132
132
|
# Pruning constants
|
133
|
-
PRUNING_NUM_SCORE_APPROXIMATIONS = 32
|
133
|
+
PRUNING_NUM_SCORE_APPROXIMATIONS = 32
|
134
|
+
|
135
|
+
# Scheduling information fields
|
136
|
+
OPERATORS_SCHEDULING = 'operators_scheduling'
|
137
|
+
MAX_CUT = 'max_cut'
|
138
|
+
CUTS = 'cuts'
|
139
|
+
FUSED_NODES_MAPPING = 'fused_nodes_mapping'
|
140
|
+
OP_ORDER = 'op_order'
|
141
|
+
OP_RECORD = 'op_record'
|
142
|
+
MEM_ELEMENTS = 'mem_elements'
|
143
|
+
SHAPE = 'shape'
|
144
|
+
NODE_NAME = 'node_name'
|
145
|
+
TOTAL_SIZE = 'total_size'
|
146
|
+
NODE_OUTPUT_INDEX = 'node_output_index'
|
@@ -0,0 +1,135 @@
|
|
1
|
+
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from typing import Dict, List
|
17
|
+
|
18
|
+
from model_compression_toolkit.core.common import Graph, BaseNode
|
19
|
+
from model_compression_toolkit.core.common.graph.base_graph import OutTensor
|
20
|
+
|
21
|
+
|
22
|
+
class FusedLayerType:
|
23
|
+
"""
|
24
|
+
Used to represent the type of fused layers, since __name__
|
25
|
+
is accessed when the graph is displayed.
|
26
|
+
"""
|
27
|
+
def __init__(self):
|
28
|
+
self.__name__ = 'FusedLayer'
|
29
|
+
class GraphFuser:
|
30
|
+
|
31
|
+
def create_fused_graph(self, graph: Graph) -> Dict[str, str]:
|
32
|
+
"""
|
33
|
+
GraphFuser is responsible for fusing nodes in a networkx graph.
|
34
|
+
The fusion process involves:
|
35
|
+
1. Creating new fused nodes to represent these groups.
|
36
|
+
2. Updating the graph structure to replace the original nodes with fused nodes.
|
37
|
+
3. Maintaining mapping mapping of original node names to their fused node names.
|
38
|
+
|
39
|
+
Args:
|
40
|
+
graph: Graph to sue its nodes.
|
41
|
+
|
42
|
+
Returns:
|
43
|
+
Mapping of original node names to their fused node names
|
44
|
+
"""
|
45
|
+
fused_nodes_mapping = {}
|
46
|
+
# Iterate through each group of nodes to be fused
|
47
|
+
for fused_nodes_list in graph.fused_nodes:
|
48
|
+
new_fused_node = self._create_fused_node(fused_nodes_list)
|
49
|
+
self._replace_nodes_with_fused_node(graph, fused_nodes_list, new_fused_node)
|
50
|
+
# Update the mapping to keep track of which original nodes are now part of which fused nodes
|
51
|
+
for node in fused_nodes_list:
|
52
|
+
fused_nodes_mapping[node.name] = new_fused_node.name
|
53
|
+
return fused_nodes_mapping
|
54
|
+
|
55
|
+
def _create_fused_node(self, nodes: List[BaseNode]) -> BaseNode:
|
56
|
+
"""
|
57
|
+
Create a new node that represents the fusion of the given nodes.
|
58
|
+
|
59
|
+
Args:
|
60
|
+
nodes: Nodes to create the fuse node that contain them.
|
61
|
+
|
62
|
+
Returns:
|
63
|
+
Node that represents the nodes to be fused.
|
64
|
+
"""
|
65
|
+
# Create a new node with a name that reflects its components
|
66
|
+
# Use the input shape of the first node and output shape of the last node
|
67
|
+
fused_node = BaseNode(name='FusedNode_' + '_'.join([node.name for node in nodes]),
|
68
|
+
framework_attr={},
|
69
|
+
input_shape=nodes[0].input_shape,
|
70
|
+
output_shape=nodes[-1].output_shape,
|
71
|
+
weights={},
|
72
|
+
layer_class=FusedLayerType)
|
73
|
+
|
74
|
+
# Preserve the final activation quantization configuration
|
75
|
+
# This is important for maintaining the correct behavior of the fused node
|
76
|
+
fused_node.final_activation_quantization_cfg = nodes[-1].final_activation_quantization_cfg
|
77
|
+
|
78
|
+
return fused_node
|
79
|
+
|
80
|
+
def _replace_nodes_with_fused_node(self,
|
81
|
+
graph: Graph,
|
82
|
+
nodes_to_fuse: List[BaseNode],
|
83
|
+
fused_node: BaseNode):
|
84
|
+
"""
|
85
|
+
Replace the specified nodes in the graph with a new fused node.
|
86
|
+
|
87
|
+
Args:
|
88
|
+
graph: Graph to replace the nodes_to_fuse with fused_node
|
89
|
+
nodes_to_fuse: List of nodes to replace with a new fused node.
|
90
|
+
fused_node: Node to add instead of nodes in fused_node.
|
91
|
+
|
92
|
+
"""
|
93
|
+
if not nodes_to_fuse:
|
94
|
+
return
|
95
|
+
|
96
|
+
first_node = nodes_to_fuse[0]
|
97
|
+
last_node = nodes_to_fuse[-1]
|
98
|
+
|
99
|
+
# Update incoming edges: Connect predecessors of the first node to the fused node
|
100
|
+
for predecessor in graph.get_prev_nodes(first_node):
|
101
|
+
e_attr = graph.get_edge_data(predecessor, first_node)
|
102
|
+
graph.add_edge(predecessor, fused_node, **(e_attr[0]))
|
103
|
+
graph.remove_edge(predecessor, first_node)
|
104
|
+
|
105
|
+
# Update outgoing edges: Connect the fused node to successors of the last node
|
106
|
+
for successor in graph.get_next_nodes(last_node):
|
107
|
+
e_attr = graph.get_edge_data(last_node, successor)
|
108
|
+
graph.add_edge(fused_node, successor, **(e_attr[0]))
|
109
|
+
graph.remove_edge(last_node, successor)
|
110
|
+
|
111
|
+
# Remove internal edges between fused nodes
|
112
|
+
# This step is necessary to maintain graph consistency
|
113
|
+
for current_node in nodes_to_fuse[:-1]:
|
114
|
+
subsequent_nodes = graph.get_next_nodes(current_node)
|
115
|
+
for next_node in subsequent_nodes:
|
116
|
+
assert next_node in nodes_to_fuse # Ensure we're not removing edges outside the fusion
|
117
|
+
graph.remove_edge(current_node, next_node)
|
118
|
+
|
119
|
+
# Handle the case where fused nodes are part of the graph's outputs
|
120
|
+
graph_output_tensors = graph.get_outputs()
|
121
|
+
graph_output_nodes = [ot.node for ot in graph_output_tensors]
|
122
|
+
for node in nodes_to_fuse:
|
123
|
+
if node in graph_output_nodes:
|
124
|
+
# If a fused node was an output, update the graph's outputs to use the new fused node
|
125
|
+
node_to_remove_index = graph_output_nodes.index(node)
|
126
|
+
graph_output_tensors[node_to_remove_index] = OutTensor(node=fused_node,
|
127
|
+
node_out_index=graph_output_tensors[
|
128
|
+
node_to_remove_index].node_out_index)
|
129
|
+
graph.remove_node(node, new_graph_outputs=graph_output_tensors)
|
130
|
+
else:
|
131
|
+
# Remove the original node from the graph
|
132
|
+
graph.remove_node(node)
|
133
|
+
|
134
|
+
# Finally, add the new fused node to the graph
|
135
|
+
graph.add_node(fused_node)
|
@@ -12,13 +12,17 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
from collections import namedtuple
|
16
|
+
|
15
17
|
from typing import Tuple, List
|
16
18
|
|
19
|
+
from model_compression_toolkit.constants import OPERATORS_SCHEDULING, MAX_CUT, CUTS, FUSED_NODES_MAPPING
|
17
20
|
from model_compression_toolkit.core.common import BaseNode
|
18
21
|
from model_compression_toolkit.core.common.graph.memory_graph.cut import Cut
|
19
22
|
from model_compression_toolkit.core.common.graph.memory_graph.max_cut_astar import MaxCutAstar
|
20
23
|
from model_compression_toolkit.core.common.graph.memory_graph.memory_graph import MemoryGraph
|
21
24
|
|
25
|
+
SchedulerInfo = namedtuple('SchedulerInfo', [OPERATORS_SCHEDULING, MAX_CUT, CUTS, FUSED_NODES_MAPPING])
|
22
26
|
|
23
27
|
def compute_graph_max_cut(memory_graph: MemoryGraph,
|
24
28
|
n_iter: int = 50,
|
@@ -25,7 +25,8 @@ class DebugConfig:
|
|
25
25
|
"""
|
26
26
|
def __init__(self,
|
27
27
|
analyze_similarity: bool = False,
|
28
|
-
network_editor: List[EditRule] = []
|
28
|
+
network_editor: List[EditRule] = [],
|
29
|
+
simulate_scheduler: bool = False):
|
29
30
|
"""
|
30
31
|
|
31
32
|
Args:
|
@@ -33,6 +34,8 @@ class DebugConfig:
|
|
33
34
|
analyze_similarity (bool): Whether to plot similarity figures within TensorBoard (when logger is
|
34
35
|
enabled) or not. Can be used to pinpoint problematic layers in the quantization process.
|
35
36
|
network_editor (List[EditRule]): A list of rules and actions to edit the network for quantization.
|
37
|
+
simulate_scheduler (bool): Simulate scheduler behaviour to compute operators order and cuts.
|
36
38
|
"""
|
37
39
|
self.analyze_similarity = analyze_similarity
|
38
40
|
self.network_editor = network_editor
|
41
|
+
self.simulate_scheduler = simulate_scheduler
|
@@ -26,9 +26,11 @@ from tensorboard.compat.proto.event_pb2 import Event, TaggedRunMetadata
|
|
26
26
|
from tensorboard.compat.proto.graph_pb2 import GraphDef
|
27
27
|
from tensorboard.compat.proto.node_def_pb2 import NodeDef
|
28
28
|
from tensorboard.compat.proto.step_stats_pb2 import StepStats, NodeExecStats, DeviceStepStats, AllocatorMemoryUsed
|
29
|
-
from tensorboard.compat.proto.summary_pb2 import HistogramProto
|
29
|
+
from tensorboard.compat.proto.summary_pb2 import HistogramProto, SummaryMetadata
|
30
30
|
from tensorboard.compat.proto.summary_pb2 import Summary
|
31
|
+
from tensorboard.compat.proto.tensor_pb2 import TensorProto
|
31
32
|
from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto
|
33
|
+
from tensorboard.plugins.text.plugin_data_pb2 import TextPluginData
|
32
34
|
from tensorboard.summary.writer.event_file_writer import EventFileWriter
|
33
35
|
from typing import List, Any, Dict
|
34
36
|
from networkx import topological_sort
|
@@ -497,6 +499,32 @@ class TensorboardWriter(object):
|
|
497
499
|
er.add_event(event)
|
498
500
|
er.flush()
|
499
501
|
|
502
|
+
def add_text(self,
|
503
|
+
text: str,
|
504
|
+
main_tag_name: str):
|
505
|
+
"""
|
506
|
+
Add a text summary to the TensorBoard log.
|
507
|
+
|
508
|
+
Args:
|
509
|
+
text: The text content to be added to the summary.
|
510
|
+
main_tag_name: The name of the tag under which the text will be grouped in TensorBoard.
|
511
|
+
|
512
|
+
"""
|
513
|
+
plugin_data = SummaryMetadata.PluginData(
|
514
|
+
plugin_name="text", content=TextPluginData(version=0).SerializeToString()
|
515
|
+
)
|
516
|
+
smd = SummaryMetadata(plugin_data=plugin_data)
|
517
|
+
tensor = TensorProto(
|
518
|
+
dtype="DT_STRING",
|
519
|
+
string_val=[text.encode(encoding="utf_8")],
|
520
|
+
tensor_shape=TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]),
|
521
|
+
)
|
522
|
+
event = Event(summary=Summary(value=[Summary.Value(tag=main_tag_name, metadata=smd, tensor=tensor)]))
|
523
|
+
|
524
|
+
# Get the event writer for this tag name
|
525
|
+
er = self.__get_event_writer_by_tag_name(main_tag_name)
|
526
|
+
er.add_event(event)
|
527
|
+
er.flush()
|
500
528
|
|
501
529
|
def init_tensorboard_writer(fw_info: FrameworkInfo) -> TensorboardWriter:
|
502
530
|
"""
|
@@ -12,13 +12,20 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
from collections import namedtuple
|
15
16
|
|
17
|
+
import copy
|
16
18
|
|
17
19
|
from typing import Callable, Tuple, Any, List, Dict
|
18
20
|
|
19
21
|
import numpy as np
|
20
22
|
|
21
23
|
from model_compression_toolkit.core.common import FrameworkInfo
|
24
|
+
from model_compression_toolkit.core.common.fusion.graph_fuser import GraphFuser
|
25
|
+
|
26
|
+
from model_compression_toolkit.core.common.graph.memory_graph.compute_graph_max_cut import compute_graph_max_cut, \
|
27
|
+
SchedulerInfo
|
28
|
+
from model_compression_toolkit.core.common.graph.memory_graph.memory_graph import MemoryGraph
|
22
29
|
from model_compression_toolkit.core.common.hessian.hessian_info_service import HessianInfoService
|
23
30
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization_data import \
|
24
31
|
requires_mixed_precision
|
@@ -174,7 +181,20 @@ def core_runner(in_model: Any,
|
|
174
181
|
if tb_w is not None:
|
175
182
|
finalize_bitwidth_in_tb(tb_w, weights_conf_nodes_bitwidth, activation_conf_nodes_bitwidth)
|
176
183
|
|
177
|
-
|
184
|
+
scheduler_info = None
|
185
|
+
if core_config.debug_config.simulate_scheduler:
|
186
|
+
graph_to_fuse = copy.deepcopy(tg)
|
187
|
+
fused_nodes_mapping = GraphFuser().create_fused_graph(graph_to_fuse)
|
188
|
+
memory_graph = MemoryGraph(graph_to_fuse)
|
189
|
+
schedule, max_cut, cuts = compute_graph_max_cut(memory_graph)
|
190
|
+
scheduler_info = SchedulerInfo(
|
191
|
+
operators_scheduling=schedule,
|
192
|
+
max_cut=float(max_cut),
|
193
|
+
cuts=cuts,
|
194
|
+
fused_nodes_mapping=fused_nodes_mapping
|
195
|
+
)
|
196
|
+
|
197
|
+
return tg, bit_widths_config, hessian_info_service, scheduler_info
|
178
198
|
|
179
199
|
|
180
200
|
def _set_final_resource_utilization(graph: Graph,
|
@@ -31,7 +31,7 @@ from model_compression_toolkit.core.runner import core_runner
|
|
31
31
|
from model_compression_toolkit.gptq.runner import gptq_runner
|
32
32
|
from model_compression_toolkit.core.analyzer import analyzer_model_quantization
|
33
33
|
from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities
|
34
|
-
from model_compression_toolkit.metadata import get_versions_dict
|
34
|
+
from model_compression_toolkit.metadata import get_versions_dict, create_model_metadata
|
35
35
|
|
36
36
|
LR_DEFAULT = 0.15
|
37
37
|
LR_REST_DEFAULT = 1e-4
|
@@ -208,15 +208,15 @@ if FOUND_TF:
|
|
208
208
|
|
209
209
|
fw_impl = GPTQKerasImplemantation()
|
210
210
|
|
211
|
-
tg, bit_widths_config, hessian_info_service = core_runner(in_model=in_model,
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
211
|
+
tg, bit_widths_config, hessian_info_service, scheduling_info = core_runner(in_model=in_model,
|
212
|
+
representative_data_gen=representative_data_gen,
|
213
|
+
core_config=core_config,
|
214
|
+
fw_info=DEFAULT_KERAS_INFO,
|
215
|
+
fw_impl=fw_impl,
|
216
|
+
tpc=target_platform_capabilities,
|
217
|
+
target_resource_utilization=target_resource_utilization,
|
218
|
+
tb_w=tb_w,
|
219
|
+
running_gptq=True)
|
220
220
|
|
221
221
|
float_graph = copy.deepcopy(tg)
|
222
222
|
|
@@ -242,7 +242,9 @@ if FOUND_TF:
|
|
242
242
|
|
243
243
|
exportable_model, user_info = get_exportable_keras_model(tg_gptq)
|
244
244
|
if target_platform_capabilities.tp_model.add_metadata:
|
245
|
-
exportable_model = add_metadata(exportable_model,
|
245
|
+
exportable_model = add_metadata(exportable_model,
|
246
|
+
create_model_metadata(tpc=target_platform_capabilities,
|
247
|
+
scheduling_info=scheduling_info))
|
246
248
|
return exportable_model, user_info
|
247
249
|
|
248
250
|
else:
|
@@ -31,7 +31,7 @@ from model_compression_toolkit.core.analyzer import analyzer_model_quantization
|
|
31
31
|
from model_compression_toolkit.core import CoreConfig
|
32
32
|
from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import \
|
33
33
|
MixedPrecisionQuantizationConfig
|
34
|
-
from model_compression_toolkit.metadata import get_versions_dict
|
34
|
+
from model_compression_toolkit.metadata import get_versions_dict, create_model_metadata
|
35
35
|
|
36
36
|
LR_DEFAULT = 1e-4
|
37
37
|
LR_REST_DEFAULT = 1e-4
|
@@ -177,15 +177,15 @@ if FOUND_TORCH:
|
|
177
177
|
# ---------------------- #
|
178
178
|
# Core Runner
|
179
179
|
# ---------------------- #
|
180
|
-
graph, bit_widths_config, hessian_info_service = core_runner(in_model=model,
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
180
|
+
graph, bit_widths_config, hessian_info_service, scheduling_info = core_runner(in_model=model,
|
181
|
+
representative_data_gen=representative_data_gen,
|
182
|
+
core_config=core_config,
|
183
|
+
fw_info=DEFAULT_PYTORCH_INFO,
|
184
|
+
fw_impl=fw_impl,
|
185
|
+
tpc=target_platform_capabilities,
|
186
|
+
target_resource_utilization=target_resource_utilization,
|
187
|
+
tb_w=tb_w,
|
188
|
+
running_gptq=True)
|
189
189
|
|
190
190
|
float_graph = copy.deepcopy(graph)
|
191
191
|
|
@@ -212,7 +212,9 @@ if FOUND_TORCH:
|
|
212
212
|
|
213
213
|
exportable_model, user_info = get_exportable_pytorch_model(graph_gptq)
|
214
214
|
if target_platform_capabilities.tp_model.add_metadata:
|
215
|
-
exportable_model = add_metadata(exportable_model,
|
215
|
+
exportable_model = add_metadata(exportable_model,
|
216
|
+
create_model_metadata(tpc=target_platform_capabilities,
|
217
|
+
scheduling_info=scheduling_info))
|
216
218
|
return exportable_model, user_info
|
217
219
|
|
218
220
|
|
@@ -0,0 +1,88 @@
|
|
1
|
+
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from typing import Dict, Any
|
17
|
+
from model_compression_toolkit.constants import MCT_VERSION, TPC_VERSION, OPERATORS_SCHEDULING, FUSED_NODES_MAPPING, \
|
18
|
+
CUTS, MAX_CUT, OP_ORDER, OP_RECORD, SHAPE, NODE_OUTPUT_INDEX, NODE_NAME, TOTAL_SIZE, MEM_ELEMENTS
|
19
|
+
from model_compression_toolkit.core.common.graph.memory_graph.compute_graph_max_cut import SchedulerInfo
|
20
|
+
from model_compression_toolkit.target_platform_capabilities.target_platform import TargetPlatformCapabilities
|
21
|
+
|
22
|
+
|
23
|
+
def create_model_metadata(tpc: TargetPlatformCapabilities,
|
24
|
+
scheduling_info: SchedulerInfo = None) -> Dict:
|
25
|
+
"""
|
26
|
+
Creates and returns a metadata dictionary for the model, including version information
|
27
|
+
and optional scheduling information.
|
28
|
+
|
29
|
+
Args:
|
30
|
+
tpc: A TPC object to get the version.
|
31
|
+
scheduling_info: An object containing scheduling details and metadata. Default is None.
|
32
|
+
|
33
|
+
Returns:
|
34
|
+
Dict: A dictionary containing the model's version information and optional scheduling information.
|
35
|
+
"""
|
36
|
+
_metadata = get_versions_dict(tpc)
|
37
|
+
if scheduling_info:
|
38
|
+
scheduler_metadata = get_scheduler_metadata(scheduler_info=scheduling_info)
|
39
|
+
_metadata['scheduling_info'] = scheduler_metadata
|
40
|
+
return _metadata
|
41
|
+
|
42
|
+
|
43
|
+
def get_versions_dict(tpc) -> Dict:
|
44
|
+
"""
|
45
|
+
|
46
|
+
Returns: A dictionary with TPC and MCT versions.
|
47
|
+
|
48
|
+
"""
|
49
|
+
# imported inside to avoid circular import error
|
50
|
+
from model_compression_toolkit import __version__ as mct_version
|
51
|
+
tpc_version = f'{tpc.name}.{tpc.version}'
|
52
|
+
return {MCT_VERSION: mct_version, TPC_VERSION: tpc_version}
|
53
|
+
|
54
|
+
|
55
|
+
def get_scheduler_metadata(scheduler_info: SchedulerInfo) -> Dict[str, Any]:
|
56
|
+
"""
|
57
|
+
Extracts and returns metadata from SchedulerInfo.
|
58
|
+
|
59
|
+
Args:
|
60
|
+
scheduler_info (SchedulerInfo): The scheduler information object containing scheduling details like cuts and
|
61
|
+
fusing mapping.
|
62
|
+
|
63
|
+
Returns:
|
64
|
+
Dict[str, Any]: A dictionary containing extracted metadata, including schedule, maximum cut,
|
65
|
+
cuts information, and fused nodes mapping.
|
66
|
+
"""
|
67
|
+
scheduler_metadata = {
|
68
|
+
OPERATORS_SCHEDULING: [str(layer) for layer in scheduler_info.operators_scheduling],
|
69
|
+
MAX_CUT: scheduler_info.max_cut,
|
70
|
+
CUTS: [
|
71
|
+
{
|
72
|
+
OP_ORDER: [op.name for op in cut.op_order],
|
73
|
+
OP_RECORD: [op.name for op in cut.op_record],
|
74
|
+
MEM_ELEMENTS: [
|
75
|
+
{
|
76
|
+
SHAPE: list(tensor.shape),
|
77
|
+
NODE_NAME: tensor.node_name,
|
78
|
+
TOTAL_SIZE: float(tensor.total_size),
|
79
|
+
NODE_OUTPUT_INDEX: tensor.node_output_index
|
80
|
+
}
|
81
|
+
for tensor in cut.mem_elements.elements
|
82
|
+
]
|
83
|
+
}
|
84
|
+
for cut in scheduler_info.cuts
|
85
|
+
],
|
86
|
+
FUSED_NODES_MAPPING: scheduler_info.fused_nodes_mapping
|
87
|
+
}
|
88
|
+
return scheduler_metadata
|
@@ -28,7 +28,7 @@ from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quant
|
|
28
28
|
from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities
|
29
29
|
from model_compression_toolkit.core.runner import core_runner
|
30
30
|
from model_compression_toolkit.ptq.runner import ptq_runner
|
31
|
-
from model_compression_toolkit.metadata import
|
31
|
+
from model_compression_toolkit.metadata import create_model_metadata
|
32
32
|
|
33
33
|
if FOUND_TF:
|
34
34
|
from model_compression_toolkit.core.keras.default_framework_info import DEFAULT_KERAS_INFO
|
@@ -134,14 +134,14 @@ if FOUND_TF:
|
|
134
134
|
fw_impl = KerasImplementation()
|
135
135
|
|
136
136
|
# Ignore returned hessian service as PTQ does not use it
|
137
|
-
tg, bit_widths_config, _ = core_runner(in_model=in_model,
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
137
|
+
tg, bit_widths_config, _, scheduling_info = core_runner(in_model=in_model,
|
138
|
+
representative_data_gen=representative_data_gen,
|
139
|
+
core_config=core_config,
|
140
|
+
fw_info=fw_info,
|
141
|
+
fw_impl=fw_impl,
|
142
|
+
tpc=target_platform_capabilities,
|
143
|
+
target_resource_utilization=target_resource_utilization,
|
144
|
+
tb_w=tb_w)
|
145
145
|
|
146
146
|
# At this point, tg is a graph that went through substitutions (such as BN folding) and is
|
147
147
|
# ready for quantization (namely, it holds quantization params, etc.) but the weights are
|
@@ -168,7 +168,9 @@ if FOUND_TF:
|
|
168
168
|
|
169
169
|
exportable_model, user_info = get_exportable_keras_model(graph_with_stats_correction)
|
170
170
|
if target_platform_capabilities.tp_model.add_metadata:
|
171
|
-
exportable_model = add_metadata(exportable_model,
|
171
|
+
exportable_model = add_metadata(exportable_model,
|
172
|
+
create_model_metadata(tpc=target_platform_capabilities,
|
173
|
+
scheduling_info=scheduling_info))
|
172
174
|
return exportable_model, user_info
|
173
175
|
|
174
176
|
|
@@ -16,7 +16,6 @@ import copy
|
|
16
16
|
|
17
17
|
from typing import Callable
|
18
18
|
|
19
|
-
from model_compression_toolkit.core import common
|
20
19
|
from model_compression_toolkit.core.common.visualization.tensorboard_writer import init_tensorboard_writer
|
21
20
|
from model_compression_toolkit.logger import Logger
|
22
21
|
from model_compression_toolkit.constants import PYTORCH, FOUND_TORCH
|
@@ -29,8 +28,7 @@ from model_compression_toolkit.core.runner import core_runner
|
|
29
28
|
from model_compression_toolkit.ptq.runner import ptq_runner
|
30
29
|
from model_compression_toolkit.core.analyzer import analyzer_model_quantization
|
31
30
|
from model_compression_toolkit.core.common.quantization.quantize_graph_weights import quantize_graph_weights
|
32
|
-
from model_compression_toolkit.metadata import
|
33
|
-
|
31
|
+
from model_compression_toolkit.metadata import create_model_metadata
|
34
32
|
|
35
33
|
if FOUND_TORCH:
|
36
34
|
from model_compression_toolkit.core.pytorch.default_framework_info import DEFAULT_PYTORCH_INFO
|
@@ -109,14 +107,14 @@ if FOUND_TORCH:
|
|
109
107
|
fw_impl = PytorchImplementation()
|
110
108
|
|
111
109
|
# Ignore hessian info service as it is not used here yet.
|
112
|
-
tg, bit_widths_config, _ = core_runner(in_model=in_module,
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
110
|
+
tg, bit_widths_config, _, scheduling_info = core_runner(in_model=in_module,
|
111
|
+
representative_data_gen=representative_data_gen,
|
112
|
+
core_config=core_config,
|
113
|
+
fw_info=fw_info,
|
114
|
+
fw_impl=fw_impl,
|
115
|
+
tpc=target_platform_capabilities,
|
116
|
+
target_resource_utilization=target_resource_utilization,
|
117
|
+
tb_w=tb_w)
|
120
118
|
|
121
119
|
# At this point, tg is a graph that went through substitutions (such as BN folding) and is
|
122
120
|
# ready for quantization (namely, it holds quantization params, etc.) but the weights are
|
@@ -143,7 +141,9 @@ if FOUND_TORCH:
|
|
143
141
|
|
144
142
|
exportable_model, user_info = get_exportable_pytorch_model(graph_with_stats_correction)
|
145
143
|
if target_platform_capabilities.tp_model.add_metadata:
|
146
|
-
exportable_model = add_metadata(exportable_model,
|
144
|
+
exportable_model = add_metadata(exportable_model,
|
145
|
+
create_model_metadata(tpc=target_platform_capabilities,
|
146
|
+
scheduling_info=scheduling_info))
|
147
147
|
return exportable_model, user_info
|
148
148
|
|
149
149
|
|
@@ -187,14 +187,14 @@ if FOUND_TF:
|
|
187
187
|
fw_impl = KerasImplementation()
|
188
188
|
|
189
189
|
# Ignore hessian service since is not used in QAT at the moment
|
190
|
-
tg, bit_widths_config, _ = core_runner(in_model=in_model,
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
190
|
+
tg, bit_widths_config, _, _ = core_runner(in_model=in_model,
|
191
|
+
representative_data_gen=representative_data_gen,
|
192
|
+
core_config=core_config,
|
193
|
+
fw_info=DEFAULT_KERAS_INFO,
|
194
|
+
fw_impl=fw_impl,
|
195
|
+
tpc=target_platform_capabilities,
|
196
|
+
target_resource_utilization=target_resource_utilization,
|
197
|
+
tb_w=tb_w)
|
198
198
|
|
199
199
|
tg = ptq_runner(tg, representative_data_gen, core_config, DEFAULT_KERAS_INFO, fw_impl, tb_w)
|
200
200
|
|
@@ -154,14 +154,14 @@ if FOUND_TORCH:
|
|
154
154
|
fw_impl = PytorchImplementation()
|
155
155
|
|
156
156
|
# Ignore hessian scores service as we do not use it here
|
157
|
-
tg, bit_widths_config, _ = core_runner(in_model=in_model,
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
157
|
+
tg, bit_widths_config, _, _ = core_runner(in_model=in_model,
|
158
|
+
representative_data_gen=representative_data_gen,
|
159
|
+
core_config=core_config,
|
160
|
+
fw_info=DEFAULT_PYTORCH_INFO,
|
161
|
+
fw_impl=fw_impl,
|
162
|
+
tpc=target_platform_capabilities,
|
163
|
+
target_resource_utilization=target_resource_utilization,
|
164
|
+
tb_w=tb_w)
|
165
165
|
|
166
166
|
tg = ptq_runner(tg, representative_data_gen, core_config, DEFAULT_PYTORCH_INFO, fw_impl, tb_w)
|
167
167
|
|