mct-nightly 2.1.0.20240724.437__tar.gz → 2.1.0.20240726.430__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/PKG-INFO +1 -1
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/mct_nightly.egg-info/PKG-INFO +1 -1
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/mct_nightly.egg-info/SOURCES.txt +4 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/constants.py +6 -1
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/utils.py +27 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/common/data_generation.py +20 -18
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/common/data_generation_config.py +8 -11
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/common/enums.py +24 -12
- mct-nightly-2.1.0.20240726.430/model_compression_toolkit/data_generation/common/image_pipeline.py +106 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -8
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/common/optimization_utils.py +7 -11
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/keras/constants.py +5 -2
- mct-nightly-2.1.0.20240726.430/model_compression_toolkit/data_generation/keras/image_operations.py +189 -0
- mct-nightly-2.1.0.20240726.430/model_compression_toolkit/data_generation/keras/image_pipeline.py +171 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +28 -36
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -13
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +16 -6
- mct-nightly-2.1.0.20240726.430/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +219 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +39 -13
- mct-nightly-2.1.0.20240726.430/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +43 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/keras/optimization_utils.py +15 -28
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/pytorch/constants.py +4 -1
- mct-nightly-2.1.0.20240726.430/model_compression_toolkit/data_generation/pytorch/image_operations.py +105 -0
- mct-nightly-2.1.0.20240726.430/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +180 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -10
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +17 -6
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +2 -2
- mct-nightly-2.1.0.20240726.430/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +219 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +55 -21
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +15 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +32 -54
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +57 -52
- mct-nightly-2.1.0.20240724.437/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -68
- mct-nightly-2.1.0.20240724.437/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -225
- mct-nightly-2.1.0.20240724.437/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -135
- mct-nightly-2.1.0.20240724.437/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -188
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/LICENSE.md +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/README.md +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/setup.cfg +0 -0
- {mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/setup.py +0 -0
{mct-nightly-2.1.0.20240724.437 → mct-nightly-2.1.0.20240726.430}/mct_nightly.egg-info/SOURCES.txt
RENAMED
@@ -286,6 +286,7 @@ model_compression_toolkit/data_generation/common/model_info_exctractors.py
|
|
286
286
|
model_compression_toolkit/data_generation/common/optimization_utils.py
|
287
287
|
model_compression_toolkit/data_generation/keras/__init__.py
|
288
288
|
model_compression_toolkit/data_generation/keras/constants.py
|
289
|
+
model_compression_toolkit/data_generation/keras/image_operations.py
|
289
290
|
model_compression_toolkit/data_generation/keras/image_pipeline.py
|
290
291
|
model_compression_toolkit/data_generation/keras/keras_data_generation.py
|
291
292
|
model_compression_toolkit/data_generation/keras/model_info_exctractors.py
|
@@ -294,10 +295,12 @@ model_compression_toolkit/data_generation/keras/optimization_functions/__init__.
|
|
294
295
|
model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py
|
295
296
|
model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py
|
296
297
|
model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py
|
298
|
+
model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py
|
297
299
|
model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py
|
298
300
|
model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py
|
299
301
|
model_compression_toolkit/data_generation/pytorch/__init__.py
|
300
302
|
model_compression_toolkit/data_generation/pytorch/constants.py
|
303
|
+
model_compression_toolkit/data_generation/pytorch/image_operations.py
|
301
304
|
model_compression_toolkit/data_generation/pytorch/image_pipeline.py
|
302
305
|
model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py
|
303
306
|
model_compression_toolkit/data_generation/pytorch/optimization_utils.py
|
@@ -306,6 +309,7 @@ model_compression_toolkit/data_generation/pytorch/optimization_functions/__init_
|
|
306
309
|
model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py
|
307
310
|
model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py
|
308
311
|
model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py
|
312
|
+
model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py
|
309
313
|
model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py
|
310
314
|
model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py
|
311
315
|
model_compression_toolkit/exporter/__init__.py
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.1.0.
|
30
|
+
__version__ = "2.1.0.20240726.000430"
|
@@ -12,7 +12,7 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
|
15
|
+
import torch
|
16
16
|
|
17
17
|
# # Layer type constants:
|
18
18
|
PLACEHOLDER = 'placeholder'
|
@@ -94,3 +94,8 @@ BIAS_V = 'bias_v'
|
|
94
94
|
# # Batch size value for 'reshape' and 'view' operators,
|
95
95
|
# # the value is -1 so the batch size is inferred from the length of the array and remaining dimensions.
|
96
96
|
BATCH_DIM_VALUE = -1
|
97
|
+
|
98
|
+
|
99
|
+
# The maximum and minimum representable values for float16
|
100
|
+
MAX_FLOAT16 = torch.finfo(torch.float16).max - 1
|
101
|
+
MIN_FLOAT16 = torch.finfo(torch.float16).min - 1
|
@@ -13,8 +13,11 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
import torch
|
16
|
+
from torch import Tensor
|
16
17
|
import numpy as np
|
17
18
|
from typing import Union
|
19
|
+
|
20
|
+
from model_compression_toolkit.core.pytorch.constants import MAX_FLOAT16, MIN_FLOAT16
|
18
21
|
from model_compression_toolkit.core.pytorch.pytorch_device_config import get_working_device
|
19
22
|
from model_compression_toolkit.logger import Logger
|
20
23
|
|
@@ -83,3 +86,27 @@ def torch_tensor_to_numpy(tensor: Union[torch.Tensor, list, tuple]) -> Union[np.
|
|
83
86
|
return tensor.cpu().detach().contiguous().numpy()
|
84
87
|
else:
|
85
88
|
Logger.critical(f'Unsupported type for conversion to Numpy array: {type(tensor)}.')
|
89
|
+
|
90
|
+
|
91
|
+
def clip_inf_values_float16(tensor: Tensor) -> Tensor:
|
92
|
+
"""
|
93
|
+
Clips +inf and -inf values in a float16 tensor to the maximum and minimum representable values.
|
94
|
+
|
95
|
+
Parameters:
|
96
|
+
tensor (Tensor): Input PyTorch tensor of dtype float16.
|
97
|
+
|
98
|
+
Returns:
|
99
|
+
Tensor: A tensor with +inf values replaced by the maximum float16 value,
|
100
|
+
and -inf values replaced by the minimum float16 value.
|
101
|
+
"""
|
102
|
+
# Check if the tensor is of dtype float16
|
103
|
+
if tensor.dtype != torch.float16:
|
104
|
+
return tensor
|
105
|
+
|
106
|
+
# Create a mask for inf values (both positive and negative)
|
107
|
+
inf_mask = torch.isinf(tensor)
|
108
|
+
|
109
|
+
# Replace inf values with max float16 value
|
110
|
+
tensor[inf_mask] = MAX_FLOAT16 * torch.sign(tensor[inf_mask])
|
111
|
+
|
112
|
+
return tensor
|
@@ -13,7 +13,7 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
# Import required modules and classes
|
16
|
-
from typing import Any, Tuple, Dict, Callable, List
|
16
|
+
from typing import Any, Tuple, Dict, Callable, List, Union
|
17
17
|
|
18
18
|
from model_compression_toolkit.data_generation.common.data_generation_config import DataGenerationConfig
|
19
19
|
from model_compression_toolkit.data_generation.common.enums import ImagePipelineType, ImageNormalizationType, \
|
@@ -24,7 +24,7 @@ from model_compression_toolkit.logger import Logger
|
|
24
24
|
|
25
25
|
def get_data_generation_classes(
|
26
26
|
data_generation_config: DataGenerationConfig,
|
27
|
-
output_image_size: Tuple,
|
27
|
+
output_image_size: Union[int, Tuple[int, int]],
|
28
28
|
n_images: int,
|
29
29
|
image_pipeline_dict: Dict,
|
30
30
|
image_normalization_dict: Dict,
|
@@ -38,7 +38,7 @@ def get_data_generation_classes(
|
|
38
38
|
|
39
39
|
Args:
|
40
40
|
data_generation_config (DataGenerationConfig): Configuration for data generation.
|
41
|
-
output_image_size (Tuple): The desired output image size.
|
41
|
+
output_image_size (Union[int, Tuple[int, int]]): The desired output image size.
|
42
42
|
n_images (int): The number of random samples.
|
43
43
|
image_pipeline_dict (Dict): Dictionary mapping ImagePipelineType to corresponding image pipeline classes.
|
44
44
|
image_normalization_dict (Dict): Dictionary mapping ImageNormalizationType to corresponding
|
@@ -56,26 +56,28 @@ def get_data_generation_classes(
|
|
56
56
|
output_loss_fn (Callable): Function to compute output loss.
|
57
57
|
init_dataset (Any): The initial dataset used for image generation.
|
58
58
|
"""
|
59
|
+
# Get the normalization values corresponding to the specified type
|
60
|
+
normalization = image_normalization_dict.get(data_generation_config.image_normalization_type)
|
61
|
+
|
62
|
+
# Check if the image normalization type is valid
|
63
|
+
if normalization is None:
|
64
|
+
Logger.critical(
|
65
|
+
f'Invalid image_normalization_type {data_generation_config.image_normalization_type}. '
|
66
|
+
f'Please select one from {ImageNormalizationType.get_values()}.') # pragma: no cover
|
67
|
+
|
59
68
|
# Get the image pipeline class corresponding to the specified type
|
60
69
|
image_pipeline = (
|
61
70
|
image_pipeline_dict.get(data_generation_config.image_pipeline_type)(
|
62
71
|
output_image_size=output_image_size,
|
63
|
-
extra_pixels=data_generation_config.extra_pixels
|
72
|
+
extra_pixels=data_generation_config.extra_pixels,
|
73
|
+
image_clipping=data_generation_config.image_clipping,
|
74
|
+
normalization=normalization))
|
64
75
|
|
65
76
|
# Check if the image pipeline type is valid
|
66
77
|
if image_pipeline is None:
|
67
78
|
Logger.critical(
|
68
79
|
f'Invalid image_pipeline_type {data_generation_config.image_pipeline_type}. '
|
69
|
-
f'Please select one from {ImagePipelineType.get_values()}.')
|
70
|
-
|
71
|
-
# Get the normalization values corresponding to the specified type
|
72
|
-
normalization = image_normalization_dict.get(data_generation_config.image_normalization_type)
|
73
|
-
|
74
|
-
# Check if the image normalization type is valid
|
75
|
-
if normalization is None:
|
76
|
-
Logger.critical(
|
77
|
-
f'Invalid image_normalization_type {data_generation_config.image_normalization_type}. '
|
78
|
-
f'Please select one from {ImageNormalizationType.get_values()}.')
|
80
|
+
f'Please select one from {ImagePipelineType.get_values()}.') # pragma: no cover
|
79
81
|
|
80
82
|
# Get the layer weighting function corresponding to the specified type
|
81
83
|
bn_layer_weighting_fn = bn_layer_weighting_function_dict.get(data_generation_config.layer_weighting_type)
|
@@ -83,7 +85,7 @@ def get_data_generation_classes(
|
|
83
85
|
if bn_layer_weighting_fn is None:
|
84
86
|
Logger.critical(
|
85
87
|
f'Invalid layer_weighting_type {data_generation_config.layer_weighting_type}. '
|
86
|
-
f'Please select one from {BNLayerWeightingType.get_values()}.')
|
88
|
+
f'Please select one from {BNLayerWeightingType.get_values()}.') # pragma: no cover
|
87
89
|
|
88
90
|
# Get the image initialization function corresponding to the specified type
|
89
91
|
image_initialization_fn = image_initialization_function_dict.get(data_generation_config.data_init_type)
|
@@ -92,7 +94,7 @@ def get_data_generation_classes(
|
|
92
94
|
if image_initialization_fn is None:
|
93
95
|
Logger.critical(
|
94
96
|
f'Invalid data_init_type {data_generation_config.data_init_type}. '
|
95
|
-
f'Please select one from {DataInitType.get_values()}.')
|
97
|
+
f'Please select one from {DataInitType.get_values()}.') # pragma: no cover
|
96
98
|
|
97
99
|
# Get the BatchNorm alignment loss function corresponding to the specified type
|
98
100
|
bn_alignment_loss_fn = bn_alignment_loss_function_dict.get(data_generation_config.bn_alignment_loss_type)
|
@@ -101,7 +103,7 @@ def get_data_generation_classes(
|
|
101
103
|
if bn_alignment_loss_fn is None:
|
102
104
|
Logger.critical(
|
103
105
|
f'Invalid bn_alignment_loss_type {data_generation_config.bn_alignment_loss_type}. '
|
104
|
-
f'Please select one from {BatchNormAlignemntLossType.get_values()}.')
|
106
|
+
f'Please select one from {BatchNormAlignemntLossType.get_values()}.') # pragma: no cover
|
105
107
|
|
106
108
|
# Get the output loss function corresponding to the specified type
|
107
109
|
output_loss_fn = output_loss_function_dict.get(data_generation_config.output_loss_type)
|
@@ -110,7 +112,7 @@ def get_data_generation_classes(
|
|
110
112
|
if output_loss_fn is None:
|
111
113
|
Logger.critical(
|
112
114
|
f'Invalid output_loss_type {data_generation_config.output_loss_type}. '
|
113
|
-
f'Please select one from {OutputLossType.get_values()}.')
|
115
|
+
f'Please select one from {OutputLossType.get_values()}.') # pragma: no cover
|
114
116
|
|
115
117
|
# Initialize the dataset for data generation
|
116
118
|
init_dataset = image_initialization_fn(
|
@@ -12,12 +12,11 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
from typing import
|
15
|
+
from typing import Any, List, Tuple, Union
|
16
16
|
|
17
17
|
from model_compression_toolkit.data_generation.common.enums import SchedulerType, BatchNormAlignemntLossType, \
|
18
18
|
DataInitType, BNLayerWeightingType, ImageGranularity, ImagePipelineType, ImageNormalizationType, OutputLossType
|
19
19
|
|
20
|
-
|
21
20
|
class DataGenerationConfig:
|
22
21
|
"""
|
23
22
|
Configuration class for data generation.
|
@@ -36,11 +35,10 @@ class DataGenerationConfig:
|
|
36
35
|
layer_weighting_type: BNLayerWeightingType = None,
|
37
36
|
image_pipeline_type: ImagePipelineType = None,
|
38
37
|
image_normalization_type: ImageNormalizationType = None,
|
39
|
-
extra_pixels: int = 0,
|
38
|
+
extra_pixels: Union[int, Tuple[int, int]] = 0,
|
40
39
|
bn_layer_types: List = [],
|
41
40
|
last_layer_types: List = [],
|
42
|
-
|
43
|
-
reflection: bool = True,
|
41
|
+
image_clipping: bool = True,
|
44
42
|
):
|
45
43
|
"""
|
46
44
|
Initialize the DataGenerationConfig.
|
@@ -59,17 +57,15 @@ class DataGenerationConfig:
|
|
59
57
|
layer_weighting_type (BNLayerWeightingType): Type of layer weighting. Defaults to None.
|
60
58
|
image_pipeline_type (ImagePipelineType): Type of image pipeline. Defaults to None.
|
61
59
|
image_normalization_type (ImageNormalizationType): Type of image normalization. Defaults to None.
|
62
|
-
extra_pixels (int): Extra pixels to add to the input image size. Defaults to 0.
|
60
|
+
extra_pixels (Union[int, Tuple[int, int]]): Extra pixels to add to the input image size. Defaults to 0.
|
63
61
|
bn_layer_types (List): List of BatchNorm layer types. Defaults to [].
|
64
62
|
last_layer_types (List): List of layer types. Defaults to [].
|
65
|
-
|
66
|
-
reflection (bool): Flag to enable reflection. Defaults to True.
|
63
|
+
image_clipping (bool): Flag to enable image clipping. Defaults to True.
|
67
64
|
"""
|
68
65
|
self.n_iter = n_iter
|
69
66
|
self.optimizer = optimizer
|
70
67
|
self.data_gen_batch_size = data_gen_batch_size
|
71
68
|
self.initial_lr = initial_lr
|
72
|
-
self.output_loss_multiplier = output_loss_multiplier
|
73
69
|
self.image_granularity = image_granularity
|
74
70
|
self.scheduler_type = scheduler_type
|
75
71
|
self.bn_alignment_loss_type = bn_alignment_loss_type
|
@@ -81,6 +77,7 @@ class DataGenerationConfig:
|
|
81
77
|
self.layer_weighting_type = layer_weighting_type
|
82
78
|
self.bn_layer_types = bn_layer_types
|
83
79
|
self.last_layer_types = last_layer_types
|
84
|
-
self.
|
85
|
-
self.
|
80
|
+
self.image_clipping = image_clipping
|
81
|
+
self.output_loss_multiplier = output_loss_multiplier
|
82
|
+
|
86
83
|
|
@@ -16,7 +16,6 @@ from enum import Enum
|
|
16
16
|
|
17
17
|
|
18
18
|
class EnumBaseClass(Enum):
|
19
|
-
@classmethod
|
20
19
|
def get_values(cls):
|
21
20
|
"""
|
22
21
|
Get the list of values corresponding to the enum members.
|
@@ -24,7 +23,23 @@ class EnumBaseClass(Enum):
|
|
24
23
|
Returns:
|
25
24
|
List of values.
|
26
25
|
"""
|
27
|
-
return
|
26
|
+
return list(cls.__members__.values())
|
27
|
+
|
28
|
+
@classmethod
|
29
|
+
def get_enum_by_value(cls, target_value):
|
30
|
+
"""
|
31
|
+
Function to get the key corresponding to a given enum value.
|
32
|
+
|
33
|
+
Parameters:
|
34
|
+
target_value: The value to find the key for.
|
35
|
+
|
36
|
+
Returns:
|
37
|
+
The key corresponding to the given value if found, else None.
|
38
|
+
"""
|
39
|
+
for value in cls.__members__.values():
|
40
|
+
if value.value == target_value:
|
41
|
+
return value
|
42
|
+
return None
|
28
43
|
|
29
44
|
|
30
45
|
class ImageGranularity(EnumBaseClass):
|
@@ -61,15 +76,12 @@ class ImagePipelineType(EnumBaseClass):
|
|
61
76
|
"""
|
62
77
|
An enum for choosing the image pipeline type for image manipulation:
|
63
78
|
|
64
|
-
|
65
|
-
|
66
|
-
RANDOM_CROP_FLIP - Crop and flip the images.
|
79
|
+
SMOOTHING_AND_AUGMENTATION - Apply a smoothing filter, then crop and flip the images.
|
67
80
|
|
68
81
|
IDENTITY - Do not apply any manipulation (identity transformation).
|
69
82
|
|
70
83
|
"""
|
71
|
-
|
72
|
-
RANDOM_CROP_FLIP = 'random_crop_flip'
|
84
|
+
SMOOTHING_AND_AUGMENTATION = 'smoothing_and_augmentation'
|
73
85
|
IDENTITY = 'identity'
|
74
86
|
|
75
87
|
|
@@ -118,16 +130,15 @@ class BatchNormAlignemntLossType(EnumBaseClass):
|
|
118
130
|
class OutputLossType(EnumBaseClass):
|
119
131
|
"""
|
120
132
|
An enum for choosing the output loss type:
|
121
|
-
|
122
133
|
NONE - No output loss is applied.
|
123
|
-
|
124
|
-
|
125
|
-
|
134
|
+
NEGATIVE_MIN_MAX_DIFF - Use the mean of the negative min-max difference as the output loss.
|
135
|
+
INVERSE_MIN_MAX_DIFF - Use mean of the 1/(min-max) difference as the output loss.
|
126
136
|
REGULARIZED_MIN_MAX_DIFF - Use regularized min-max difference as the output loss.
|
127
137
|
|
128
138
|
"""
|
129
139
|
NONE = 'none'
|
130
|
-
|
140
|
+
NEGATIVE_MIN_MAX_DIFF = 'negative_min_max_diff'
|
141
|
+
INVERSE_MIN_MAX_DIFF = 'inverse_min_max_diff'
|
131
142
|
REGULARIZED_MIN_MAX_DIFF = 'regularized_min_max_diff'
|
132
143
|
|
133
144
|
|
@@ -141,4 +152,5 @@ class SchedulerType(EnumBaseClass):
|
|
141
152
|
|
142
153
|
"""
|
143
154
|
REDUCE_ON_PLATEAU = 'reduce_on_plateau'
|
155
|
+
REDUCE_ON_PLATEAU_WITH_RESET = 'reduce_on_plateau_with_reset'
|
144
156
|
STEP = 'step'
|
mct-nightly-2.1.0.20240726.430/model_compression_toolkit/data_generation/common/image_pipeline.py
ADDED
@@ -0,0 +1,106 @@
|
|
1
|
+
# Copyright 2023 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from abc import ABC, abstractmethod
|
16
|
+
from typing import Any, Tuple, Union, Dict, List
|
17
|
+
|
18
|
+
from model_compression_toolkit.data_generation import ImageNormalizationType
|
19
|
+
from model_compression_toolkit.logger import Logger
|
20
|
+
|
21
|
+
|
22
|
+
class BaseImagePipeline(ABC):
|
23
|
+
def __init__(self,
|
24
|
+
output_image_size: Union[int, Tuple[int, int]],
|
25
|
+
extra_pixels: Union[int, Tuple[int, int]] = 0,
|
26
|
+
image_clipping: bool = False,
|
27
|
+
normalization: List[List[int]] = [[0, 0, 0], [1, 1, 1]]):
|
28
|
+
"""
|
29
|
+
Base class for image pipeline.
|
30
|
+
|
31
|
+
Args:
|
32
|
+
output_image_size (Union[int, Tuple[int, int]]): The desired output image size.
|
33
|
+
extra_pixels (Union[int, Tuple[int, int]]): Extra pixels to add to the input image size. Defaults to 0.
|
34
|
+
image_clipping (bool): Whether to clip images during optimization.
|
35
|
+
normalization (List[List[float]]): The image normalization values for processing images during optimization.
|
36
|
+
"""
|
37
|
+
if isinstance(output_image_size, int):
|
38
|
+
self.output_image_size = (output_image_size, output_image_size)
|
39
|
+
elif isinstance(output_image_size, tuple) and len(output_image_size) == 1:
|
40
|
+
self.output_image_size = output_image_size + output_image_size # concatenate two tuples
|
41
|
+
elif isinstance(output_image_size, tuple) and len(output_image_size) == 2:
|
42
|
+
self.output_image_size = output_image_size
|
43
|
+
elif isinstance(output_image_size, tuple):
|
44
|
+
Logger.critical(f"'output_image_size' should a tuple of length 1 or 2. Got tuple of length {len(output_image_size)}") # pragma: no cover
|
45
|
+
else:
|
46
|
+
Logger.critical(f"'output_image_size' should be an int or tuple but type {type(output_image_size)} was received.") # pragma: no cover
|
47
|
+
|
48
|
+
if isinstance(extra_pixels, int):
|
49
|
+
self.extra_pixels = (extra_pixels, extra_pixels)
|
50
|
+
elif isinstance(extra_pixels, tuple) and len(extra_pixels) == 1:
|
51
|
+
self.extra_pixels = extra_pixels + extra_pixels # concatenate two tuples
|
52
|
+
elif isinstance(extra_pixels, tuple) and len(extra_pixels) == 2:
|
53
|
+
self.extra_pixels = extra_pixels
|
54
|
+
elif isinstance(extra_pixels, tuple):
|
55
|
+
Logger.critical(f"'extra_pixels' should a tuple of length 1 or 2. Got tuple of length {len(extra_pixels)}") # pragma: no cover
|
56
|
+
else:
|
57
|
+
Logger.critical(f"'extra_pixels' should be an int or tuple but type {type(extra_pixels)} was received.") # pragma: no cover
|
58
|
+
|
59
|
+
self.image_clipping = image_clipping
|
60
|
+
self.normalization = normalization
|
61
|
+
|
62
|
+
@abstractmethod
|
63
|
+
def get_image_input_size(self) -> Tuple[int, int]:
|
64
|
+
"""
|
65
|
+
Get the size of the input image for the image pipeline.
|
66
|
+
|
67
|
+
Returns:
|
68
|
+
Tuple[int, int]: The input image size.
|
69
|
+
"""
|
70
|
+
raise NotImplemented # pragma: no cover
|
71
|
+
|
72
|
+
@abstractmethod
|
73
|
+
def image_input_manipulation(self,
|
74
|
+
images: Any) -> Any:
|
75
|
+
"""
|
76
|
+
Perform image input manipulation in the image pipeline.
|
77
|
+
|
78
|
+
Args:
|
79
|
+
images (Any): Input images.
|
80
|
+
|
81
|
+
Returns:
|
82
|
+
Any: Manipulated images.
|
83
|
+
"""
|
84
|
+
raise NotImplemented # pragma: no cover
|
85
|
+
|
86
|
+
@abstractmethod
|
87
|
+
def image_output_finalize(self,
|
88
|
+
images: Any) -> Any:
|
89
|
+
"""
|
90
|
+
Perform finalization of output images in the image pipeline.
|
91
|
+
|
92
|
+
Args:
|
93
|
+
images (Any): Output images.
|
94
|
+
|
95
|
+
Returns:
|
96
|
+
Any: Finalized images.
|
97
|
+
"""
|
98
|
+
raise NotImplemented # pragma: no cover
|
99
|
+
|
100
|
+
|
101
|
+
# Dictionary mapping ImageNormalizationType to corresponding normalization values
|
102
|
+
image_normalization_dict: Dict[ImageNormalizationType, List[List[float]]] = {
|
103
|
+
ImageNormalizationType.TORCHVISION: [[0.485 * 255, 0.456 * 255, 0.406 * 255], [0.229 * 255, 0.224 * 255, 0.225 * 255]],
|
104
|
+
ImageNormalizationType.KERAS_APPLICATIONS: [[127.5, 127.5, 127.5], [127.5, 127.5, 127.5]],
|
105
|
+
ImageNormalizationType.NO_NORMALIZATION: [[0, 0, 0], [1, 1, 1]]
|
106
|
+
}
|
@@ -157,14 +157,6 @@ class ActivationExtractor:
|
|
157
157
|
"""
|
158
158
|
raise NotImplemented # pragma: no cover
|
159
159
|
|
160
|
-
def get_num_extractor_layers(self) -> int:
|
161
|
-
"""
|
162
|
-
Get the number of layers for which to extract input activations.
|
163
|
-
|
164
|
-
Returns:
|
165
|
-
int: Number of layers for which to extract input activations.
|
166
|
-
"""
|
167
|
-
return self.num_layers
|
168
160
|
|
169
161
|
@abstractmethod
|
170
162
|
def get_extractor_layer_names(self) -> List:
|
@@ -48,8 +48,6 @@ class ImagesOptimizationHandler:
|
|
48
48
|
scheduler: Any,
|
49
49
|
normalization_mean: List[float],
|
50
50
|
normalization_std: List[float],
|
51
|
-
clip_images: bool,
|
52
|
-
reflection: bool,
|
53
51
|
initial_lr: float,
|
54
52
|
eps: float = 1e-6):
|
55
53
|
"""
|
@@ -67,8 +65,6 @@ class ImagesOptimizationHandler:
|
|
67
65
|
scheduler (Any): The scheduler responsible for adjusting the learning rate of the optimizer over time.
|
68
66
|
normalization_mean (List[float]): Mean values used for image normalization.
|
69
67
|
normalization_std (List[float]): Standard deviation values used for image normalization.
|
70
|
-
clip_images (bool): Flag indicating whether to clip generated images during optimization.
|
71
|
-
reflection (bool): Flag indicating whether to use reflection during image generation.
|
72
68
|
initial_lr (float): The initial learning rate used by the optimizer.
|
73
69
|
eps (float, optional): A small value added for numerical stability. Defaults to 1e-6.
|
74
70
|
|
@@ -79,8 +75,6 @@ class ImagesOptimizationHandler:
|
|
79
75
|
self.scheduler = scheduler
|
80
76
|
self.scheduler_step_fn = scheduler_step_fn
|
81
77
|
self.image_granularity = image_granularity
|
82
|
-
self.clip_images = clip_images
|
83
|
-
self.reflection = reflection
|
84
78
|
self.eps = eps
|
85
79
|
self.targets = []
|
86
80
|
self.initial_lr = initial_lr
|
@@ -209,9 +203,11 @@ class ImagesOptimizationHandler:
|
|
209
203
|
imgs_layer_mean, imgs_layer_second_moment, imgs_layer_std = self.all_imgs_stats_holder.get_stats(
|
210
204
|
batch_index, layer_name)
|
211
205
|
|
212
|
-
|
213
|
-
|
214
|
-
|
206
|
+
if imgs_layer_mean is not None and imgs_layer_std is not None:
|
207
|
+
bn_alignment_loss = bn_alignment_loss_fn(bn_layer_mean, imgs_layer_mean, bn_layer_std,
|
208
|
+
imgs_layer_std)
|
209
|
+
# Accumulate the batchnorm alignment weighted by the layer weight
|
210
|
+
total_bn_loss += bn_layer_weight * bn_alignment_loss
|
215
211
|
|
216
212
|
return total_bn_loss
|
217
213
|
|
@@ -418,7 +414,7 @@ class BatchStatsHolder:
|
|
418
414
|
Returns:
|
419
415
|
Any: the mean for the specified layer.
|
420
416
|
"""
|
421
|
-
return self.bn_mean
|
417
|
+
return self.bn_mean.get(bn_layer_name)
|
422
418
|
|
423
419
|
def get_second_moment(self, bn_layer_name: str) -> Any:
|
424
420
|
"""
|
@@ -430,7 +426,7 @@ class BatchStatsHolder:
|
|
430
426
|
Returns:
|
431
427
|
Any: the second moment for the specified layer.
|
432
428
|
"""
|
433
|
-
return self.bn_second_moment
|
429
|
+
return self.bn_second_moment.get(bn_layer_name)
|
434
430
|
|
435
431
|
def get_var(self, bn_layer_name: str) -> Any:
|
436
432
|
"""
|
@@ -18,8 +18,11 @@ BATCH_AXIS, H_AXIS, W_AXIS, CHANNEL_AXIS = 0, 1, 2, 3
|
|
18
18
|
# Default initial learning rate constant for Keras.
|
19
19
|
DEFAULT_KERAS_INITIAL_LR = 1
|
20
20
|
|
21
|
-
# Default
|
22
|
-
|
21
|
+
# Default extra pixels for image padding.
|
22
|
+
DEFAULT_KERAS_EXTRA_PIXELS = 32
|
23
|
+
|
24
|
+
# Default output loss multiplier.
|
25
|
+
DEFAULT_KERAS_OUTPUT_LOSS_MULTIPLIER = 1e-3
|
23
26
|
|
24
27
|
# Minimum value for image pixel intensity.
|
25
28
|
IMAGE_MIN_VAL = 0.0
|