mct-nightly 2.1.0.20240717.444__tar.gz → 2.1.0.20240719.444__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/PKG-INFO +1 -1
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/PKG-INFO +1 -1
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/base_node.py +1 -1
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/functional_node.py +1 -1
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +28 -3
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/node_builder.py +143 -54
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/LICENSE.md +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/README.md +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/SOURCES.txt +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/setup.cfg +0 -0
- {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/setup.py +0 -0
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.1.0.
|
30
|
+
__version__ = "2.1.0.20240719.000444"
|
@@ -36,7 +36,7 @@ class BaseNode:
|
|
36
36
|
framework_attr: Dict[str, Any],
|
37
37
|
input_shape: Tuple[Any],
|
38
38
|
output_shape: Tuple[Any],
|
39
|
-
weights: Dict[str, np.ndarray],
|
39
|
+
weights: Dict[Union[str, int], np.ndarray],
|
40
40
|
layer_class: type,
|
41
41
|
reuse: bool = False,
|
42
42
|
reuse_group: str = None,
|
@@ -59,7 +59,7 @@ class FunctionalNode(BaseNode):
|
|
59
59
|
has_activation=has_activation)
|
60
60
|
|
61
61
|
self.op_call_kwargs = op_call_kwargs
|
62
|
-
self.op_call_args = op_call_args
|
62
|
+
self.op_call_args = list(op_call_args)
|
63
63
|
self.functional_op = functional_op
|
64
64
|
self.inputs_as_list = inputs_as_list
|
65
65
|
self.tensor_input_allocs = [] if tensor_input_allocs is None else tensor_input_allocs
|
@@ -12,6 +12,7 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
from copy import copy
|
15
16
|
|
16
17
|
import tensorflow as tf
|
17
18
|
from keras.models import Model
|
@@ -19,6 +20,7 @@ from packaging import version
|
|
19
20
|
|
20
21
|
from model_compression_toolkit.core.common.back2framework.base_model_builder import BaseModelBuilder
|
21
22
|
from model_compression_toolkit.core.common.user_info import UserInformation
|
23
|
+
from model_compression_toolkit.logger import Logger
|
22
24
|
|
23
25
|
if version.parse(tf.__version__) >= version.parse("2.13"):
|
24
26
|
from keras import Input
|
@@ -271,15 +273,38 @@ class KerasModelBuilder(BaseModelBuilder):
|
|
271
273
|
out_tensors_of_n_float)
|
272
274
|
else:
|
273
275
|
input_tensors = [tensor for tensor_list in input_tensors for tensor in tensor_list] # flat list of lists
|
276
|
+
if isinstance(n, FunctionalNode):
|
277
|
+
op_call_kwargs = {} if n.op_call_kwargs is None else copy(n.op_call_kwargs)
|
274
278
|
if not isinstance(op_func, KerasQuantizationWrapper):
|
275
279
|
# The KerasQuantizationWrapper will insert the quantized positional weights internally.
|
276
|
-
|
280
|
+
if isinstance(n, FunctionalNode):
|
281
|
+
if n.tensor_input_allocs is not None:
|
282
|
+
if n.inputs_as_list:
|
283
|
+
input_tensors = n.insert_positional_weights_to_input_list(input_tensors)
|
284
|
+
else:
|
285
|
+
# If the were any const attributes in the layer's inputs, we retrieve them as kwargs
|
286
|
+
# for the operator call.
|
287
|
+
for pos, k in enumerate(n.tensor_input_allocs):
|
288
|
+
if k not in op_call_kwargs: # op_call_kwargs is initialized because we are under FunctionalNode
|
289
|
+
# If the argument is saved in tensor_input_allocs but does not exists in the node kwargs
|
290
|
+
# then it is expected to be either an input tensor or a positional weight of the node.
|
291
|
+
arg = n.weights.get(pos)
|
292
|
+
if arg is None:
|
293
|
+
if len(input_tensors) == 0:
|
294
|
+
Logger.critical(f"Couldn't find a weight or input tensor matching operator's "
|
295
|
+
f"argument name '{k}' in location {pos} for node {n.name}.")
|
296
|
+
arg = input_tensors.pop(0)
|
297
|
+
op_call_kwargs.update({k: arg})
|
298
|
+
else:
|
299
|
+
# If the operator is not a functional node then positional weights should be inserted
|
300
|
+
# into the inputs list.
|
301
|
+
input_tensors = n.insert_positional_weights_to_input_list(input_tensors)
|
277
302
|
# Build a functional node using its args
|
278
303
|
if isinstance(n, FunctionalNode):
|
279
304
|
if n.inputs_as_list: # If the first argument should be a list of tensors:
|
280
|
-
out_tensors_of_n_float = op_func(input_tensors, *n.op_call_args, **
|
305
|
+
out_tensors_of_n_float = op_func(input_tensors, *n.op_call_args, **op_call_kwargs)
|
281
306
|
else: # If the input tensors should not be a list but iterated:
|
282
|
-
out_tensors_of_n_float = op_func(*input_tensors, *n.op_call_args, **
|
307
|
+
out_tensors_of_n_float = op_func(*input_tensors, *n.op_call_args, **op_call_kwargs)
|
283
308
|
else:
|
284
309
|
# If operator expects a single input tensor, it cannot be a list as it should
|
285
310
|
# have a dtype field.
|
@@ -12,7 +12,9 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
from
|
15
|
+
from copy import copy
|
16
|
+
|
17
|
+
from typing import Any, List, Dict, Union, Tuple
|
16
18
|
|
17
19
|
import tensorflow as tf
|
18
20
|
from tensorflow.python.util import tf_inspect
|
@@ -41,7 +43,7 @@ layers = keras.layers
|
|
41
43
|
|
42
44
|
REUSED_IDENTIFIER = '_reused_'
|
43
45
|
|
44
|
-
is_const = lambda x: isinstance(x, (tf.Variable, tf.Tensor, np.ndarray,
|
46
|
+
is_const = lambda x: isinstance(x, (tf.Variable, tf.Tensor, np.ndarray, tuple, list))
|
45
47
|
is_tensor = lambda x: isinstance(x, KerasTensor)
|
46
48
|
|
47
49
|
|
@@ -62,35 +64,139 @@ def get_kwargs2index(tfoplambda_layer: TFOpLambda) -> Dict[str, int]:
|
|
62
64
|
Positional weights are saved according to their index in the node's call arguments, so
|
63
65
|
need to know the function arguments' names in case the weights are in the kwargs.
|
64
66
|
|
65
|
-
Note: the kwargs2index dictionary is initialized manually (and not with tf_inspect) so
|
66
|
-
it will only include the arguments that may contain constants. For example, we don't
|
67
|
-
want the transpose_a attribute of tf.matmul to be saved as a constant.
|
68
|
-
|
69
|
-
Every operation we add support to, needs to be added here.
|
70
|
-
|
71
67
|
Args:
|
72
68
|
tfoplambda_layer: TFOpLambda layer.
|
73
69
|
|
74
70
|
Returns:
|
75
71
|
A dictionary with argument number and index: {arg_name: arg_index}.
|
76
72
|
"""
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
73
|
+
|
74
|
+
full_args = tf_inspect.getfullargspec(tfoplambda_layer.function).args
|
75
|
+
|
76
|
+
return {arg_name: i for i, arg_name in enumerate(full_args)}
|
77
|
+
|
78
|
+
|
79
|
+
def _extract_const_attrs_from_kwargs(op_call_kwargs: Dict[str, Any],
|
80
|
+
kwarg2index: Dict[str, int],
|
81
|
+
weights: Dict[Union[str, int], Any]) -> Dict[str, Any]:
|
82
|
+
"""
|
83
|
+
Extract const weights of the layer from the operator's key arguments dictionary.
|
84
|
+
This function extracts the attributes, updates the nodes weights dictionary and removes them from the original
|
85
|
+
kwargs mapping.
|
86
|
+
|
87
|
+
Args:
|
88
|
+
op_call_kwargs: A mapping of the operator key arguments.
|
89
|
+
kwarg2index: A dictionary with argument number and index: {arg_name: arg_index}.
|
90
|
+
weights: Node weights mapping. This dictionary is modified by this function.
|
91
|
+
|
92
|
+
Returns: A modified operator key arguments mapping.
|
93
|
+
|
94
|
+
"""
|
95
|
+
|
96
|
+
# read weights from call kwargs
|
97
|
+
for k, v in op_call_kwargs.items():
|
98
|
+
if is_const(v):
|
99
|
+
# if k in kwarg2index:
|
100
|
+
weights.update({kwarg2index[k]: to_numpy(v, is_single_tensor=True)})
|
101
|
+
|
102
|
+
# remove weights and KerasTensors from op_call_kwargs
|
103
|
+
op_call_kwargs = {k: v for k, v in op_call_kwargs.items()
|
104
|
+
if not (kwarg2index.get(k) in weights or is_tensor(v))}
|
105
|
+
|
106
|
+
return op_call_kwargs
|
107
|
+
|
108
|
+
|
109
|
+
def _build_arguments_alloc(n: KerasNode, inputs_as_list: bool, kwarg2index: Dict[str, int]) -> List:
|
110
|
+
"""
|
111
|
+
Builds arguments allocation list.
|
112
|
+
In Keras, if there is any argument that is a constant, we convert all arguments and inputs to be
|
113
|
+
considered as op kwargs for simpler reconstruction of the model from the graph later.
|
114
|
+
Therefore, we build a location list that includes the argument names (keys).
|
115
|
+
If the input is a list, then we don't need to save the keys, since we can assume that all possible constant
|
116
|
+
arguments are within the first argument (the list) and are stored by their position in the list.
|
117
|
+
|
118
|
+
Args:
|
119
|
+
n: fx node.
|
120
|
+
inputs_as_list: Is node's inputs are a list.
|
121
|
+
|
122
|
+
Returns:
|
123
|
+
A list of argument allocations in the node's inputs.
|
124
|
+
|
125
|
+
"""
|
126
|
+
|
127
|
+
tensor_input_alloc = []
|
128
|
+
op_call_args = list(n.call_args)
|
129
|
+
if not inputs_as_list:
|
130
|
+
sorted_kwargs_pos = sorted(kwarg2index.items(), key=lambda x: x[1])
|
131
|
+
tensor_input_alloc = [k for k, _ in sorted_kwargs_pos[:len(op_call_args)]]
|
132
|
+
for k, idx in sorted_kwargs_pos[len(op_call_args):]:
|
133
|
+
if k in n.call_kwargs:
|
134
|
+
tensor_input_alloc.append(k)
|
135
|
+
|
136
|
+
return tensor_input_alloc
|
137
|
+
|
138
|
+
def _extract_const_attrs_from_args(op_call_args: List[Any],
|
139
|
+
op_call_kwargs: Dict[str, Any],
|
140
|
+
inputs_as_list: bool,
|
141
|
+
tensor_inputs_alloc: List,
|
142
|
+
weights: Dict[Union[str, int], Any]) -> Tuple:
|
143
|
+
"""
|
144
|
+
Extract const weights of the layer from the operator's arguments list.
|
145
|
+
This function extracts the attributes, updates the nodes weights dictionary and removes them from the original
|
146
|
+
arguments list.
|
147
|
+
|
148
|
+
Args:
|
149
|
+
op_call_args: A list of the operator arguments.
|
150
|
+
op_call_kwargs: A mapping of key-arguments of the operator.
|
151
|
+
inputs_as_list: Whether the input of the layer is a list.
|
152
|
+
tensor_inputs_alloc: Allocation of argument inputs to the operator (if there are const inputs, otherwise None).
|
153
|
+
weights: Node weights mapping. This dictionary is modified by this function.
|
154
|
+
|
155
|
+
Returns: A modified operator arguments list.
|
156
|
+
|
157
|
+
"""
|
158
|
+
|
159
|
+
move_args_to_kwargs = tensor_inputs_alloc is not None and len(tensor_inputs_alloc) > 0
|
160
|
+
|
161
|
+
# read weights from call args
|
162
|
+
for i, arg in enumerate(op_call_args[0] if inputs_as_list else op_call_args):
|
163
|
+
if is_const(arg):
|
164
|
+
weights.update({i: to_numpy(arg, is_single_tensor=True)})
|
165
|
+
else:
|
166
|
+
if not inputs_as_list:
|
167
|
+
if move_args_to_kwargs:
|
168
|
+
# In this case we move all arguments and inputs to the kwargs
|
169
|
+
op_call_kwargs.update({tensor_inputs_alloc[i]: arg})
|
170
|
+
|
171
|
+
# remove weights and KerasTensors from op_call_args
|
172
|
+
if inputs_as_list:
|
173
|
+
op_call_args = tuple(op_call_args[1:])
|
174
|
+
else:
|
175
|
+
op_call_args = tuple([a for i, a in enumerate(op_call_args)
|
176
|
+
if not (i in weights or is_tensor(a) or (move_args_to_kwargs and tensor_inputs_alloc[i]
|
177
|
+
in op_call_kwargs))])
|
178
|
+
|
179
|
+
return op_call_args
|
180
|
+
|
181
|
+
|
182
|
+
def _has_const_attributes(op_call_args: List, op_call_kwargs: Dict, input_as_list: bool) -> bool:
|
183
|
+
"""
|
184
|
+
Returns whether the layer's input include a constant tensor (that we might want to quantize).
|
185
|
+
|
186
|
+
Args:
|
187
|
+
op_call_args: A list of arguments to the layer.
|
188
|
+
op_call_kwargs: A dictionary of key-arguments to the layer.
|
189
|
+
input_as_list: Whether the input to the layer is a list of tensors.
|
190
|
+
|
191
|
+
Returns: True if the input arguments include a constant tensor, False otherwise.
|
192
|
+
|
193
|
+
"""
|
194
|
+
if input_as_list:
|
195
|
+
return any([is_const(a) for a in op_call_args[0]])
|
196
|
+
const_args = [a for a in op_call_args if is_const(a)]
|
197
|
+
const_kwargs = [k for k, v in op_call_kwargs.items() if is_const(v)]
|
198
|
+
|
199
|
+
return len(const_args) > 0 or len(const_kwargs) > 0
|
94
200
|
|
95
201
|
|
96
202
|
def build_node(node: KerasNode,
|
@@ -110,8 +216,8 @@ def build_node(node: KerasNode,
|
|
110
216
|
"""
|
111
217
|
keras_layer = node.layer # get the layer the node represents.
|
112
218
|
layer_config = keras_layer.get_config() # layer configuration to reconstruct it.
|
113
|
-
op_call_args = node.call_args
|
114
|
-
op_call_kwargs = node.call_kwargs
|
219
|
+
op_call_args = copy(node.call_args)
|
220
|
+
op_call_kwargs = copy(node.call_kwargs)
|
115
221
|
layer_class = type(keras_layer) # class path to instantiating it in back2framework.
|
116
222
|
weights = {v.name: v.numpy() for v in keras_layer.weights} # layer's weights
|
117
223
|
|
@@ -152,32 +258,14 @@ def build_node(node: KerasNode,
|
|
152
258
|
if len(weights) > 0:
|
153
259
|
Logger.critical('Functional nodes are not expected to have weights in this framework.')
|
154
260
|
|
155
|
-
#
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
# remove weights and KerasTensors and weights from op_call_args
|
164
|
-
if inputs_as_list:
|
165
|
-
op_call_args = tuple(op_call_args[1:])
|
166
|
-
else:
|
167
|
-
op_call_args = tuple([a for i, a in enumerate(op_call_args)
|
168
|
-
if not (i in weights or is_tensor(a))])
|
169
|
-
|
170
|
-
# read weights from call kwargs
|
171
|
-
weight_keys = []
|
172
|
-
for k, v in op_call_kwargs.items():
|
173
|
-
if is_const(v) or (keras_layer.symbol in tf_function_symbols and
|
174
|
-
isinstance(v, (tuple, list))):
|
175
|
-
if k in kwarg2index:
|
176
|
-
weights.update({kwarg2index[k]: to_numpy(v, is_single_tensor=True)})
|
177
|
-
weight_keys.append(k)
|
178
|
-
# remove weights and KerasTensors and weights from op_call_kwargs
|
179
|
-
op_call_kwargs = {k: v for k, v in op_call_kwargs.items()
|
180
|
-
if not (kwarg2index.get(k) in weights or is_tensor(v))}
|
261
|
+
# Build tensor_input_alloc required for the model builder. All inputs are received as a list in the builder,
|
262
|
+
# so tensor_input_alloc is used to allocate each input in the correct place in the node's args & kwargs.
|
263
|
+
tensor_input_alloc = None if not _has_const_attributes(op_call_args, op_call_kwargs, inputs_as_list) \
|
264
|
+
else _build_arguments_alloc(node, inputs_as_list, kwarg2index)
|
265
|
+
|
266
|
+
op_call_args = _extract_const_attrs_from_args(op_call_args, op_call_kwargs, inputs_as_list,
|
267
|
+
tensor_input_alloc, weights)
|
268
|
+
op_call_kwargs = _extract_const_attrs_from_kwargs(op_call_kwargs, kwarg2index, weights)
|
181
269
|
|
182
270
|
node = FunctionalNode(node_name,
|
183
271
|
layer_config,
|
@@ -190,7 +278,8 @@ def build_node(node: KerasNode,
|
|
190
278
|
is_reused,
|
191
279
|
reuse_group,
|
192
280
|
functional_op=keras_layer.function,
|
193
|
-
inputs_as_list=inputs_as_list
|
281
|
+
inputs_as_list=inputs_as_list,
|
282
|
+
tensor_input_allocs=tensor_input_alloc)
|
194
283
|
else:
|
195
284
|
# Read constant weights from layers such as layers.Add
|
196
285
|
if len(op_call_args) > 0 and isinstance(op_call_args[0], (list, tuple)):
|
File without changes
|
File without changes
|
{mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/SOURCES.txt
RENAMED
File without changes
|
File without changes
|
{mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/requires.txt
RENAMED
File without changes
|
{mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/top_level.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|