mct-nightly 2.1.0.20240717.444__tar.gz → 2.1.0.20240719.444__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (529) hide show
  1. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/PKG-INFO +1 -1
  2. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/__init__.py +1 -1
  4. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/base_node.py +1 -1
  5. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/functional_node.py +1 -1
  6. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +28 -3
  7. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/node_builder.py +143 -54
  8. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/LICENSE.md +0 -0
  9. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/README.md +0 -0
  10. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/SOURCES.txt +0 -0
  11. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/dependency_links.txt +0 -0
  12. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/requires.txt +0 -0
  13. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/mct_nightly.egg-info/top_level.txt +0 -0
  14. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/constants.py +0 -0
  15. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/__init__.py +0 -0
  16. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/analyzer.py +0 -0
  17. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/__init__.py +0 -0
  18. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  19. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  20. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  21. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  22. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  23. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  24. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  25. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  26. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  27. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  28. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/framework_info.py +0 -0
  29. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  30. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  31. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  32. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  33. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  34. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  35. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  36. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  37. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  38. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  39. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  40. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  41. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  42. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  43. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  44. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  45. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  46. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  47. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  48. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  49. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  50. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  51. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  52. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  53. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  54. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  55. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  56. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  57. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  58. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  59. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  60. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  61. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  62. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  63. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  64. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  65. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  66. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  67. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  68. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  69. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  70. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  71. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  72. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  73. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  74. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  75. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  76. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  77. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/model_collector.py +0 -0
  78. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/model_validation.py +0 -0
  79. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  80. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  81. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  82. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  83. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  84. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  85. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  86. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  87. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  88. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  89. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  90. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  91. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  92. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  93. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  94. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  95. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  96. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  97. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  98. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  99. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  100. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  101. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  102. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  103. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  104. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  105. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  106. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  107. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  108. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  109. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  110. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  111. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  112. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  113. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  114. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  115. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  116. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  117. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  118. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  119. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  120. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  121. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  122. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  123. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  124. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  125. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  126. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  127. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  128. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  129. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  130. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  131. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  132. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  133. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  134. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  135. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  136. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  137. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  138. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  139. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  140. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  141. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  142. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  143. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  144. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  145. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  146. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  147. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  148. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/user_info.py +0 -0
  149. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  150. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  151. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  152. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  153. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  154. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/__init__.py +0 -0
  155. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  156. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  157. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  158. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  159. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  160. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  161. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/constants.py +0 -0
  162. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  163. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  164. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  165. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  166. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  167. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  168. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  169. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  170. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  171. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  172. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  173. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  174. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  175. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  176. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  177. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  178. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  179. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  180. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  181. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  182. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  183. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  184. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  185. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  186. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  187. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  188. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  189. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  190. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  191. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  192. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  193. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  194. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  195. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  196. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  197. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  198. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  199. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  200. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  201. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  202. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  203. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  204. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  205. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  206. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  207. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  208. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  209. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  210. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  211. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  212. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  213. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  214. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  215. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  216. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  217. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  218. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  219. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  220. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  221. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  222. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  223. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  224. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  225. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  226. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  227. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  228. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  229. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  230. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  231. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  232. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  233. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  234. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  235. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  236. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  237. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  238. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  239. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  240. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  241. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  242. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  243. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  244. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  245. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  246. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  247. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  248. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  249. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  250. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  251. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  252. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  253. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  254. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  255. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  256. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  257. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  258. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  259. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  260. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  261. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  262. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  263. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  264. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  265. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  266. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  267. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  268. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  269. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  270. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  271. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  272. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  273. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/core/runner.py +0 -0
  274. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/__init__.py +0 -0
  275. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  276. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  277. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  278. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  279. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  280. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  281. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  282. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  283. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  284. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  285. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  286. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  287. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  288. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  289. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  290. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  291. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  292. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  293. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  294. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  295. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  296. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  297. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  298. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  299. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  300. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  301. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  302. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  303. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  304. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  305. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  306. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  307. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/defaultdict.py +0 -0
  308. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/__init__.py +0 -0
  309. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  310. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  311. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  312. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  313. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  314. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  315. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  316. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  317. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  318. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  319. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  320. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  321. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  322. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  323. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  324. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  325. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  326. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  327. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  328. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  329. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  330. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  331. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  332. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  333. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  334. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  335. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  336. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  337. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  338. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  339. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  340. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/__init__.py +0 -0
  341. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  342. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  343. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  344. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  345. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  346. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  347. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  348. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  349. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  350. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  351. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  352. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  353. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  354. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  355. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  356. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  357. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  358. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  359. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  360. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  361. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  362. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  363. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  364. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  365. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  366. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  367. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  368. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  369. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  370. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  371. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  372. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  373. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  374. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  375. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  376. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  377. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  378. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  379. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  380. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  381. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/gptq/runner.py +0 -0
  382. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/logger.py +0 -0
  383. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/metadata.py +0 -0
  384. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/pruning/__init__.py +0 -0
  385. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  386. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  387. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  388. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  389. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/__init__.py +0 -0
  390. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  391. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  392. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  393. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  394. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/ptq/runner.py +0 -0
  395. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/__init__.py +0 -0
  396. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/common/__init__.py +0 -0
  397. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  398. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  399. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  400. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  401. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  402. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  403. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  404. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  405. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  406. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  407. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  408. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  409. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  410. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  411. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  412. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  413. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
  414. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  415. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  416. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  417. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  418. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
  419. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  420. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  421. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  422. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  423. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  424. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  425. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  426. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  427. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  428. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  429. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  430. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  431. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  432. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  433. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  434. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  435. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  436. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  437. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  438. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  439. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  440. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  441. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  442. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  443. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  444. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  445. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  446. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  447. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  448. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  449. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  450. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  451. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  452. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  453. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  454. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  455. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  456. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  457. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  458. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  459. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  460. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  461. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  462. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  463. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  464. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  465. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  466. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  467. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  468. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  469. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  470. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  471. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  472. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  473. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  474. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  475. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  476. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  477. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  478. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  479. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  480. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  481. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  482. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  483. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  484. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  485. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  486. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  487. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  488. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  489. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  490. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  491. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  492. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  493. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  494. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  495. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  496. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  497. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  498. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  499. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  500. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  501. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  502. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/__init__.py +0 -0
  503. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  504. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/constants.py +0 -0
  505. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  506. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  507. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  508. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  509. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  510. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  511. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  512. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  513. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  514. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  515. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  516. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  517. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  518. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  519. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  520. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  521. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  522. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  523. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  524. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  525. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  526. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  527. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  528. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/setup.cfg +0 -0
  529. {mct-nightly-2.1.0.20240717.444 → mct-nightly-2.1.0.20240719.444}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240717.444
3
+ Version: 2.1.0.20240719.444
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240717.444
3
+ Version: 2.1.0.20240719.444
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.1.0.20240717.000444"
30
+ __version__ = "2.1.0.20240719.000444"
@@ -36,7 +36,7 @@ class BaseNode:
36
36
  framework_attr: Dict[str, Any],
37
37
  input_shape: Tuple[Any],
38
38
  output_shape: Tuple[Any],
39
- weights: Dict[str, np.ndarray],
39
+ weights: Dict[Union[str, int], np.ndarray],
40
40
  layer_class: type,
41
41
  reuse: bool = False,
42
42
  reuse_group: str = None,
@@ -59,7 +59,7 @@ class FunctionalNode(BaseNode):
59
59
  has_activation=has_activation)
60
60
 
61
61
  self.op_call_kwargs = op_call_kwargs
62
- self.op_call_args = op_call_args
62
+ self.op_call_args = list(op_call_args)
63
63
  self.functional_op = functional_op
64
64
  self.inputs_as_list = inputs_as_list
65
65
  self.tensor_input_allocs = [] if tensor_input_allocs is None else tensor_input_allocs
@@ -12,6 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
+ from copy import copy
15
16
 
16
17
  import tensorflow as tf
17
18
  from keras.models import Model
@@ -19,6 +20,7 @@ from packaging import version
19
20
 
20
21
  from model_compression_toolkit.core.common.back2framework.base_model_builder import BaseModelBuilder
21
22
  from model_compression_toolkit.core.common.user_info import UserInformation
23
+ from model_compression_toolkit.logger import Logger
22
24
 
23
25
  if version.parse(tf.__version__) >= version.parse("2.13"):
24
26
  from keras import Input
@@ -271,15 +273,38 @@ class KerasModelBuilder(BaseModelBuilder):
271
273
  out_tensors_of_n_float)
272
274
  else:
273
275
  input_tensors = [tensor for tensor_list in input_tensors for tensor in tensor_list] # flat list of lists
276
+ if isinstance(n, FunctionalNode):
277
+ op_call_kwargs = {} if n.op_call_kwargs is None else copy(n.op_call_kwargs)
274
278
  if not isinstance(op_func, KerasQuantizationWrapper):
275
279
  # The KerasQuantizationWrapper will insert the quantized positional weights internally.
276
- input_tensors = n.insert_positional_weights_to_input_list(input_tensors)
280
+ if isinstance(n, FunctionalNode):
281
+ if n.tensor_input_allocs is not None:
282
+ if n.inputs_as_list:
283
+ input_tensors = n.insert_positional_weights_to_input_list(input_tensors)
284
+ else:
285
+ # If the were any const attributes in the layer's inputs, we retrieve them as kwargs
286
+ # for the operator call.
287
+ for pos, k in enumerate(n.tensor_input_allocs):
288
+ if k not in op_call_kwargs: # op_call_kwargs is initialized because we are under FunctionalNode
289
+ # If the argument is saved in tensor_input_allocs but does not exists in the node kwargs
290
+ # then it is expected to be either an input tensor or a positional weight of the node.
291
+ arg = n.weights.get(pos)
292
+ if arg is None:
293
+ if len(input_tensors) == 0:
294
+ Logger.critical(f"Couldn't find a weight or input tensor matching operator's "
295
+ f"argument name '{k}' in location {pos} for node {n.name}.")
296
+ arg = input_tensors.pop(0)
297
+ op_call_kwargs.update({k: arg})
298
+ else:
299
+ # If the operator is not a functional node then positional weights should be inserted
300
+ # into the inputs list.
301
+ input_tensors = n.insert_positional_weights_to_input_list(input_tensors)
277
302
  # Build a functional node using its args
278
303
  if isinstance(n, FunctionalNode):
279
304
  if n.inputs_as_list: # If the first argument should be a list of tensors:
280
- out_tensors_of_n_float = op_func(input_tensors, *n.op_call_args, **n.op_call_kwargs)
305
+ out_tensors_of_n_float = op_func(input_tensors, *n.op_call_args, **op_call_kwargs)
281
306
  else: # If the input tensors should not be a list but iterated:
282
- out_tensors_of_n_float = op_func(*input_tensors, *n.op_call_args, **n.op_call_kwargs)
307
+ out_tensors_of_n_float = op_func(*input_tensors, *n.op_call_args, **op_call_kwargs)
283
308
  else:
284
309
  # If operator expects a single input tensor, it cannot be a list as it should
285
310
  # have a dtype field.
@@ -12,7 +12,9 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
- from typing import Any, List, Dict
15
+ from copy import copy
16
+
17
+ from typing import Any, List, Dict, Union, Tuple
16
18
 
17
19
  import tensorflow as tf
18
20
  from tensorflow.python.util import tf_inspect
@@ -41,7 +43,7 @@ layers = keras.layers
41
43
 
42
44
  REUSED_IDENTIFIER = '_reused_'
43
45
 
44
- is_const = lambda x: isinstance(x, (tf.Variable, tf.Tensor, np.ndarray, float))
46
+ is_const = lambda x: isinstance(x, (tf.Variable, tf.Tensor, np.ndarray, tuple, list))
45
47
  is_tensor = lambda x: isinstance(x, KerasTensor)
46
48
 
47
49
 
@@ -62,35 +64,139 @@ def get_kwargs2index(tfoplambda_layer: TFOpLambda) -> Dict[str, int]:
62
64
  Positional weights are saved according to their index in the node's call arguments, so
63
65
  need to know the function arguments' names in case the weights are in the kwargs.
64
66
 
65
- Note: the kwargs2index dictionary is initialized manually (and not with tf_inspect) so
66
- it will only include the arguments that may contain constants. For example, we don't
67
- want the transpose_a attribute of tf.matmul to be saved as a constant.
68
-
69
- Every operation we add support to, needs to be added here.
70
-
71
67
  Args:
72
68
  tfoplambda_layer: TFOpLambda layer.
73
69
 
74
70
  Returns:
75
71
  A dictionary with argument number and index: {arg_name: arg_index}.
76
72
  """
77
- kwargs2index = {tf.add: {'x': 0, 'y': 1},
78
- tf.subtract: {'x': 0, 'y': 1},
79
- tf.divide: {'x': 0, 'y': 1},
80
- tf.truediv: {'x': 0, 'y': 1},
81
- tf.multiply: {'x': 0, 'y': 1},
82
- tf.pow: {'x': 0, 'y': 1},
83
- tf.matmul: {'a': 0, 'b': 1}}.get(tfoplambda_layer.function)
84
- if not kwargs2index:
85
- # In TF 2.15 the function attribute is different and doesn't match the original
86
- # operation object we use. Therefore, we extract kwargs2index with the symbol.
87
- kwargs2index = {'__operators__.add': {'x': 0, 'y': 1},
88
- 'math.add': {'x': 0, 'y': 1},
89
- 'math.multiply': {'x': 0, 'y': 1},
90
- 'linalg.matmul': {'a': 0, 'b': 1},
91
- 'concat': {'values': 0}}.get(tfoplambda_layer.symbol, {})
92
-
93
- return kwargs2index
73
+
74
+ full_args = tf_inspect.getfullargspec(tfoplambda_layer.function).args
75
+
76
+ return {arg_name: i for i, arg_name in enumerate(full_args)}
77
+
78
+
79
+ def _extract_const_attrs_from_kwargs(op_call_kwargs: Dict[str, Any],
80
+ kwarg2index: Dict[str, int],
81
+ weights: Dict[Union[str, int], Any]) -> Dict[str, Any]:
82
+ """
83
+ Extract const weights of the layer from the operator's key arguments dictionary.
84
+ This function extracts the attributes, updates the nodes weights dictionary and removes them from the original
85
+ kwargs mapping.
86
+
87
+ Args:
88
+ op_call_kwargs: A mapping of the operator key arguments.
89
+ kwarg2index: A dictionary with argument number and index: {arg_name: arg_index}.
90
+ weights: Node weights mapping. This dictionary is modified by this function.
91
+
92
+ Returns: A modified operator key arguments mapping.
93
+
94
+ """
95
+
96
+ # read weights from call kwargs
97
+ for k, v in op_call_kwargs.items():
98
+ if is_const(v):
99
+ # if k in kwarg2index:
100
+ weights.update({kwarg2index[k]: to_numpy(v, is_single_tensor=True)})
101
+
102
+ # remove weights and KerasTensors from op_call_kwargs
103
+ op_call_kwargs = {k: v for k, v in op_call_kwargs.items()
104
+ if not (kwarg2index.get(k) in weights or is_tensor(v))}
105
+
106
+ return op_call_kwargs
107
+
108
+
109
+ def _build_arguments_alloc(n: KerasNode, inputs_as_list: bool, kwarg2index: Dict[str, int]) -> List:
110
+ """
111
+ Builds arguments allocation list.
112
+ In Keras, if there is any argument that is a constant, we convert all arguments and inputs to be
113
+ considered as op kwargs for simpler reconstruction of the model from the graph later.
114
+ Therefore, we build a location list that includes the argument names (keys).
115
+ If the input is a list, then we don't need to save the keys, since we can assume that all possible constant
116
+ arguments are within the first argument (the list) and are stored by their position in the list.
117
+
118
+ Args:
119
+ n: fx node.
120
+ inputs_as_list: Is node's inputs are a list.
121
+
122
+ Returns:
123
+ A list of argument allocations in the node's inputs.
124
+
125
+ """
126
+
127
+ tensor_input_alloc = []
128
+ op_call_args = list(n.call_args)
129
+ if not inputs_as_list:
130
+ sorted_kwargs_pos = sorted(kwarg2index.items(), key=lambda x: x[1])
131
+ tensor_input_alloc = [k for k, _ in sorted_kwargs_pos[:len(op_call_args)]]
132
+ for k, idx in sorted_kwargs_pos[len(op_call_args):]:
133
+ if k in n.call_kwargs:
134
+ tensor_input_alloc.append(k)
135
+
136
+ return tensor_input_alloc
137
+
138
+ def _extract_const_attrs_from_args(op_call_args: List[Any],
139
+ op_call_kwargs: Dict[str, Any],
140
+ inputs_as_list: bool,
141
+ tensor_inputs_alloc: List,
142
+ weights: Dict[Union[str, int], Any]) -> Tuple:
143
+ """
144
+ Extract const weights of the layer from the operator's arguments list.
145
+ This function extracts the attributes, updates the nodes weights dictionary and removes them from the original
146
+ arguments list.
147
+
148
+ Args:
149
+ op_call_args: A list of the operator arguments.
150
+ op_call_kwargs: A mapping of key-arguments of the operator.
151
+ inputs_as_list: Whether the input of the layer is a list.
152
+ tensor_inputs_alloc: Allocation of argument inputs to the operator (if there are const inputs, otherwise None).
153
+ weights: Node weights mapping. This dictionary is modified by this function.
154
+
155
+ Returns: A modified operator arguments list.
156
+
157
+ """
158
+
159
+ move_args_to_kwargs = tensor_inputs_alloc is not None and len(tensor_inputs_alloc) > 0
160
+
161
+ # read weights from call args
162
+ for i, arg in enumerate(op_call_args[0] if inputs_as_list else op_call_args):
163
+ if is_const(arg):
164
+ weights.update({i: to_numpy(arg, is_single_tensor=True)})
165
+ else:
166
+ if not inputs_as_list:
167
+ if move_args_to_kwargs:
168
+ # In this case we move all arguments and inputs to the kwargs
169
+ op_call_kwargs.update({tensor_inputs_alloc[i]: arg})
170
+
171
+ # remove weights and KerasTensors from op_call_args
172
+ if inputs_as_list:
173
+ op_call_args = tuple(op_call_args[1:])
174
+ else:
175
+ op_call_args = tuple([a for i, a in enumerate(op_call_args)
176
+ if not (i in weights or is_tensor(a) or (move_args_to_kwargs and tensor_inputs_alloc[i]
177
+ in op_call_kwargs))])
178
+
179
+ return op_call_args
180
+
181
+
182
+ def _has_const_attributes(op_call_args: List, op_call_kwargs: Dict, input_as_list: bool) -> bool:
183
+ """
184
+ Returns whether the layer's input include a constant tensor (that we might want to quantize).
185
+
186
+ Args:
187
+ op_call_args: A list of arguments to the layer.
188
+ op_call_kwargs: A dictionary of key-arguments to the layer.
189
+ input_as_list: Whether the input to the layer is a list of tensors.
190
+
191
+ Returns: True if the input arguments include a constant tensor, False otherwise.
192
+
193
+ """
194
+ if input_as_list:
195
+ return any([is_const(a) for a in op_call_args[0]])
196
+ const_args = [a for a in op_call_args if is_const(a)]
197
+ const_kwargs = [k for k, v in op_call_kwargs.items() if is_const(v)]
198
+
199
+ return len(const_args) > 0 or len(const_kwargs) > 0
94
200
 
95
201
 
96
202
  def build_node(node: KerasNode,
@@ -110,8 +216,8 @@ def build_node(node: KerasNode,
110
216
  """
111
217
  keras_layer = node.layer # get the layer the node represents.
112
218
  layer_config = keras_layer.get_config() # layer configuration to reconstruct it.
113
- op_call_args = node.call_args
114
- op_call_kwargs = node.call_kwargs
219
+ op_call_args = copy(node.call_args)
220
+ op_call_kwargs = copy(node.call_kwargs)
115
221
  layer_class = type(keras_layer) # class path to instantiating it in back2framework.
116
222
  weights = {v.name: v.numpy() for v in keras_layer.weights} # layer's weights
117
223
 
@@ -152,32 +258,14 @@ def build_node(node: KerasNode,
152
258
  if len(weights) > 0:
153
259
  Logger.critical('Functional nodes are not expected to have weights in this framework.')
154
260
 
155
- # read weights from call args
156
- tf_function_symbols = get_tf_function_symbols()
157
- for i, arg in enumerate(op_call_args[0] if inputs_as_list else op_call_args):
158
- if is_const(arg) or (
159
- keras_layer.symbol in tf_function_symbols and
160
- isinstance(arg, (tuple, list))):
161
- if inputs_as_list or i in kwarg2index.values():
162
- weights.update({i: to_numpy(arg, is_single_tensor=True)})
163
- # remove weights and KerasTensors and weights from op_call_args
164
- if inputs_as_list:
165
- op_call_args = tuple(op_call_args[1:])
166
- else:
167
- op_call_args = tuple([a for i, a in enumerate(op_call_args)
168
- if not (i in weights or is_tensor(a))])
169
-
170
- # read weights from call kwargs
171
- weight_keys = []
172
- for k, v in op_call_kwargs.items():
173
- if is_const(v) or (keras_layer.symbol in tf_function_symbols and
174
- isinstance(v, (tuple, list))):
175
- if k in kwarg2index:
176
- weights.update({kwarg2index[k]: to_numpy(v, is_single_tensor=True)})
177
- weight_keys.append(k)
178
- # remove weights and KerasTensors and weights from op_call_kwargs
179
- op_call_kwargs = {k: v for k, v in op_call_kwargs.items()
180
- if not (kwarg2index.get(k) in weights or is_tensor(v))}
261
+ # Build tensor_input_alloc required for the model builder. All inputs are received as a list in the builder,
262
+ # so tensor_input_alloc is used to allocate each input in the correct place in the node's args & kwargs.
263
+ tensor_input_alloc = None if not _has_const_attributes(op_call_args, op_call_kwargs, inputs_as_list) \
264
+ else _build_arguments_alloc(node, inputs_as_list, kwarg2index)
265
+
266
+ op_call_args = _extract_const_attrs_from_args(op_call_args, op_call_kwargs, inputs_as_list,
267
+ tensor_input_alloc, weights)
268
+ op_call_kwargs = _extract_const_attrs_from_kwargs(op_call_kwargs, kwarg2index, weights)
181
269
 
182
270
  node = FunctionalNode(node_name,
183
271
  layer_config,
@@ -190,7 +278,8 @@ def build_node(node: KerasNode,
190
278
  is_reused,
191
279
  reuse_group,
192
280
  functional_op=keras_layer.function,
193
- inputs_as_list=inputs_as_list)
281
+ inputs_as_list=inputs_as_list,
282
+ tensor_input_allocs=tensor_input_alloc)
194
283
  else:
195
284
  # Read constant weights from layers such as layers.Add
196
285
  if len(op_call_args) > 0 and isinstance(op_call_args[0], (list, tuple)):