mct-nightly 2.1.0.20240708.453__tar.gz → 2.1.0.20240709.429__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (529) hide show
  1. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/PKG-INFO +1 -1
  2. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/mct_nightly.egg-info/SOURCES.txt +8 -8
  4. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/__init__.py +1 -1
  5. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/framework_implementation.py +12 -12
  6. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/hessian/__init__.py +1 -1
  7. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +74 -69
  8. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +1 -1
  9. mct-nightly-2.1.0.20240708.453/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py → mct-nightly-2.1.0.20240709.429/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +11 -11
  10. mct-nightly-2.1.0.20240708.453/model_compression_toolkit/core/common/hessian/trace_hessian_request.py → mct-nightly-2.1.0.20240709.429/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +15 -15
  11. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +2 -2
  12. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +8 -8
  13. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +5 -5
  14. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +4 -4
  15. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +5 -5
  16. mct-nightly-2.1.0.20240708.453/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py → mct-nightly-2.1.0.20240709.429/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +26 -26
  17. mct-nightly-2.1.0.20240708.453/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py → mct-nightly-2.1.0.20240709.429/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +14 -14
  18. mct-nightly-2.1.0.20240708.453/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py → mct-nightly-2.1.0.20240709.429/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +27 -27
  19. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/keras_implementation.py +30 -30
  20. mct-nightly-2.1.0.20240708.453/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py → mct-nightly-2.1.0.20240709.429/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +25 -25
  21. mct-nightly-2.1.0.20240708.453/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py → mct-nightly-2.1.0.20240709.429/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +14 -14
  22. mct-nightly-2.1.0.20240708.453/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py → mct-nightly-2.1.0.20240709.429/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +25 -25
  23. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +30 -30
  24. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/quantization_prep_runner.py +1 -1
  25. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/common/gptq_training.py +30 -30
  26. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/gptq_training.py +1 -1
  27. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/gptq_training.py +1 -1
  28. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/runner.py +2 -2
  29. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/quantization_facade.py +1 -1
  30. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/LICENSE.md +0 -0
  31. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/README.md +0 -0
  32. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/mct_nightly.egg-info/dependency_links.txt +0 -0
  33. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/mct_nightly.egg-info/requires.txt +0 -0
  34. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/mct_nightly.egg-info/top_level.txt +0 -0
  35. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/constants.py +0 -0
  36. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/__init__.py +0 -0
  37. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/analyzer.py +0 -0
  38. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/__init__.py +0 -0
  39. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  40. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  41. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  42. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  43. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  44. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  45. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  46. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  47. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  48. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/framework_info.py +0 -0
  49. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  50. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  51. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  52. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  53. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  54. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  55. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  56. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  57. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  58. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  59. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  60. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  61. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  62. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  63. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  64. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  65. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  66. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  67. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  68. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  69. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  70. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  71. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  72. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  73. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  74. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  75. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  76. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  77. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  78. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  79. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  80. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  81. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  82. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  83. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  84. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  85. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  86. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  87. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  88. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  89. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  90. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  91. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  92. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/model_collector.py +0 -0
  93. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/model_validation.py +0 -0
  94. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  95. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  96. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  97. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  98. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  99. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  100. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  101. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  102. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  103. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  104. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  105. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  106. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  107. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  108. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  109. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  110. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  111. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  112. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  113. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  114. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  115. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  116. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  117. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  118. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  119. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  120. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  121. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  122. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  123. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  124. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  125. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  126. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  127. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  128. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  129. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  130. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  131. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  132. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  133. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  134. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  135. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  136. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  137. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  138. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  139. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  140. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  141. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  142. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  143. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  144. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  145. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  146. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  147. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  148. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  149. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  150. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  151. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  152. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  153. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  154. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  155. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  156. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  157. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  158. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  159. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  160. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/user_info.py +0 -0
  161. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  162. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  163. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  164. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  165. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  166. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/__init__.py +0 -0
  167. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  168. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  169. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  170. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  171. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  172. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  173. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  174. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/constants.py +0 -0
  175. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  176. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  177. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  178. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  179. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  180. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  181. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  182. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  183. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  184. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  185. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  186. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  187. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  188. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  189. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  190. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  191. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  192. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  193. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  194. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  195. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  196. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  197. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  198. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  199. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  200. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  201. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  202. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  203. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  204. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  205. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  206. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  207. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  208. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  209. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  210. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  211. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  212. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  213. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  214. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  215. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  216. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  217. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  218. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  219. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  220. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  221. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  222. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  223. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  224. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  225. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  226. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  227. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  228. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  229. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  230. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  231. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  232. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  233. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  234. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  235. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  236. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  237. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  238. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  239. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  240. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  241. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  242. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  243. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  244. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  245. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  246. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  247. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  248. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  249. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  250. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  251. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  252. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  253. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  254. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  255. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  256. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  257. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  258. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  259. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  260. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  261. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  262. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  263. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  264. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  265. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  266. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  267. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  268. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  269. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  270. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  271. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  272. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  273. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  274. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  275. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  276. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  277. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  278. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/core/runner.py +0 -0
  279. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/__init__.py +0 -0
  280. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  281. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  282. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  283. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  284. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  285. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  286. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  287. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  288. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  289. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  290. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  291. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  292. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  293. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  294. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  295. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  296. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  297. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  298. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  299. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  300. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  301. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  302. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  303. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  304. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  305. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  306. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  307. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  308. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  309. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  310. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  311. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  312. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/defaultdict.py +0 -0
  313. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/__init__.py +0 -0
  314. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  315. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  316. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  317. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  318. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  319. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  320. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  321. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  322. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  323. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  324. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  325. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  326. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  327. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  328. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  329. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  330. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  331. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  332. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  333. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  334. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  335. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  336. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  337. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  338. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  339. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  340. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  341. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  342. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  343. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  344. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  345. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/__init__.py +0 -0
  346. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  347. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  348. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  349. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  350. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  351. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  352. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  353. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  354. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  355. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  356. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  357. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  358. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  359. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  360. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  361. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  362. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  363. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  364. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  365. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  366. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  367. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  368. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  369. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  370. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  371. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  372. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  373. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  374. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  375. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  376. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  377. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  378. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  379. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  380. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  381. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  382. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  383. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/logger.py +0 -0
  384. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/metadata.py +0 -0
  385. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/pruning/__init__.py +0 -0
  386. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  387. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  388. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  389. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  390. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/ptq/__init__.py +0 -0
  391. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  392. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  393. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  394. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  395. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/ptq/runner.py +0 -0
  396. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/__init__.py +0 -0
  397. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/common/__init__.py +0 -0
  398. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  399. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  400. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  401. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  402. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  403. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  404. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  405. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  406. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  407. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  408. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  409. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  410. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  411. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  412. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  413. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
  414. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  415. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  416. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  417. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  418. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
  419. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  420. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  421. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  422. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  423. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  424. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  425. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  426. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  427. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  428. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  429. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  430. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  431. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  432. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  433. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  434. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  435. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  436. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  437. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  438. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  439. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  440. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  441. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  442. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  443. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  444. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  445. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  446. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  447. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  448. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  449. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  450. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  451. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  452. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  453. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  454. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  455. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  456. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  457. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  458. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  459. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  460. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  461. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  462. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  463. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  464. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  465. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  466. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  467. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  468. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  469. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  470. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  471. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  472. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  473. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  474. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  475. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  476. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  477. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  478. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  479. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  480. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  481. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  482. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  483. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  484. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  485. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  486. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  487. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  488. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  489. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  490. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  491. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  492. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  493. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  494. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  495. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  496. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  497. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  498. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  499. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  500. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  501. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  502. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/__init__.py +0 -0
  503. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  504. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/common/constants.py +0 -0
  505. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  506. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  507. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  508. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  509. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  510. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  511. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  512. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  513. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  514. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  515. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  516. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  517. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  518. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  519. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  520. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  521. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  522. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  523. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  524. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  525. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  526. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  527. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  528. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/setup.cfg +0 -0
  529. {mct-nightly-2.1.0.20240708.453 → mct-nightly-2.1.0.20240709.429}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240708.453
3
+ Version: 2.1.0.20240709.429
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240708.453
3
+ Version: 2.1.0.20240709.429
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -56,8 +56,8 @@ model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py
56
56
  model_compression_toolkit/core/common/hessian/__init__.py
57
57
  model_compression_toolkit/core/common/hessian/hessian_info_service.py
58
58
  model_compression_toolkit/core/common/hessian/hessian_info_utils.py
59
- model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py
60
- model_compression_toolkit/core/common/hessian/trace_hessian_request.py
59
+ model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py
60
+ model_compression_toolkit/core/common/hessian/hessian_scores_request.py
61
61
  model_compression_toolkit/core/common/matchers/__init__.py
62
62
  model_compression_toolkit/core/common/matchers/base_graph_filter.py
63
63
  model_compression_toolkit/core/common/matchers/base_matcher.py
@@ -193,9 +193,9 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_s
193
193
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py
194
194
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py
195
195
  model_compression_toolkit/core/keras/hessian/__init__.py
196
- model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py
197
- model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py
198
- model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py
196
+ model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py
197
+ model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py
198
+ model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py
199
199
  model_compression_toolkit/core/keras/mixed_precision/__init__.py
200
200
  model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py
201
201
  model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py
@@ -258,9 +258,9 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transfo
258
258
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py
259
259
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py
260
260
  model_compression_toolkit/core/pytorch/hessian/__init__.py
261
- model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py
262
- model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py
263
- model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py
261
+ model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py
262
+ model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py
263
+ model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py
264
264
  model_compression_toolkit/core/pytorch/mixed_precision/__init__.py
265
265
  model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py
266
266
  model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.1.0.20240708.000453"
30
+ __version__ = "2.1.0.20240709.000429"
@@ -24,7 +24,7 @@ from model_compression_toolkit.core.common import BaseNode
24
24
  from model_compression_toolkit.core.common.collectors.statistics_collector import BaseStatsCollector
25
25
  from model_compression_toolkit.core.common.framework_info import FrameworkInfo
26
26
  from model_compression_toolkit.core.common.graph.base_graph import Graph
27
- from model_compression_toolkit.core.common.hessian import TraceHessianRequest, HessianInfoService
27
+ from model_compression_toolkit.core.common.hessian import HessianScoresRequest, HessianInfoService
28
28
  from model_compression_toolkit.core.common.mixed_precision.sensitivity_evaluation import SensitivityEvaluation
29
29
  from model_compression_toolkit.core.common.model_builder_mode import ModelBuilderMode
30
30
  from model_compression_toolkit.core.common.node_prior_info import NodePriorInfo
@@ -49,23 +49,23 @@ class FrameworkImplementation(ABC):
49
49
  raise NotImplemented(f'{self.__class__.__name__} did not supply a constants module.') # pragma: no cover
50
50
 
51
51
  @abstractmethod
52
- def get_trace_hessian_calculator(self,
53
- graph: Graph,
54
- input_images: List[Any],
55
- trace_hessian_request: TraceHessianRequest,
56
- num_iterations_for_approximation: int = HESSIAN_NUM_ITERATIONS):
52
+ def get_hessian_scores_calculator(self,
53
+ graph: Graph,
54
+ input_images: List[Any],
55
+ hessian_scores_request: HessianScoresRequest,
56
+ num_iterations_for_approximation: int = HESSIAN_NUM_ITERATIONS):
57
57
  """
58
- Get framework trace hessian approximations calculator based on the trace hessian request.
58
+ Get framework hessian-approximation scores calculator based on the hessian scores request.
59
59
  Args:
60
60
  input_images: Images to use for computation.
61
61
  graph: Float graph to compute the approximation of its different nodes.
62
- trace_hessian_request: TraceHessianRequest to search for the desired calculator.
63
- num_iterations_for_approximation: Number of iterations to use when approximating the Hessian trace.
62
+ hessian_scores_request: HessianScoresRequest to search for the desired calculator.
63
+ num_iterations_for_approximation: Number of iterations to use when approximating the Hessian-approximation scores.
64
64
 
65
- Returns: TraceHessianCalculator to use for the trace hessian approximation computation for this request.
65
+ Returns: HessianScoresCalculator to use for the hessian approximation scores computation for this request.
66
66
  """
67
67
  raise NotImplemented(f'{self.__class__.__name__} have to implement the '
68
- f'framework\'s get_trace_hessian_calculator method.') # pragma: no cover
68
+ f'framework\'s get_hessian_scores_calculator method.') # pragma: no cover
69
69
 
70
70
  @abstractmethod
71
71
  def to_numpy(self, tensor: Any) -> np.ndarray:
@@ -310,7 +310,7 @@ class FrameworkImplementation(ABC):
310
310
  representative_data_gen: Dataset to use for retrieving images for the models inputs.
311
311
  fw_info: FrameworkInfo object with information about the specific framework's model.
312
312
  disable_activation_for_metric: Whether to disable activation quantization when computing the MP metric.
313
- hessian_info_service: HessianInfoService to fetch Hessian traces approximations.
313
+ hessian_info_service: HessianInfoService to fetch information based on Hessian-approximation.
314
314
 
315
315
  Returns:
316
316
  A function that computes the metric.
@@ -12,6 +12,6 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
- from model_compression_toolkit.core.common.hessian.trace_hessian_request import TraceHessianRequest, HessianMode, HessianInfoGranularity
15
+ from model_compression_toolkit.core.common.hessian.hessian_scores_request import HessianScoresRequest, HessianMode, HessianScoresGranularity
16
16
  from model_compression_toolkit.core.common.hessian.hessian_info_service import HessianInfoService
17
17
  import model_compression_toolkit.core.common.hessian.hessian_info_utils as hessian_utils
@@ -19,24 +19,24 @@ from tqdm import tqdm
19
19
  from typing import Callable, List, Dict, Any, Tuple
20
20
 
21
21
  from model_compression_toolkit.constants import HESSIAN_NUM_ITERATIONS
22
- from model_compression_toolkit.core.common.hessian.trace_hessian_request import TraceHessianRequest, \
23
- HessianInfoGranularity, HessianMode
22
+ from model_compression_toolkit.core.common.hessian.hessian_scores_request import HessianScoresRequest, \
23
+ HessianScoresGranularity, HessianMode
24
24
  from model_compression_toolkit.logger import Logger
25
25
 
26
26
 
27
27
  class HessianInfoService:
28
28
  """
29
- A service to manage, store, and compute approximation of the Hessian-based information.
29
+ A service to manage, store, and compute information based on the Hessian matrix approximation.
30
30
 
31
- This class provides functionalities to compute approximation based on the Hessian matrix based
32
- on the different parameters (such as number of iterations for approximating the info)
31
+ This class provides functionalities to compute information based on the Hessian matrix approximation
32
+ based on the different parameters (such as number of iterations for approximating the scores)
33
33
  and input images (using representative_dataset_gen).
34
34
  It also offers cache management capabilities for efficient computation and retrieval.
35
35
 
36
36
  Note:
37
37
  - The Hessian provides valuable information about the curvature of the loss function.
38
38
  - Computation can be computationally heavy and time-consuming.
39
- - The computed trace is an approximation.
39
+ - The computed information is based on Hessian approximation (and not the precise Hessian matrix).
40
40
  """
41
41
 
42
42
  def __init__(self,
@@ -49,7 +49,7 @@ class HessianInfoService:
49
49
  Args:
50
50
  graph: Float graph.
51
51
  representative_dataset_gen: A callable that provides a dataset for sampling.
52
- fw_impl: Framework-specific implementation for trace Hessian approximation computation.
52
+ fw_impl: Framework-specific implementation for Hessian approximation scores computation.
53
53
  """
54
54
  self.graph = graph
55
55
 
@@ -58,7 +58,7 @@ class HessianInfoService:
58
58
  self.fw_impl = fw_impl
59
59
  self.num_iterations_for_approximation = num_iterations_for_approximation
60
60
 
61
- self.trace_hessian_request_to_score_list = {}
61
+ self.hessian_scores_request_to_scores_list = {}
62
62
 
63
63
  def _sample_batch_representative_dataset(self,
64
64
  representative_dataset: Any,
@@ -142,11 +142,11 @@ class HessianInfoService:
142
142
 
143
143
  def _clear_saved_hessian_info(self):
144
144
  """Clears the saved info approximations."""
145
- self.trace_hessian_request_to_score_list={}
145
+ self.hessian_scores_request_to_scores_list={}
146
146
 
147
- def count_saved_info_of_request(self, hessian_request: TraceHessianRequest) -> Dict:
147
+ def count_saved_scores_of_request(self, hessian_request: HessianScoresRequest) -> Dict:
148
148
  """
149
- Counts the saved approximations of Hessian info (traces, for now) for a specific request.
149
+ Counts the saved approximations of Hessian scores for a specific request.
150
150
  If some approximations were computed for this request before, the amount of approximations (per image)
151
151
  will be returned. If not, zero is returned.
152
152
 
@@ -166,55 +166,58 @@ class HessianInfoService:
166
166
  Logger.critical(f"Expecting the Hessian request to include only non-reused nodes at this point, "
167
167
  f"but found node {n.name} with 'reuse' status.")
168
168
  # Check if the request for this node is in the saved info and store its count, otherwise store 0
169
- per_node_counter[n] = len(self.trace_hessian_request_to_score_list.get(hessian_request, []))
169
+ per_node_counter[n] = len(self.hessian_scores_request_to_scores_list.get(hessian_request, []))
170
170
 
171
171
  return per_node_counter
172
172
 
173
- def compute(self, trace_hessian_request: TraceHessianRequest, representative_dataset_gen, num_hessian_samples: int,
173
+ def compute(self,
174
+ hessian_scores_request: HessianScoresRequest,
175
+ representative_dataset_gen,
176
+ num_hessian_samples: int,
174
177
  last_iter_remain_samples: List[List[np.ndarray]] = None):
175
178
  """
176
- Computes an approximation of the trace of the Hessian based on the
179
+ Computes scores based on the Hessian matrix approximation according to the
177
180
  provided request configuration and stores it in the cache.
178
181
 
179
182
  Args:
180
- trace_hessian_request: Configuration for which to compute the approximation.
183
+ hessian_scores_request: Configuration for which to compute the approximation.
181
184
  representative_dataset_gen: A callable that provides a dataset for sampling.
182
185
  num_hessian_samples: Number of requested samples to compute batch Hessian approximation scores.
183
186
  last_iter_remain_samples: A list of input samples (for each input layer) with remaining samples from
184
187
  previous iterations.
185
188
  """
186
- Logger.debug(f"Computing Hessian-trace approximation for nodes {trace_hessian_request.target_nodes}.")
189
+ Logger.debug(f"Computing Hessian-scores approximations for nodes {hessian_scores_request.target_nodes}.")
187
190
 
188
191
  images, next_iter_remain_samples = representative_dataset_gen(num_hessian_samples=num_hessian_samples,
189
192
  last_iter_remain_samples=last_iter_remain_samples)
190
193
 
191
194
  # Compute and store the computed approximation in the saved info
192
195
  topo_sorted_nodes_names = [x.name for x in self.graph.get_topo_sorted_nodes()]
193
- trace_hessian_request.target_nodes.sort(key=lambda x: topo_sorted_nodes_names.index(x.name))
196
+ hessian_scores_request.target_nodes.sort(key=lambda x: topo_sorted_nodes_names.index(x.name))
194
197
 
195
- # Get the framework-specific calculator for trace Hessian approximation
196
- fw_hessian_calculator = self.fw_impl.get_trace_hessian_calculator(graph=self.graph,
197
- input_images=images,
198
- trace_hessian_request=trace_hessian_request,
199
- num_iterations_for_approximation=self.num_iterations_for_approximation)
198
+ # Get the framework-specific calculator Hessian-approximation scores
199
+ fw_hessian_calculator = self.fw_impl.get_hessian_scores_calculator(graph=self.graph,
200
+ input_images=images,
201
+ hessian_scores_request=hessian_scores_request,
202
+ num_iterations_for_approximation=self.num_iterations_for_approximation)
200
203
 
201
- trace_hessian = fw_hessian_calculator.compute()
204
+ hessian_scores = fw_hessian_calculator.compute()
202
205
 
203
- for node, hessian in zip(trace_hessian_request.target_nodes, trace_hessian):
204
- single_node_request = self._construct_single_node_request(trace_hessian_request.mode,
205
- trace_hessian_request.granularity,
206
+ for node, hessian in zip(hessian_scores_request.target_nodes, hessian_scores):
207
+ single_node_request = self._construct_single_node_request(hessian_scores_request.mode,
208
+ hessian_scores_request.granularity,
206
209
  node)
207
210
 
208
211
  # The hessian for each node is expected to be a tensor where the first axis represents the number of
209
212
  # images in the batch on which the approximation was computed.
210
213
  # We collect the results as a list of a result for images, which is combined across batches.
211
- # After conversion, trace_hessian_request_to_score_list for a request of a single node should be a list of
214
+ # After conversion, hessian_scores_request_to_scores_list for a request of a single node should be a list of
212
215
  # results of all images, where each result is a tensor of the shape depending on the granularity.
213
- if single_node_request in self.trace_hessian_request_to_score_list:
214
- self.trace_hessian_request_to_score_list[single_node_request] += (
216
+ if single_node_request in self.hessian_scores_request_to_scores_list:
217
+ self.hessian_scores_request_to_scores_list[single_node_request] += (
215
218
  self._convert_tensor_to_list_of_appx_results(hessian))
216
219
  else:
217
- self.trace_hessian_request_to_score_list[single_node_request] = (
220
+ self.hessian_scores_request_to_scores_list[single_node_request] = (
218
221
  self._convert_tensor_to_list_of_appx_results(hessian))
219
222
 
220
223
  # In case that we are required to return a number of scores that is larger that the computation batch size
@@ -226,15 +229,15 @@ class HessianInfoService:
226
229
  and len(next_iter_remain_samples[0]) > 0 else None
227
230
 
228
231
  def fetch_hessian(self,
229
- trace_hessian_request: TraceHessianRequest,
232
+ hessian_scores_request: HessianScoresRequest,
230
233
  required_size: int,
231
234
  batch_size: int = 1) -> List[List[np.ndarray]]:
232
235
  """
233
- Fetches the computed approximations of the trace of the Hessian for the given
236
+ Fetches the computed approximations of the Hessian-based scores for the given
234
237
  request and required size.
235
238
 
236
239
  Args:
237
- trace_hessian_request: Configuration for which to fetch the approximation.
240
+ hessian_scores_request: Configuration for which to fetch the approximation.
238
241
  required_size: Number of approximations required.
239
242
  batch_size: The Hessian computation batch size.
240
243
 
@@ -245,28 +248,28 @@ class HessianInfoService:
245
248
  OC for per-output-channel when the requested node has OC output-channels, etc.)
246
249
  """
247
250
 
248
- if len(trace_hessian_request.target_nodes) == 0:
251
+ if len(hessian_scores_request.target_nodes) == 0:
249
252
  return []
250
253
 
251
254
  if required_size == 0:
252
- return [[] for _ in trace_hessian_request.target_nodes]
255
+ return [[] for _ in hessian_scores_request.target_nodes]
253
256
 
254
- Logger.info(f"\nEnsuring {required_size} Hessian-trace approximation for nodes "
255
- f"{trace_hessian_request.target_nodes}.")
257
+ Logger.info(f"\nEnsuring {required_size} Hessian-approximation scores for nodes "
258
+ f"{hessian_scores_request.target_nodes}.")
256
259
 
257
260
  # Replace node in reused target nodes with a representing node from the 'reuse group'.
258
- for n in trace_hessian_request.target_nodes:
261
+ for n in hessian_scores_request.target_nodes:
259
262
  if n.reuse_group:
260
263
  rep_node = self._get_representing_of_reuse_group(n)
261
- trace_hessian_request.target_nodes.remove(n)
262
- if rep_node not in trace_hessian_request.target_nodes:
263
- trace_hessian_request.target_nodes.append(rep_node)
264
+ hessian_scores_request.target_nodes.remove(n)
265
+ if rep_node not in hessian_scores_request.target_nodes:
266
+ hessian_scores_request.target_nodes.append(rep_node)
264
267
 
265
268
  # Ensure the saved info has the required number of approximations
266
- self._populate_saved_info_to_size(trace_hessian_request, required_size, batch_size)
269
+ self._populate_saved_info_to_size(hessian_scores_request, required_size, batch_size)
267
270
 
268
271
  # Return the saved approximations for the given request
269
- return self._collect_saved_hessians_for_request(trace_hessian_request, required_size)
272
+ return self._collect_saved_hessians_for_request(hessian_scores_request, required_size)
270
273
 
271
274
  def _get_representing_of_reuse_group(self, node) -> Any:
272
275
  """
@@ -286,20 +289,20 @@ class HessianInfoService:
286
289
  return father_nodes[0]
287
290
 
288
291
  def _populate_saved_info_to_size(self,
289
- trace_hessian_request: TraceHessianRequest,
292
+ hessian_scores_request: HessianScoresRequest,
290
293
  required_size: int,
291
294
  batch_size: int = 1):
292
295
  """
293
- Ensures that the saved info has the required size of trace Hessian approximations for the given request.
296
+ Ensures that the saved info has the required size of Hessian approximation scores for the given request.
294
297
 
295
298
  Args:
296
- trace_hessian_request: Configuration for which to ensure the saved info size.
297
- required_size: Required number of trace Hessian approximations.
299
+ hessian_scores_request: Configuration of the request to ensure the saved info size.
300
+ required_size: Required number of Hessian-approximation scores.
298
301
  batch_size: The Hessian computation batch size.
299
302
  """
300
303
 
301
304
  # Get the current number of saved approximations for each node in the request
302
- current_existing_hessians = self.count_saved_info_of_request(trace_hessian_request)
305
+ current_existing_hessians = self.count_saved_scores_of_request(hessian_scores_request)
303
306
 
304
307
  # Compute the required number of approximations to meet the required size.
305
308
  # Since we allow batch and multi-nodes computation, we take the node with the maximal number of missing
@@ -308,9 +311,9 @@ class HessianInfoService:
308
311
  max_remaining_hessians = required_size - min_exist_hessians
309
312
 
310
313
  Logger.info(
311
- f"Running Hessian approximation computation for {len(trace_hessian_request.target_nodes)} nodes.\n "
312
- f"The node with minimal existing Hessian-trace approximations has {min_exist_hessians} "
313
- f"approximations computed.\n"
314
+ f"Running Hessian approximation computation for {len(hessian_scores_request.target_nodes)} nodes.\n "
315
+ f"The node with minimal existing Hessian-approximation scores has {min_exist_hessians} "
316
+ f"approximated scores computed.\n"
314
317
  f"{max_remaining_hessians} approximations left to compute...")
315
318
 
316
319
  hessian_representative_dataset = partial(self._sample_batch_representative_dataset,
@@ -325,30 +328,31 @@ class HessianInfoService:
325
328
  pbar.update(1)
326
329
  size_to_compute = min(max_remaining_hessians, batch_size)
327
330
  next_iter_remaining_samples = (
328
- self.compute(trace_hessian_request, hessian_representative_dataset, size_to_compute,
331
+ self.compute(hessian_scores_request, hessian_representative_dataset, size_to_compute,
329
332
  last_iter_remain_samples=next_iter_remaining_samples))
330
333
  max_remaining_hessians -= size_to_compute
331
334
 
332
- def _collect_saved_hessians_for_request(self, trace_hessian_request: TraceHessianRequest, required_size: int
333
- ) -> List[List[np.ndarray]]:
335
+ def _collect_saved_hessians_for_request(self,
336
+ hessian_scores_request: HessianScoresRequest,
337
+ required_size: int) -> List[List[np.ndarray]]:
334
338
  """
335
339
  Collects Hessian approximation for the nodes in the given request.
336
340
 
337
341
  Args:
338
- trace_hessian_request: Configuration for which to fetch the approximation.
339
- required_size: Required number of trace Hessian approximations.
342
+ hessian_scores_request: Configuration for which to fetch the approximation.
343
+ required_size: Required number of Hessian-approximation scores.
340
344
 
341
345
  Returns: A list with List of computed Hessian approximation (a tensor for each score) for each node
342
346
  in the request.
343
347
 
344
348
  """
345
349
  collected_results = []
346
- for node in trace_hessian_request.target_nodes:
347
- single_node_request = self._construct_single_node_request(trace_hessian_request.mode,
348
- trace_hessian_request.granularity,
350
+ for node in hessian_scores_request.target_nodes:
351
+ single_node_request = self._construct_single_node_request(hessian_scores_request.mode,
352
+ hessian_scores_request.granularity,
349
353
  node)
350
354
 
351
- res_for_node = self.trace_hessian_request_to_score_list.get(single_node_request)
355
+ res_for_node = self.hessian_scores_request_to_scores_list.get(single_node_request)
352
356
  if res_for_node is None: # pragma: no cover
353
357
  Logger.critical(f"Couldn't find saved Hessian approximations for node {node.name}.")
354
358
  if len(res_for_node) < required_size: # pragma: no cover
@@ -362,22 +366,23 @@ class HessianInfoService:
362
366
  return collected_results
363
367
 
364
368
  @staticmethod
365
- def _construct_single_node_request(mode: HessianMode, granularity: HessianInfoGranularity, target_nodes: List
366
- ) -> TraceHessianRequest:
369
+ def _construct_single_node_request(mode: HessianMode,
370
+ granularity: HessianScoresGranularity,
371
+ target_nodes: List) -> HessianScoresRequest:
367
372
  """
368
373
  Constructs a Hessian request with for a single node. Used for retrieving and maintaining cached results.
369
374
 
370
375
  Args:
371
- mode (HessianMode): Mode of Hessian's trace approximation (w.r.t weights or activations).
372
- granularity (HessianInfoGranularity): Granularity level for the approximation.
373
- target_nodes (List[BaseNode]): The node in the float graph for which the Hessian's trace approximation is targeted.
376
+ mode (HessianMode): Mode of Hessian's approximation (w.r.t weights or activations).
377
+ granularity (HessianScoresGranularity): Granularity level for the approximation.
378
+ target_nodes (List[BaseNode]): The node in the float graph for which the Hessian's approximation scores is targeted.
374
379
 
375
- Returns: A TraceHessianRequest with the given details for the requested node.
380
+ Returns: A HessianScoresRequest with the given details for the requested node.
376
381
 
377
382
  """
378
- return TraceHessianRequest(mode,
379
- granularity,
380
- target_nodes=[target_nodes])
383
+ return HessianScoresRequest(mode,
384
+ granularity,
385
+ target_nodes=[target_nodes])
381
386
 
382
387
  @staticmethod
383
388
  def _convert_tensor_to_list_of_appx_results(t: Any) -> List:
@@ -19,7 +19,7 @@ from model_compression_toolkit.constants import EPS
19
19
 
20
20
  def normalize_scores(hessian_approximations: List) -> List[np.ndarray]:
21
21
  """
22
- Normalize Hessian information approximations by dividing the trace Hessian approximations value by the sum of all
22
+ Normalize Hessian scores approximations by dividing their value by the sum of all
23
23
  other values.
24
24
 
25
25
  Args:
@@ -18,16 +18,16 @@ from typing import List, Any
18
18
 
19
19
  from model_compression_toolkit.constants import HESSIAN_NUM_ITERATIONS
20
20
  from model_compression_toolkit.core.common import Graph
21
- from model_compression_toolkit.core.common.hessian import TraceHessianRequest
21
+ from model_compression_toolkit.core.common.hessian import HessianScoresRequest
22
22
  from model_compression_toolkit.logger import Logger
23
23
 
24
24
 
25
- class TraceHessianCalculator(ABC):
25
+ class HessianScoresCalculator(ABC):
26
26
  """
27
- Abstract base class for computing an approximation of the trace of the Hessian.
27
+ Abstract base class for computing scores based on the Hessian matrix approximation.
28
28
 
29
29
  This class provides a structure for implementing different methods to compute
30
- the trace of the Hessian approximation based on the provided configuration,
30
+ scores based on Hessian-approximation according to the provided configuration,
31
31
  input images, and other parameters.
32
32
  """
33
33
 
@@ -35,15 +35,15 @@ class TraceHessianCalculator(ABC):
35
35
  graph: Graph,
36
36
  input_images: List[Any],
37
37
  fw_impl,
38
- trace_hessian_request: TraceHessianRequest,
38
+ hessian_scores_request: HessianScoresRequest,
39
39
  num_iterations_for_approximation: int = HESSIAN_NUM_ITERATIONS):
40
40
  """
41
41
  Args:
42
42
  graph: Computational graph for the float model.
43
43
  input_images: List of input images for the computation.
44
- fw_impl: Framework-specific implementation for trace Hessian computation.
45
- trace_hessian_request: Configuration request for which to compute the trace Hessian approximation.
46
- num_iterations_for_approximation: Number of iterations to use when approximating the Hessian trace.
44
+ fw_impl: Framework-specific implementation for Hessian-approximation scores computation.
45
+ hessian_scores_request: Configuration request for which to compute the Hessian-based approximation.
46
+ num_iterations_for_approximation: Number of iterations to use when approximating the Hessian-approximation scores.
47
47
 
48
48
  """
49
49
  self.graph = graph
@@ -60,15 +60,15 @@ class TraceHessianCalculator(ABC):
60
60
  Logger.critical(f"The graph requires {len(graph.get_inputs())} inputs, but the provided representative dataset contains {len(self.input_images)} inputs.")
61
61
 
62
62
  self.fw_impl = fw_impl
63
- self.hessian_request = trace_hessian_request
63
+ self.hessian_request = hessian_scores_request
64
64
 
65
65
  @abstractmethod
66
66
  def compute(self) -> List[float]:
67
67
  """
68
- Abstract method to compute the approximation of the trace of the Hessian.
68
+ Abstract method to compute the scores based on the Hessian-approximation matrix.
69
69
 
70
70
  This method should be implemented by subclasses to provide the specific
71
- computation method for the trace Hessian approximation.
71
+ computation method for the Hessian-approximation scores.
72
72
  """
73
73
  raise NotImplemented(f'{self.__class__.__name__} have to implement compute method.') # pragma: no cover
74
74
 
@@ -28,11 +28,11 @@ class HessianMode(Enum):
28
28
  ACTIVATION = 1 # Hessian approximation based on activations
29
29
 
30
30
 
31
- class HessianInfoGranularity(Enum):
31
+ class HessianScoresGranularity(Enum):
32
32
  """
33
- Enum representing the granularity level for Hessian information computation.
33
+ Enum representing the granularity level for Hessian scores computation.
34
34
 
35
- This determines the number the Hessian approximations is computed for some node.
35
+ This determines the number the Hessian scores is computed for some node.
36
36
  Note: This is not the actual Hessian but an approximation.
37
37
  """
38
38
  PER_ELEMENT = 0
@@ -40,25 +40,25 @@ class HessianInfoGranularity(Enum):
40
40
  PER_TENSOR = 2
41
41
 
42
42
 
43
- class TraceHessianRequest:
43
+ class HessianScoresRequest:
44
44
  """
45
- Request configuration for the trace of the Hessian approximation.
45
+ Request configuration for the Hessian-approximation scores.
46
46
 
47
- This class defines the parameters for the approximation of the trace of the Hessian matrix.
47
+ This class defines the parameters for the scores based on the Hessian matrix approximation.
48
48
  It specifies the mode (weights/activations), granularity (element/channel/tensor), and the target node.
49
- Note: This does not compute the actual Hessian's trace but approximates it.
49
+
50
+ Note: This does not compute scores using the actual Hessian matrix but an approximation.
50
51
  """
51
52
 
52
53
  def __init__(self,
53
54
  mode: HessianMode,
54
- granularity: HessianInfoGranularity,
55
- target_nodes: List,
56
- ):
55
+ granularity: HessianScoresGranularity,
56
+ target_nodes: List):
57
57
  """
58
58
  Attributes:
59
- mode (HessianMode): Mode of Hessian's trace approximation (w.r.t weights or activations).
60
- granularity (HessianInfoGranularity): Granularity level for the approximation.
61
- target_nodes (List[BaseNode]): The node in the float graph for which the Hessian's trace approximation is targeted.
59
+ mode (HessianMode): Mode of Hessian-approximation score (w.r.t weights or activations).
60
+ granularity (HessianScoresGranularity): Granularity level for the approximation.
61
+ target_nodes (List[BaseNode]): The node in the float graph for which the Hessian's approximation scores is targeted.
62
62
  """
63
63
 
64
64
  self.mode = mode # w.r.t activations or weights
@@ -66,9 +66,9 @@ class TraceHessianRequest:
66
66
  self.target_nodes = target_nodes
67
67
 
68
68
  def __eq__(self, other):
69
- # Checks if the other object is an instance of TraceHessianRequest
69
+ # Checks if the other object is an instance of HessianScoresRequest
70
70
  # and then checks if all attributes are equal.
71
- return isinstance(other, TraceHessianRequest) and \
71
+ return isinstance(other, HessianScoresRequest) and \
72
72
  self.mode == other.mode and \
73
73
  self.granularity == other.granularity and \
74
74
  self.target_nodes == other.target_nodes
@@ -51,7 +51,7 @@ def search_bit_width(graph_to_search_cfg: Graph,
51
51
  mp_config: MixedPrecisionQuantizationConfig,
52
52
  representative_data_gen: Callable,
53
53
  search_method: BitWidthSearchMethod = BitWidthSearchMethod.INTEGER_PROGRAMMING,
54
- hessian_info_service: HessianInfoService=None) -> List[int]:
54
+ hessian_info_service: HessianInfoService = None) -> List[int]:
55
55
  """
56
56
  Search for an MP configuration for a given graph. Given a search_method method (by default, it's linear
57
57
  programming), we use the sensitivity_evaluator object that provides a function to compute an
@@ -68,7 +68,7 @@ def search_bit_width(graph_to_search_cfg: Graph,
68
68
  mp_config: Mixed-precision quantization configuration.
69
69
  representative_data_gen: Dataset to use for retrieving images for the models inputs.
70
70
  search_method: BitWidthSearchMethod to define which searching method to use.
71
- hessian_info_service: HessianInfoService to fetch Hessian traces approximations.
71
+ hessian_info_service: HessianInfoService to fetch Hessian-approximation information.
72
72
 
73
73
  Returns:
74
74
  A MP configuration for the graph (list of integers, where the index in the list, is the node's