mct-nightly 2.1.0.20240623.439__tar.gz → 2.1.0.20240625.423__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (530) hide show
  1. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/PKG-INFO +7 -5
  2. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/README.md +6 -4
  3. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/mct_nightly.egg-info/PKG-INFO +7 -5
  4. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/__init__.py +1 -1
  5. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/functional_node.py +3 -4
  6. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +10 -12
  7. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +11 -4
  8. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +21 -15
  9. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +19 -17
  10. mct-nightly-2.1.0.20240625.423/model_compression_toolkit/core/pytorch/reader/graph_builders.py +353 -0
  11. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/runner.py +1 -1
  12. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +1 -1
  13. mct-nightly-2.1.0.20240623.439/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -276
  14. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/LICENSE.md +0 -0
  15. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/mct_nightly.egg-info/SOURCES.txt +0 -0
  16. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/mct_nightly.egg-info/dependency_links.txt +0 -0
  17. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/mct_nightly.egg-info/requires.txt +0 -0
  18. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/mct_nightly.egg-info/top_level.txt +0 -0
  19. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/constants.py +0 -0
  20. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/__init__.py +0 -0
  21. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/analyzer.py +0 -0
  22. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/__init__.py +0 -0
  23. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  24. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  25. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  26. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  27. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  28. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  29. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  30. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  31. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  32. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  33. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/framework_info.py +0 -0
  34. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  35. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  36. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  37. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  38. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  39. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  40. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  41. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  42. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  43. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  44. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  45. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  46. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  47. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  48. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  49. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  50. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  51. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  52. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  53. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py +0 -0
  54. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/hessian/trace_hessian_request.py +0 -0
  55. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  56. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  57. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  58. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  59. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  60. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  61. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  62. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  63. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  64. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  65. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  66. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  67. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  68. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  69. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  70. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  71. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  72. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  73. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  74. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  75. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  76. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  77. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  78. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  79. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  80. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  81. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  82. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  83. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/model_collector.py +0 -0
  84. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/model_validation.py +0 -0
  85. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  86. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  87. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  88. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  89. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  90. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  91. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  92. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  93. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  94. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  95. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  96. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  97. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  98. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  99. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  100. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  101. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  102. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  103. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  104. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  105. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  106. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  107. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  108. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  109. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  110. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  111. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  112. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  113. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  114. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  115. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  116. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  117. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  118. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  119. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  120. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  121. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  122. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  123. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  124. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  125. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  126. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  127. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  128. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  129. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  130. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  131. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  132. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  133. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  134. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  135. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  136. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  137. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  138. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  139. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  140. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  141. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  142. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  143. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  144. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  145. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  146. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  147. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  148. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  149. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  150. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  151. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  152. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  153. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  154. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/user_info.py +0 -0
  155. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  156. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  157. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  158. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  159. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  160. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/__init__.py +0 -0
  161. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  162. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  163. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  164. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  165. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  166. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  167. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  168. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/constants.py +0 -0
  169. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  170. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  171. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  172. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  173. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  174. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  175. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  176. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  177. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  178. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  179. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  180. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  181. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  182. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  183. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  184. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  185. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  186. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  187. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  188. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  189. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  190. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  191. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  192. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  193. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +0 -0
  194. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py +0 -0
  195. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py +0 -0
  196. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  197. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  198. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  199. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  200. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  201. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  202. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  203. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  204. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  205. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  206. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  207. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  208. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  209. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  210. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  211. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  212. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  213. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  214. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  215. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  216. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  217. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  218. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  219. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  220. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  221. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  222. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  223. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  224. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  225. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  226. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  227. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  228. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  229. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  230. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  231. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  232. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  233. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  234. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  235. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  236. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  237. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  238. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  239. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  240. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  241. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  242. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  243. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  244. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  245. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  246. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  247. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  248. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  249. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  250. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  251. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  252. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  253. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  254. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +0 -0
  255. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py +0 -0
  256. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py +0 -0
  257. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  258. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  259. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  260. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  261. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  262. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  263. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  264. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  265. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  266. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  267. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  268. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  269. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  270. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  271. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  272. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  273. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  274. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  275. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  276. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/__init__.py +0 -0
  277. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  278. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  279. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  280. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  281. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  282. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  283. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  284. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  285. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  286. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  287. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  288. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  289. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  290. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  291. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  292. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  293. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  294. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  295. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  296. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  297. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  298. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  299. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  300. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  301. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  302. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  303. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  304. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  305. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  306. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  307. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  308. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  309. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/defaultdict.py +0 -0
  310. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/__init__.py +0 -0
  311. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  312. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  313. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  314. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  315. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  316. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  317. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  318. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  319. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  320. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  321. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  322. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  323. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  324. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  325. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  326. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  327. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  328. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  329. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  330. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  331. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  332. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  333. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  334. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  335. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  336. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  337. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  338. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  339. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  340. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  341. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  342. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/__init__.py +0 -0
  343. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  344. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  345. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  346. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  347. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  348. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  349. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  350. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  351. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  352. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  353. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  354. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  355. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  356. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  357. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  358. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  359. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  360. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  361. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  362. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  363. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  364. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  365. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  366. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  367. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  368. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  369. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  370. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  371. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  372. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  373. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  374. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  375. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  376. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  377. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  378. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  379. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  380. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  381. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  382. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  383. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/runner.py +0 -0
  384. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/logger.py +0 -0
  385. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/metadata.py +0 -0
  386. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/pruning/__init__.py +0 -0
  387. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  388. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  389. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  390. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  391. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/__init__.py +0 -0
  392. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  393. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  394. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  395. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  396. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/runner.py +0 -0
  397. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/__init__.py +0 -0
  398. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/common/__init__.py +0 -0
  399. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  400. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  401. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  402. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  403. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  404. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  405. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  406. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  407. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  408. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  409. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  410. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  411. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  412. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  413. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  414. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  415. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
  416. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  417. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  418. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  419. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  420. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
  421. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  422. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  423. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  424. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  425. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  426. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  427. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  428. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  429. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  430. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  431. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  432. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  433. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  434. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  435. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  436. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  437. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  438. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  439. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  440. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  441. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  442. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  443. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  444. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  445. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  446. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  447. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  448. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  449. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  450. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  451. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  452. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  453. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  454. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  455. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  456. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  457. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  458. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  459. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  460. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  461. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  462. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  463. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  464. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  465. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  466. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  467. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  468. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  469. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  470. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  471. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  472. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  473. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  474. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  475. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  476. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  477. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  478. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  479. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  480. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  481. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  482. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  483. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  484. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  485. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  486. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  487. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  488. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  489. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  490. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  491. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  492. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  493. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  494. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  495. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  496. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  497. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  498. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  499. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  500. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  501. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  502. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  503. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/__init__.py +0 -0
  504. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  505. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/constants.py +0 -0
  506. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  507. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  508. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  509. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  510. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  511. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  512. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  513. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  514. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  515. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  516. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  517. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  518. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  519. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  520. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  521. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  522. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  523. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  524. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  525. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  526. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  527. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  528. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  529. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/setup.cfg +0 -0
  530. {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240623.439
3
+ Version: 2.1.0.20240625.423
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -56,11 +56,13 @@ Description: # Model Compression Toolkit (MCT)
56
56
 
57
57
  Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
58
58
 
59
- | | PyTorch 1.13 | PyTorch 2.0 | PyTorch 2.1 |
59
+
60
+ | | PyTorch 2.1 | PyTorch 2.2 | PyTorch 2.3 |
60
61
  |-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
61
- | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch113.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch113.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch20.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch20.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) |
62
- | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch112.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch112.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch113.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch113.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch20.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch20.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) |
63
- | Python 3.11 | | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch20.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch20.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) |
62
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) |
63
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) |
64
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) |
65
+
64
66
 
65
67
 
66
68
  | | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
@@ -50,11 +50,13 @@ for hands-on learning. For example:
50
50
 
51
51
  Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
52
52
 
53
- | | PyTorch 1.13 | PyTorch 2.0 | PyTorch 2.1 |
53
+
54
+ | | PyTorch 2.1 | PyTorch 2.2 | PyTorch 2.3 |
54
55
  |-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
55
- | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch113.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch113.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch20.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch20.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) |
56
- | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch112.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch112.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch113.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch113.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch20.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch20.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) |
57
- | Python 3.11 | | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch20.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch20.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) |
56
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) |
57
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) |
58
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) |
59
+
58
60
 
59
61
 
60
62
  | | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240623.439
3
+ Version: 2.1.0.20240625.423
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -56,11 +56,13 @@ Description: # Model Compression Toolkit (MCT)
56
56
 
57
57
  Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
58
58
 
59
- | | PyTorch 1.13 | PyTorch 2.0 | PyTorch 2.1 |
59
+
60
+ | | PyTorch 2.1 | PyTorch 2.2 | PyTorch 2.3 |
60
61
  |-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
61
- | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch113.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch113.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch20.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch20.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) |
62
- | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch112.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch112.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch113.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch113.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch20.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch20.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) |
63
- | Python 3.11 | | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch20.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch20.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) |
62
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) |
63
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) |
64
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) |
65
+
64
66
 
65
67
 
66
68
  | | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.1.0.20240623.000439"
30
+ __version__ = "2.1.0.20240625.000423"
@@ -1,4 +1,4 @@
1
- from typing import Dict, Any, Tuple, Type
1
+ from typing import Dict, Any, Tuple, Type, List, Union
2
2
 
3
3
  from model_compression_toolkit.constants import FOUND_TF
4
4
  from model_compression_toolkit.core.common.graph.base_node import BaseNode
@@ -25,7 +25,7 @@ class FunctionalNode(BaseNode):
25
25
  functional_op: Any = None,
26
26
  inputs_as_list: bool = False,
27
27
  has_activation: bool = True,
28
- tensor_input_allocs = None):
28
+ tensor_input_allocs: List[Union[int, str]] = None):
29
29
  """
30
30
  Init a FunctionalNode object.
31
31
 
@@ -44,8 +44,7 @@ class FunctionalNode(BaseNode):
44
44
  functional_op: The op the node implements.
45
45
  inputs_as_list: Whether to pass the node its input tensors as a list or not when calling the layer.
46
46
  has_activation: Whether the node has activations that we might want to quantize.
47
- tensor_input_allocs: A list of indices for activation tensors in the node's input tensor list
48
-
47
+ tensor_input_allocs: A list of indices and strings for allocations input tensors in the node's args and kwargs.
49
48
  """
50
49
 
51
50
  super().__init__(name,
@@ -106,7 +106,7 @@ def _run_operation(n: BaseNode,
106
106
  input_tensors: List,
107
107
  op_func: Any,
108
108
  quantize_node_activation_fn,
109
- use_activation_quantization: bool) -> Tuple[Union[List, torch.Tensor], Union[List, torch.Tensor]]:
109
+ use_activation_quantization: bool) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
110
110
  """
111
111
  Applying the layer (op_func) to the input tensors (input_tensors).
112
112
  If quantized is set to True, and the layer's corresponding node (n) has quantization
@@ -126,17 +126,17 @@ def _run_operation(n: BaseNode,
126
126
  op_call_args = n.op_call_args if isinstance(n, FunctionalNode) else []
127
127
  functional_kwargs = n.op_call_kwargs if isinstance(n, FunctionalNode) else {}
128
128
 
129
- if not (isinstance(n, FunctionalNode) and isinstance(op_func, PytorchQuantizationWrapper)):
130
- # Insert positional weights only when not a quantized functional node, because quantized functional nodes
131
- # insert the quantized weights in the wrapper.
129
+ # Insert positional weights only when not a quantized functional node, because quantized functional nodes
130
+ # insert the quantized weights in the wrapper.
131
+ if isinstance(n, FunctionalNode) and isinstance(op_func, PytorchQuantizationWrapper):
132
+ _tensor_input_allocs = [i for i in n.tensor_input_allocs if i not in n.weights]
133
+ else:
132
134
  input_tensors = n.insert_positional_weights_to_input_list(input_tensors)
133
135
  # convert inputs from positional weights (numpy arrays) to tensors. Must handle each element in the
134
136
  # list separately, because in FX the tensors are FX objects and fail to_torch_tensor
135
137
  input_tensors = [to_torch_tensor(t, numpy_type=t.dtype) if isinstance(t, np.ndarray) else t
136
138
  for t in input_tensors]
137
139
  _tensor_input_allocs = None
138
- else:
139
- _tensor_input_allocs = [i for i in n.tensor_input_allocs if i not in n.weights]
140
140
 
141
141
  if isinstance(n, FunctionalNode) and n.inputs_as_list:
142
142
  out_tensors_of_n_float = op_func(input_tensors, *op_call_args, **functional_kwargs)
@@ -152,6 +152,8 @@ def _run_operation(n: BaseNode,
152
152
  out_tensors_of_n_float = torch.cat(out_tensors_of_n_float, dim=0)
153
153
  out_tensors_of_n = quantize_node_activation_fn(out_tensors_of_n_float)
154
154
 
155
+ if not isinstance(out_tensors_of_n, list):
156
+ out_tensors_of_n, out_tensors_of_n_float = [out_tensors_of_n], [out_tensors_of_n_float]
155
157
  return out_tensors_of_n, out_tensors_of_n_float
156
158
 
157
159
 
@@ -318,12 +320,8 @@ class PytorchModel(torch.nn.Module):
318
320
  quantize_node_activation_fn=activation_quantization_fn,
319
321
  use_activation_quantization=use_activation_quantization)
320
322
 
321
- if isinstance(out_tensors_of_n, list):
322
- node_to_output_tensors_dict.update({node: out_tensors_of_n})
323
- node_to_output_tensors_dict_float.update({node: out_tensors_of_n_float})
324
- else:
325
- node_to_output_tensors_dict.update({node: [out_tensors_of_n]})
326
- node_to_output_tensors_dict_float.update({node: [out_tensors_of_n_float]})
323
+ node_to_output_tensors_dict.update({node: out_tensors_of_n})
324
+ node_to_output_tensors_dict_float.update({node: out_tensors_of_n_float})
327
325
 
328
326
  if self.append2output:
329
327
  outputs = _generate_outputs(self.append2output,
@@ -19,6 +19,7 @@ from model_compression_toolkit.logger import Logger
19
19
  from model_compression_toolkit.core import common
20
20
  from model_compression_toolkit.core.common.graph.base_graph import Graph
21
21
  from model_compression_toolkit.core.common.graph.base_node import BaseNode
22
+ from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode
22
23
  from model_compression_toolkit.core.pytorch.constants import IN_CHANNELS, OUT_CHANNELS, KERNEL_SIZE, KERNEL, BIAS
23
24
  from model_compression_toolkit.core.common import FrameworkInfo
24
25
 
@@ -37,7 +38,7 @@ class FunctionalConvSubstitution(common.BaseSubstitution):
37
38
 
38
39
  def substitute(self,
39
40
  graph: Graph,
40
- func_node: BaseNode) -> Graph:
41
+ func_node: FunctionalNode) -> Graph:
41
42
  """
42
43
  Substitute functional and conv/linear layer with torch layer
43
44
  Args:
@@ -60,9 +61,15 @@ class FunctionalConvSubstitution(common.BaseSubstitution):
60
61
  # Create new node of layer convolution
61
62
  if 1 not in func_node.weights:
62
63
  Logger.critical(f'Weight input missing for node {func_node.name}.') # pragma: no cover
63
- weight = func_node.weights[1]
64
- bias = func_node.weights.get(2)
65
- framework_attr = func_node.framework_attr
64
+ # Extract index of kernel and bias according to tensor_input_allocs if they were input as kwargs. If
65
+ # they were input as args, use their fixed positions.
66
+ weight_index = func_node.tensor_input_allocs.index(KERNEL) if KERNEL in func_node.tensor_input_allocs else 1
67
+ bias_index = func_node.tensor_input_allocs.index(BIAS) if BIAS in func_node.tensor_input_allocs else 2
68
+ if weight_index not in func_node.weights:
69
+ Logger.critical(f'Mismatch between tensor_input_allocs and weight index in node {func_node.name}.') # pragma: no cover
70
+ weight = func_node.weights[weight_index]
71
+ bias = func_node.weights.get(bias_index)
72
+ framework_attr = func_node.op_call_kwargs
66
73
  framework_attr.update({OUT_CHANNELS: weight.shape[out_channel_index]})
67
74
  framework_attr.update({IN_CHANNELS: weight.shape[in_channel_index]})
68
75
  framework_attr.update({KERNEL_SIZE: weight.shape[2:]})
@@ -20,6 +20,7 @@ import torch.nn.functional as F
20
20
  from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
21
21
  from model_compression_toolkit.core import common
22
22
  from model_compression_toolkit.core.common import BaseNode, Graph
23
+ from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode
23
24
  from model_compression_toolkit.core.pytorch.constants import *
24
25
  from model_compression_toolkit.logger import Logger
25
26
 
@@ -37,9 +38,12 @@ class FunctionalBatchNorm(common.BaseSubstitution):
37
38
  super().__init__(matcher_instance=bn_node)
38
39
 
39
40
  @staticmethod
40
- def get_attributes_from_weights(node: BaseNode) -> Dict:
41
+ def get_attributes_from_weights(node: FunctionalNode) -> Dict:
41
42
  """
42
- convert functional batch_norm positional weights to BatchNorm2d weights
43
+ Convert functional batch_norm positional weights to BatchNorm2d weights. Extract indices of gamma
44
+ and beta according to tensor_input_allocs if they were input as kwargs. If they were input as args,
45
+ use their fixed positions.
46
+
43
47
  Args:
44
48
  node: functional batch_norm node.
45
49
 
@@ -53,23 +57,22 @@ class FunctionalBatchNorm(common.BaseSubstitution):
53
57
  GAMMA: np.ones(node.weights[1].shape),
54
58
  BETA: np.zeros(node.weights[1].shape)}
55
59
 
56
- has_weight = WEIGHT not in node.framework_attr
57
- has_bias = BIAS not in node.framework_attr
60
+ # Check if weight and/or bias were not given.
61
+ if KERNEL in node.tensor_input_allocs:
62
+ weights_dict[GAMMA] = node.weights[node.tensor_input_allocs.index(KERNEL)]
63
+ elif KERNEL not in node.op_call_kwargs:
64
+ weights_dict[GAMMA] = node.weights[3]
58
65
 
59
- if 3 in node.weights:
60
- if has_weight:
61
- weights_dict[GAMMA] = node.weights[3]
62
- else:
63
- weights_dict[BETA] = node.weights[3]
64
- if 4 in node.weights:
65
- assert has_bias
66
+ if BIAS in node.tensor_input_allocs:
67
+ weights_dict[BETA] = node.weights[node.tensor_input_allocs.index(BIAS)]
68
+ elif BIAS not in node.op_call_kwargs:
66
69
  weights_dict[BETA] = node.weights[4]
67
70
 
68
71
  return weights_dict
69
72
 
70
73
  def substitute(self,
71
74
  graph: Graph,
72
- node: BaseNode) -> Graph:
75
+ node: FunctionalNode) -> Graph:
73
76
  """
74
77
  Substitute functional.batch_norm and its inputs with BatchNorm2d.
75
78
  Args:
@@ -87,10 +90,13 @@ class FunctionalBatchNorm(common.BaseSubstitution):
87
90
  bn_node_weights = self.get_attributes_from_weights(node)
88
91
  if not bn_node_weights:
89
92
  return graph
93
+ framework_attr = {NUM_FEATURES: out_channels}
94
+ if EPSILON in node.op_call_kwargs:
95
+ framework_attr.update({EPSILON: node.op_call_kwargs[EPSILON]})
96
+ if MOMENTUM in node.op_call_kwargs:
97
+ framework_attr.update({MOMENTUM: node.op_call_kwargs[MOMENTUM]})
90
98
  new_batchnorm2d = BaseNode(name=node.name + '_into_BatchNorm2d',
91
- framework_attr={NUM_FEATURES: out_channels,
92
- EPSILON: EPSILON_VAL,
93
- MOMENTUM: MOMENTUM_VAL},
99
+ framework_attr=framework_attr,
94
100
  input_shape=node.output_shape,
95
101
  output_shape=node.output_shape,
96
102
  weights=bn_node_weights,
@@ -21,6 +21,7 @@ from typing import Dict, Tuple, List
21
21
  from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
22
22
  from model_compression_toolkit.core import common
23
23
  from model_compression_toolkit.core.common import BaseNode, Graph
24
+ from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode
24
25
  from model_compression_toolkit.core.pytorch.constants import *
25
26
  from model_compression_toolkit.logger import Logger
26
27
 
@@ -38,9 +39,11 @@ class FunctionalLayerNorm(common.BaseSubstitution):
38
39
  super().__init__(matcher_instance=ln_node)
39
40
 
40
41
  @staticmethod
41
- def get_attributes_from_weights(node: BaseNode, normalized_shape: [Tuple, List, int]) -> Dict:
42
+ def get_attributes_from_weights(node: FunctionalNode, normalized_shape: [Tuple, List, int]) -> Dict:
42
43
  """
43
- Parse layer_norm(input, normalized_shape, weight=None, bias=None)
44
+ Convert functional layer_norm positional weights to LayerNorm weights. Extract indices of gamma
45
+ and beta according to tensor_input_allocs if they were input as kwargs. If they were input as args,
46
+ use their fixed positions.
44
47
  Args:
45
48
  node: Node that match the pattern in the substitution init.
46
49
  normalized_shape: nn.LayerNorm "normalized_shape" argument
@@ -50,28 +53,26 @@ class FunctionalLayerNorm(common.BaseSubstitution):
50
53
  """
51
54
 
52
55
  # Define default weight and bias
53
- weights_dict = {GAMMA: np.ones(normalized_shape), # Default value in case weight is not given
54
- BETA: np.zeros(normalized_shape) # Default value in case bias is not given
56
+ weights_dict = {GAMMA: np.ones(normalized_shape), # Default value in case weight is not given
57
+ BETA: np.zeros(normalized_shape) # Default value in case bias is not given
55
58
  }
56
59
 
57
60
  # Check if weight and/or bias were not given.
58
- has_weight = WEIGHT not in node.framework_attr
59
- has_bias = BIAS not in node.framework_attr
61
+ if KERNEL in node.tensor_input_allocs:
62
+ weights_dict[GAMMA] = node.weights[node.tensor_input_allocs.index(KERNEL)]
63
+ elif KERNEL not in node.op_call_kwargs:
64
+ weights_dict[GAMMA] = node.weights[1]
60
65
 
61
- if 1 in node.weights:
62
- if has_weight:
63
- weights_dict[GAMMA] = node.weights[1]
64
- else:
65
- weights_dict[BETA] = node.weights[1]
66
- if 2 in node.weights:
67
- assert has_bias
66
+ if BIAS in node.tensor_input_allocs:
67
+ weights_dict[BETA] = node.weights[node.tensor_input_allocs.index(BIAS)]
68
+ elif BIAS not in node.op_call_kwargs:
68
69
  weights_dict[BETA] = node.weights[2]
69
70
 
70
71
  return weights_dict
71
72
 
72
73
  def substitute(self,
73
74
  graph: Graph,
74
- node: BaseNode) -> Graph:
75
+ node: FunctionalNode) -> Graph:
75
76
  """
76
77
  Substitute functional.layer_norm and its inputs with LayerNorm.
77
78
  Args:
@@ -85,10 +86,11 @@ class FunctionalLayerNorm(common.BaseSubstitution):
85
86
 
86
87
  ln_node_weights = self.get_attributes_from_weights(node, normalized_shape)
87
88
 
89
+ framework_attr = {NORMALIZED_SHAPE: normalized_shape}
90
+ if EPSILON in node.op_call_kwargs:
91
+ framework_attr.update({EPSILON: node.op_call_kwargs[EPSILON]})
88
92
  new_layernorm = BaseNode(name=node.name + '_into_LayerNorm',
89
- framework_attr={NORMALIZED_SHAPE: normalized_shape,
90
- EPSILON: node.framework_attr.get('eps'),
91
- },
93
+ framework_attr=framework_attr,
92
94
  input_shape=node.output_shape,
93
95
  output_shape=node.output_shape,
94
96
  weights=ln_node_weights,