mct-nightly 2.1.0.20240623.439__tar.gz → 2.1.0.20240625.423__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/PKG-INFO +7 -5
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/README.md +6 -4
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/mct_nightly.egg-info/PKG-INFO +7 -5
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/functional_node.py +3 -4
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +10 -12
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +11 -4
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +21 -15
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +19 -17
- mct-nightly-2.1.0.20240625.423/model_compression_toolkit/core/pytorch/reader/graph_builders.py +353 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/runner.py +1 -1
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +1 -1
- mct-nightly-2.1.0.20240623.439/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -276
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/LICENSE.md +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/mct_nightly.egg-info/SOURCES.txt +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/hessian/trace_hessian_request.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/setup.cfg +0 -0
- {mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/setup.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.1.0.
|
3
|
+
Version: 2.1.0.20240625.423
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Home-page: UNKNOWN
|
6
6
|
License: UNKNOWN
|
@@ -56,11 +56,13 @@ Description: # Model Compression Toolkit (MCT)
|
|
56
56
|
|
57
57
|
Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
|
58
58
|
|
59
|
-
|
59
|
+
|
60
|
+
| | PyTorch 2.1 | PyTorch 2.2 | PyTorch 2.3 |
|
60
61
|
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
61
|
-
| Python 3.9 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) |
|
63
|
+
| Python 3.10 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) |
|
64
|
+
| Python 3.11 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) |
|
65
|
+
|
64
66
|
|
65
67
|
|
66
68
|
| | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
|
@@ -50,11 +50,13 @@ for hands-on learning. For example:
|
|
50
50
|
|
51
51
|
Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
|
52
52
|
|
53
|
-
|
53
|
+
|
54
|
+
| | PyTorch 2.1 | PyTorch 2.2 | PyTorch 2.3 |
|
54
55
|
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
55
|
-
| Python 3.9 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) |
|
57
|
+
| Python 3.10 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) |
|
58
|
+
| Python 3.11 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) |
|
59
|
+
|
58
60
|
|
59
61
|
|
60
62
|
| | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
|
{mct-nightly-2.1.0.20240623.439 → mct-nightly-2.1.0.20240625.423}/mct_nightly.egg-info/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.1.0.
|
3
|
+
Version: 2.1.0.20240625.423
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Home-page: UNKNOWN
|
6
6
|
License: UNKNOWN
|
@@ -56,11 +56,13 @@ Description: # Model Compression Toolkit (MCT)
|
|
56
56
|
|
57
57
|
Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
|
58
58
|
|
59
|
-
|
59
|
+
|
60
|
+
| | PyTorch 2.1 | PyTorch 2.2 | PyTorch 2.3 |
|
60
61
|
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
61
|
-
| Python 3.9 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) |
|
63
|
+
| Python 3.10 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) |
|
64
|
+
| Python 3.11 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) |
|
65
|
+
|
64
66
|
|
65
67
|
|
66
68
|
| | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.1.0.
|
30
|
+
__version__ = "2.1.0.20240625.000423"
|
@@ -1,4 +1,4 @@
|
|
1
|
-
from typing import Dict, Any, Tuple, Type
|
1
|
+
from typing import Dict, Any, Tuple, Type, List, Union
|
2
2
|
|
3
3
|
from model_compression_toolkit.constants import FOUND_TF
|
4
4
|
from model_compression_toolkit.core.common.graph.base_node import BaseNode
|
@@ -25,7 +25,7 @@ class FunctionalNode(BaseNode):
|
|
25
25
|
functional_op: Any = None,
|
26
26
|
inputs_as_list: bool = False,
|
27
27
|
has_activation: bool = True,
|
28
|
-
tensor_input_allocs = None):
|
28
|
+
tensor_input_allocs: List[Union[int, str]] = None):
|
29
29
|
"""
|
30
30
|
Init a FunctionalNode object.
|
31
31
|
|
@@ -44,8 +44,7 @@ class FunctionalNode(BaseNode):
|
|
44
44
|
functional_op: The op the node implements.
|
45
45
|
inputs_as_list: Whether to pass the node its input tensors as a list or not when calling the layer.
|
46
46
|
has_activation: Whether the node has activations that we might want to quantize.
|
47
|
-
tensor_input_allocs: A list of indices for
|
48
|
-
|
47
|
+
tensor_input_allocs: A list of indices and strings for allocations input tensors in the node's args and kwargs.
|
49
48
|
"""
|
50
49
|
|
51
50
|
super().__init__(name,
|
@@ -106,7 +106,7 @@ def _run_operation(n: BaseNode,
|
|
106
106
|
input_tensors: List,
|
107
107
|
op_func: Any,
|
108
108
|
quantize_node_activation_fn,
|
109
|
-
use_activation_quantization: bool) -> Tuple[
|
109
|
+
use_activation_quantization: bool) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
|
110
110
|
"""
|
111
111
|
Applying the layer (op_func) to the input tensors (input_tensors).
|
112
112
|
If quantized is set to True, and the layer's corresponding node (n) has quantization
|
@@ -126,17 +126,17 @@ def _run_operation(n: BaseNode,
|
|
126
126
|
op_call_args = n.op_call_args if isinstance(n, FunctionalNode) else []
|
127
127
|
functional_kwargs = n.op_call_kwargs if isinstance(n, FunctionalNode) else {}
|
128
128
|
|
129
|
-
|
130
|
-
|
131
|
-
|
129
|
+
# Insert positional weights only when not a quantized functional node, because quantized functional nodes
|
130
|
+
# insert the quantized weights in the wrapper.
|
131
|
+
if isinstance(n, FunctionalNode) and isinstance(op_func, PytorchQuantizationWrapper):
|
132
|
+
_tensor_input_allocs = [i for i in n.tensor_input_allocs if i not in n.weights]
|
133
|
+
else:
|
132
134
|
input_tensors = n.insert_positional_weights_to_input_list(input_tensors)
|
133
135
|
# convert inputs from positional weights (numpy arrays) to tensors. Must handle each element in the
|
134
136
|
# list separately, because in FX the tensors are FX objects and fail to_torch_tensor
|
135
137
|
input_tensors = [to_torch_tensor(t, numpy_type=t.dtype) if isinstance(t, np.ndarray) else t
|
136
138
|
for t in input_tensors]
|
137
139
|
_tensor_input_allocs = None
|
138
|
-
else:
|
139
|
-
_tensor_input_allocs = [i for i in n.tensor_input_allocs if i not in n.weights]
|
140
140
|
|
141
141
|
if isinstance(n, FunctionalNode) and n.inputs_as_list:
|
142
142
|
out_tensors_of_n_float = op_func(input_tensors, *op_call_args, **functional_kwargs)
|
@@ -152,6 +152,8 @@ def _run_operation(n: BaseNode,
|
|
152
152
|
out_tensors_of_n_float = torch.cat(out_tensors_of_n_float, dim=0)
|
153
153
|
out_tensors_of_n = quantize_node_activation_fn(out_tensors_of_n_float)
|
154
154
|
|
155
|
+
if not isinstance(out_tensors_of_n, list):
|
156
|
+
out_tensors_of_n, out_tensors_of_n_float = [out_tensors_of_n], [out_tensors_of_n_float]
|
155
157
|
return out_tensors_of_n, out_tensors_of_n_float
|
156
158
|
|
157
159
|
|
@@ -318,12 +320,8 @@ class PytorchModel(torch.nn.Module):
|
|
318
320
|
quantize_node_activation_fn=activation_quantization_fn,
|
319
321
|
use_activation_quantization=use_activation_quantization)
|
320
322
|
|
321
|
-
|
322
|
-
|
323
|
-
node_to_output_tensors_dict_float.update({node: out_tensors_of_n_float})
|
324
|
-
else:
|
325
|
-
node_to_output_tensors_dict.update({node: [out_tensors_of_n]})
|
326
|
-
node_to_output_tensors_dict_float.update({node: [out_tensors_of_n_float]})
|
323
|
+
node_to_output_tensors_dict.update({node: out_tensors_of_n})
|
324
|
+
node_to_output_tensors_dict_float.update({node: out_tensors_of_n_float})
|
327
325
|
|
328
326
|
if self.append2output:
|
329
327
|
outputs = _generate_outputs(self.append2output,
|
@@ -19,6 +19,7 @@ from model_compression_toolkit.logger import Logger
|
|
19
19
|
from model_compression_toolkit.core import common
|
20
20
|
from model_compression_toolkit.core.common.graph.base_graph import Graph
|
21
21
|
from model_compression_toolkit.core.common.graph.base_node import BaseNode
|
22
|
+
from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode
|
22
23
|
from model_compression_toolkit.core.pytorch.constants import IN_CHANNELS, OUT_CHANNELS, KERNEL_SIZE, KERNEL, BIAS
|
23
24
|
from model_compression_toolkit.core.common import FrameworkInfo
|
24
25
|
|
@@ -37,7 +38,7 @@ class FunctionalConvSubstitution(common.BaseSubstitution):
|
|
37
38
|
|
38
39
|
def substitute(self,
|
39
40
|
graph: Graph,
|
40
|
-
func_node:
|
41
|
+
func_node: FunctionalNode) -> Graph:
|
41
42
|
"""
|
42
43
|
Substitute functional and conv/linear layer with torch layer
|
43
44
|
Args:
|
@@ -60,9 +61,15 @@ class FunctionalConvSubstitution(common.BaseSubstitution):
|
|
60
61
|
# Create new node of layer convolution
|
61
62
|
if 1 not in func_node.weights:
|
62
63
|
Logger.critical(f'Weight input missing for node {func_node.name}.') # pragma: no cover
|
63
|
-
|
64
|
-
|
65
|
-
|
64
|
+
# Extract index of kernel and bias according to tensor_input_allocs if they were input as kwargs. If
|
65
|
+
# they were input as args, use their fixed positions.
|
66
|
+
weight_index = func_node.tensor_input_allocs.index(KERNEL) if KERNEL in func_node.tensor_input_allocs else 1
|
67
|
+
bias_index = func_node.tensor_input_allocs.index(BIAS) if BIAS in func_node.tensor_input_allocs else 2
|
68
|
+
if weight_index not in func_node.weights:
|
69
|
+
Logger.critical(f'Mismatch between tensor_input_allocs and weight index in node {func_node.name}.') # pragma: no cover
|
70
|
+
weight = func_node.weights[weight_index]
|
71
|
+
bias = func_node.weights.get(bias_index)
|
72
|
+
framework_attr = func_node.op_call_kwargs
|
66
73
|
framework_attr.update({OUT_CHANNELS: weight.shape[out_channel_index]})
|
67
74
|
framework_attr.update({IN_CHANNELS: weight.shape[in_channel_index]})
|
68
75
|
framework_attr.update({KERNEL_SIZE: weight.shape[2:]})
|
@@ -20,6 +20,7 @@ import torch.nn.functional as F
|
|
20
20
|
from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
|
21
21
|
from model_compression_toolkit.core import common
|
22
22
|
from model_compression_toolkit.core.common import BaseNode, Graph
|
23
|
+
from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode
|
23
24
|
from model_compression_toolkit.core.pytorch.constants import *
|
24
25
|
from model_compression_toolkit.logger import Logger
|
25
26
|
|
@@ -37,9 +38,12 @@ class FunctionalBatchNorm(common.BaseSubstitution):
|
|
37
38
|
super().__init__(matcher_instance=bn_node)
|
38
39
|
|
39
40
|
@staticmethod
|
40
|
-
def get_attributes_from_weights(node:
|
41
|
+
def get_attributes_from_weights(node: FunctionalNode) -> Dict:
|
41
42
|
"""
|
42
|
-
|
43
|
+
Convert functional batch_norm positional weights to BatchNorm2d weights. Extract indices of gamma
|
44
|
+
and beta according to tensor_input_allocs if they were input as kwargs. If they were input as args,
|
45
|
+
use their fixed positions.
|
46
|
+
|
43
47
|
Args:
|
44
48
|
node: functional batch_norm node.
|
45
49
|
|
@@ -53,23 +57,22 @@ class FunctionalBatchNorm(common.BaseSubstitution):
|
|
53
57
|
GAMMA: np.ones(node.weights[1].shape),
|
54
58
|
BETA: np.zeros(node.weights[1].shape)}
|
55
59
|
|
56
|
-
|
57
|
-
|
60
|
+
# Check if weight and/or bias were not given.
|
61
|
+
if KERNEL in node.tensor_input_allocs:
|
62
|
+
weights_dict[GAMMA] = node.weights[node.tensor_input_allocs.index(KERNEL)]
|
63
|
+
elif KERNEL not in node.op_call_kwargs:
|
64
|
+
weights_dict[GAMMA] = node.weights[3]
|
58
65
|
|
59
|
-
if
|
60
|
-
|
61
|
-
|
62
|
-
else:
|
63
|
-
weights_dict[BETA] = node.weights[3]
|
64
|
-
if 4 in node.weights:
|
65
|
-
assert has_bias
|
66
|
+
if BIAS in node.tensor_input_allocs:
|
67
|
+
weights_dict[BETA] = node.weights[node.tensor_input_allocs.index(BIAS)]
|
68
|
+
elif BIAS not in node.op_call_kwargs:
|
66
69
|
weights_dict[BETA] = node.weights[4]
|
67
70
|
|
68
71
|
return weights_dict
|
69
72
|
|
70
73
|
def substitute(self,
|
71
74
|
graph: Graph,
|
72
|
-
node:
|
75
|
+
node: FunctionalNode) -> Graph:
|
73
76
|
"""
|
74
77
|
Substitute functional.batch_norm and its inputs with BatchNorm2d.
|
75
78
|
Args:
|
@@ -87,10 +90,13 @@ class FunctionalBatchNorm(common.BaseSubstitution):
|
|
87
90
|
bn_node_weights = self.get_attributes_from_weights(node)
|
88
91
|
if not bn_node_weights:
|
89
92
|
return graph
|
93
|
+
framework_attr = {NUM_FEATURES: out_channels}
|
94
|
+
if EPSILON in node.op_call_kwargs:
|
95
|
+
framework_attr.update({EPSILON: node.op_call_kwargs[EPSILON]})
|
96
|
+
if MOMENTUM in node.op_call_kwargs:
|
97
|
+
framework_attr.update({MOMENTUM: node.op_call_kwargs[MOMENTUM]})
|
90
98
|
new_batchnorm2d = BaseNode(name=node.name + '_into_BatchNorm2d',
|
91
|
-
framework_attr=
|
92
|
-
EPSILON: EPSILON_VAL,
|
93
|
-
MOMENTUM: MOMENTUM_VAL},
|
99
|
+
framework_attr=framework_attr,
|
94
100
|
input_shape=node.output_shape,
|
95
101
|
output_shape=node.output_shape,
|
96
102
|
weights=bn_node_weights,
|
@@ -21,6 +21,7 @@ from typing import Dict, Tuple, List
|
|
21
21
|
from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
|
22
22
|
from model_compression_toolkit.core import common
|
23
23
|
from model_compression_toolkit.core.common import BaseNode, Graph
|
24
|
+
from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode
|
24
25
|
from model_compression_toolkit.core.pytorch.constants import *
|
25
26
|
from model_compression_toolkit.logger import Logger
|
26
27
|
|
@@ -38,9 +39,11 @@ class FunctionalLayerNorm(common.BaseSubstitution):
|
|
38
39
|
super().__init__(matcher_instance=ln_node)
|
39
40
|
|
40
41
|
@staticmethod
|
41
|
-
def get_attributes_from_weights(node:
|
42
|
+
def get_attributes_from_weights(node: FunctionalNode, normalized_shape: [Tuple, List, int]) -> Dict:
|
42
43
|
"""
|
43
|
-
|
44
|
+
Convert functional layer_norm positional weights to LayerNorm weights. Extract indices of gamma
|
45
|
+
and beta according to tensor_input_allocs if they were input as kwargs. If they were input as args,
|
46
|
+
use their fixed positions.
|
44
47
|
Args:
|
45
48
|
node: Node that match the pattern in the substitution init.
|
46
49
|
normalized_shape: nn.LayerNorm "normalized_shape" argument
|
@@ -50,28 +53,26 @@ class FunctionalLayerNorm(common.BaseSubstitution):
|
|
50
53
|
"""
|
51
54
|
|
52
55
|
# Define default weight and bias
|
53
|
-
weights_dict = {GAMMA: np.ones(normalized_shape),
|
54
|
-
BETA: np.zeros(normalized_shape)
|
56
|
+
weights_dict = {GAMMA: np.ones(normalized_shape), # Default value in case weight is not given
|
57
|
+
BETA: np.zeros(normalized_shape) # Default value in case bias is not given
|
55
58
|
}
|
56
59
|
|
57
60
|
# Check if weight and/or bias were not given.
|
58
|
-
|
59
|
-
|
61
|
+
if KERNEL in node.tensor_input_allocs:
|
62
|
+
weights_dict[GAMMA] = node.weights[node.tensor_input_allocs.index(KERNEL)]
|
63
|
+
elif KERNEL not in node.op_call_kwargs:
|
64
|
+
weights_dict[GAMMA] = node.weights[1]
|
60
65
|
|
61
|
-
if
|
62
|
-
|
63
|
-
|
64
|
-
else:
|
65
|
-
weights_dict[BETA] = node.weights[1]
|
66
|
-
if 2 in node.weights:
|
67
|
-
assert has_bias
|
66
|
+
if BIAS in node.tensor_input_allocs:
|
67
|
+
weights_dict[BETA] = node.weights[node.tensor_input_allocs.index(BIAS)]
|
68
|
+
elif BIAS not in node.op_call_kwargs:
|
68
69
|
weights_dict[BETA] = node.weights[2]
|
69
70
|
|
70
71
|
return weights_dict
|
71
72
|
|
72
73
|
def substitute(self,
|
73
74
|
graph: Graph,
|
74
|
-
node:
|
75
|
+
node: FunctionalNode) -> Graph:
|
75
76
|
"""
|
76
77
|
Substitute functional.layer_norm and its inputs with LayerNorm.
|
77
78
|
Args:
|
@@ -85,10 +86,11 @@ class FunctionalLayerNorm(common.BaseSubstitution):
|
|
85
86
|
|
86
87
|
ln_node_weights = self.get_attributes_from_weights(node, normalized_shape)
|
87
88
|
|
89
|
+
framework_attr = {NORMALIZED_SHAPE: normalized_shape}
|
90
|
+
if EPSILON in node.op_call_kwargs:
|
91
|
+
framework_attr.update({EPSILON: node.op_call_kwargs[EPSILON]})
|
88
92
|
new_layernorm = BaseNode(name=node.name + '_into_LayerNorm',
|
89
|
-
framework_attr=
|
90
|
-
EPSILON: node.framework_attr.get('eps'),
|
91
|
-
},
|
93
|
+
framework_attr=framework_attr,
|
92
94
|
input_shape=node.output_shape,
|
93
95
|
output_shape=node.output_shape,
|
94
96
|
weights=ln_node_weights,
|