mct-nightly 2.1.0.20240616.65727__tar.gz → 2.1.0.20240618.432__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (529) hide show
  1. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/PKG-INFO +1 -1
  2. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/mct_nightly.egg-info/SOURCES.txt +27 -1
  4. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/mct_nightly.egg-info/requires.txt +1 -1
  5. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/__init__.py +1 -1
  6. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/functional_node.py +3 -3
  7. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +23 -13
  8. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/constants.py +1 -1
  9. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +3 -3
  10. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +12 -6
  11. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/gptq_training.py +1 -1
  12. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/graph_info.py +1 -1
  13. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/gptq_training.py +5 -2
  14. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/graph_info.py +2 -1
  15. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +3 -2
  16. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +3 -2
  17. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/__init__.py +19 -0
  18. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/common/__init__.py +15 -0
  19. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/common/constants.py +38 -0
  20. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/common/core_report_generator.py +83 -0
  21. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/common/dataset_utils.py +43 -0
  22. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/common/framework_report_utils.py +89 -0
  23. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/common/model_analyzer.py +99 -0
  24. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/common/model_folding_utils.py +104 -0
  25. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/common/similarity_calculator.py +194 -0
  26. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/common/similarity_functions.py +81 -0
  27. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/common/tensorboard_utils.py +101 -0
  28. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/common/xquant_config.py +39 -0
  29. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/keras/__init__.py +15 -0
  30. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/keras/dataset_utils.py +57 -0
  31. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/keras/facade_xquant_report.py +63 -0
  32. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/keras/keras_report_utils.py +60 -0
  33. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/keras/model_analyzer.py +136 -0
  34. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/keras/similarity_functions.py +75 -0
  35. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/keras/tensorboard_utils.py +84 -0
  36. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/pytorch/__init__.py +15 -0
  37. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/pytorch/dataset_utils.py +76 -0
  38. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +62 -0
  39. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/pytorch/model_analyzer.py +132 -0
  40. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +61 -0
  41. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/pytorch/similarity_functions.py +68 -0
  42. mct-nightly-2.1.0.20240618.432/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +87 -0
  43. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/LICENSE.md +0 -0
  44. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/README.md +0 -0
  45. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/mct_nightly.egg-info/dependency_links.txt +0 -0
  46. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/mct_nightly.egg-info/top_level.txt +0 -0
  47. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/constants.py +0 -0
  48. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/__init__.py +0 -0
  49. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/analyzer.py +0 -0
  50. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/__init__.py +0 -0
  51. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  52. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  53. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  54. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  55. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  56. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  57. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  58. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  59. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  60. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  61. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/framework_info.py +0 -0
  62. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  63. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  64. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  65. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  66. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  67. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  68. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  69. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  70. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  71. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  72. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  73. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  74. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  75. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  76. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  77. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  78. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  79. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  80. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  81. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py +0 -0
  82. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/hessian/trace_hessian_request.py +0 -0
  83. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  84. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  85. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  86. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  87. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  88. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  89. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  90. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  91. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  92. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  93. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  94. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  95. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  96. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  97. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  98. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  99. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  100. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  101. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  102. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  103. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  104. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  105. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  106. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  107. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  108. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  109. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  110. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  111. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/model_collector.py +0 -0
  112. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/model_validation.py +0 -0
  113. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  114. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  115. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  116. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  117. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  118. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  119. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  120. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  121. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  122. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  123. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  124. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  125. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  126. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  127. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  128. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  129. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  130. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  131. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  132. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  133. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  134. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  135. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  136. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  137. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  138. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  139. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  140. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  141. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  142. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  143. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  144. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  145. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  146. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  147. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  148. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  149. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  150. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  151. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  152. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  153. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  154. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  155. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  156. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  157. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  158. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  159. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  160. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  161. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  162. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  163. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  164. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  165. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  166. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  167. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  168. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  169. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  170. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  171. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  172. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  173. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  174. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  175. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  176. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  177. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  178. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  179. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  180. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  181. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  182. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/user_info.py +0 -0
  183. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  184. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  185. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  186. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  187. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  188. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/__init__.py +0 -0
  189. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  190. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  191. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  192. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  193. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  194. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  195. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  196. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/constants.py +0 -0
  197. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  198. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  199. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  200. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  201. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  202. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  203. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  204. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  205. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  206. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  207. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  208. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  209. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  210. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  211. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  212. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  213. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  214. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  215. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  216. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  217. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  218. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  219. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  220. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  221. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +0 -0
  222. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py +0 -0
  223. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py +0 -0
  224. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  225. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  226. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  227. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  228. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  229. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  230. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  231. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  232. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  233. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  234. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  235. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  236. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  237. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  238. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  239. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  240. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  241. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  242. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  243. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  244. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  245. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  246. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  247. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  248. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  249. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  250. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  251. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  252. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  253. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  254. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  255. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  256. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  257. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  258. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  259. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  260. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  261. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  262. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  263. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  264. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  265. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  266. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  267. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  268. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  269. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  270. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  271. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  272. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  273. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  274. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  275. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  276. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  277. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  278. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  279. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  280. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  281. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  282. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  283. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +0 -0
  284. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py +0 -0
  285. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py +0 -0
  286. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  287. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  288. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  289. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  290. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  291. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  292. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  293. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  294. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  295. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  296. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  297. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  298. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  299. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  300. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  301. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  302. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  303. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  304. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  305. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/core/runner.py +0 -0
  306. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/__init__.py +0 -0
  307. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  308. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  309. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  310. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  311. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  312. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  313. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  314. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  315. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  316. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  317. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  318. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  319. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  320. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  321. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  322. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  323. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  324. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  325. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  326. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  327. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  328. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  329. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  330. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  331. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  332. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  333. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  334. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  335. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  336. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  337. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  338. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  339. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/defaultdict.py +0 -0
  340. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/__init__.py +0 -0
  341. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  342. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  343. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  344. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  345. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  346. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  347. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  348. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  349. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  350. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  351. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  352. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  353. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  354. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  355. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  356. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  357. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  358. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  359. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  360. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  361. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  362. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  363. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  364. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  365. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  366. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  367. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  368. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  369. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  370. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  371. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  372. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/__init__.py +0 -0
  373. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  374. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  375. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  376. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  377. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  378. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  379. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  380. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  381. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  382. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  383. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  384. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  385. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  386. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  387. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  388. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  389. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  390. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  391. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  392. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  393. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  394. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  395. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  396. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  397. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  398. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  399. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  400. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  401. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  402. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  403. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  404. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  405. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  406. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  407. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  408. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  409. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/gptq/runner.py +0 -0
  410. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/logger.py +0 -0
  411. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/metadata.py +0 -0
  412. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/pruning/__init__.py +0 -0
  413. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  414. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  415. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  416. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  417. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/ptq/__init__.py +0 -0
  418. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  419. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  420. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  421. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  422. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/ptq/runner.py +0 -0
  423. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/__init__.py +0 -0
  424. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/common/__init__.py +0 -0
  425. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  426. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  427. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  428. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  429. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  430. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  431. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  432. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  433. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  434. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  435. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  436. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  437. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  438. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  439. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  440. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  441. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
  442. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  443. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  444. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  445. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  446. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
  447. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  448. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  449. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  450. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  451. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  452. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  453. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  454. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  455. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  456. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  457. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  458. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  459. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  460. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  461. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  462. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  463. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  464. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  465. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  466. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  467. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  468. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  469. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  470. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  471. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  472. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  473. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  474. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  475. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  476. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  477. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  478. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  479. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  480. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  481. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  482. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  483. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  484. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  485. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  486. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  487. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  488. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  489. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  490. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  491. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  492. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  493. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  494. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  495. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  496. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  497. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  498. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  499. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  500. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  501. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  502. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  503. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  504. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  505. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  506. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  507. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  508. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  509. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  510. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  511. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  512. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  513. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  514. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  515. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  516. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  517. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  518. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  519. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  520. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  521. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  522. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  523. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  524. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  525. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  526. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  527. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  528. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/setup.cfg +0 -0
  529. {mct-nightly-2.1.0.20240616.65727 → mct-nightly-2.1.0.20240618.432}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240616.65727
3
+ Version: 2.1.0.20240618.432
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240616.65727
3
+ Version: 2.1.0.20240618.432
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -499,4 +499,30 @@ model_compression_toolkit/trainable_infrastructure/keras/load_model.py
499
499
  model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py
500
500
  model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py
501
501
  model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py
502
- model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py
502
+ model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py
503
+ model_compression_toolkit/xquant/__init__.py
504
+ model_compression_toolkit/xquant/common/__init__.py
505
+ model_compression_toolkit/xquant/common/constants.py
506
+ model_compression_toolkit/xquant/common/core_report_generator.py
507
+ model_compression_toolkit/xquant/common/dataset_utils.py
508
+ model_compression_toolkit/xquant/common/framework_report_utils.py
509
+ model_compression_toolkit/xquant/common/model_analyzer.py
510
+ model_compression_toolkit/xquant/common/model_folding_utils.py
511
+ model_compression_toolkit/xquant/common/similarity_calculator.py
512
+ model_compression_toolkit/xquant/common/similarity_functions.py
513
+ model_compression_toolkit/xquant/common/tensorboard_utils.py
514
+ model_compression_toolkit/xquant/common/xquant_config.py
515
+ model_compression_toolkit/xquant/keras/__init__.py
516
+ model_compression_toolkit/xquant/keras/dataset_utils.py
517
+ model_compression_toolkit/xquant/keras/facade_xquant_report.py
518
+ model_compression_toolkit/xquant/keras/keras_report_utils.py
519
+ model_compression_toolkit/xquant/keras/model_analyzer.py
520
+ model_compression_toolkit/xquant/keras/similarity_functions.py
521
+ model_compression_toolkit/xquant/keras/tensorboard_utils.py
522
+ model_compression_toolkit/xquant/pytorch/__init__.py
523
+ model_compression_toolkit/xquant/pytorch/dataset_utils.py
524
+ model_compression_toolkit/xquant/pytorch/facade_xquant_report.py
525
+ model_compression_toolkit/xquant/pytorch/model_analyzer.py
526
+ model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py
527
+ model_compression_toolkit/xquant/pytorch/similarity_functions.py
528
+ model_compression_toolkit/xquant/pytorch/tensorboard_utils.py
@@ -1,7 +1,7 @@
1
1
  networkx!=2.8.1
2
2
  tqdm
3
3
  Pillow
4
- numpy
4
+ numpy<2.0
5
5
  opencv-python
6
6
  scikit-image
7
7
  scikit-learn
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.1.0.20240616.065727"
30
+ __version__ = "2.1.0.20240618.000432"
@@ -25,7 +25,7 @@ class FunctionalNode(BaseNode):
25
25
  functional_op: Any = None,
26
26
  inputs_as_list: bool = False,
27
27
  has_activation: bool = True,
28
- tensor_input_indices = None):
28
+ tensor_input_allocs = None):
29
29
  """
30
30
  Init a FunctionalNode object.
31
31
 
@@ -44,7 +44,7 @@ class FunctionalNode(BaseNode):
44
44
  functional_op: The op the node implements.
45
45
  inputs_as_list: Whether to pass the node its input tensors as a list or not when calling the layer.
46
46
  has_activation: Whether the node has activations that we might want to quantize.
47
- tensor_input_indices: A list of indices for activation tensors in the node's input tensor list
47
+ tensor_input_allocs: A list of indices for activation tensors in the node's input tensor list
48
48
 
49
49
  """
50
50
 
@@ -63,7 +63,7 @@ class FunctionalNode(BaseNode):
63
63
  self.op_call_args = op_call_args
64
64
  self.functional_op = functional_op
65
65
  self.inputs_as_list = inputs_as_list
66
- self.tensor_input_indices = [] if tensor_input_indices is None else tensor_input_indices
66
+ self.tensor_input_allocs = [] if tensor_input_allocs is None else tensor_input_allocs
67
67
 
68
68
  @property
69
69
  def type(self):
@@ -22,6 +22,7 @@ from networkx import topological_sort
22
22
 
23
23
  from model_compression_toolkit.core import FrameworkInfo
24
24
  from model_compression_toolkit.core import common
25
+ from model_compression_toolkit.logger import Logger
25
26
  from model_compression_toolkit.core.common import BaseNode, Graph
26
27
  from model_compression_toolkit.core.common.back2framework.base_model_builder import BaseModelBuilder
27
28
  from model_compression_toolkit.core.common.graph.edge import EDGE_SINK_INDEX
@@ -66,8 +67,8 @@ def _build_input_tensors_list(node: BaseNode,
66
67
  return input_tensors
67
68
 
68
69
 
69
- def _merge_inputs(_node: BaseNode, input_tensors: List, op_call_args: List,
70
- tensor_input_indices: List = None) -> List:
70
+ def _merge_inputs(_node: BaseNode, input_tensors: List, op_call_args: List, op_call_kwargs: Dict,
71
+ tensor_input_allocs: List = None) -> Tuple[List, Dict]:
71
72
  """
72
73
  Merge input tensors list with positional weights and op_call_args, according to correct order.
73
74
 
@@ -75,22 +76,30 @@ def _merge_inputs(_node: BaseNode, input_tensors: List, op_call_args: List,
75
76
  _node: The node the inputs are for.
76
77
  input_tensors: activation input tensors to node.
77
78
  op_call_args: framework node call args.
79
+ op_call_kwargs: framework node call kwargs.
80
+ tensor_input_allocs: List of input allocations to node.
78
81
 
79
82
  Returns:
80
83
  Combined list of input_tensors and op_call_args.
81
84
  """
82
- if isinstance(_node, FunctionalNode) and _node.tensor_input_indices:
85
+ if isinstance(_node, FunctionalNode) and _node.tensor_input_allocs:
83
86
  _input_list = op_call_args.copy()
84
- if tensor_input_indices is None:
85
- tensor_input_indices = _node.tensor_input_indices
86
- assert len(tensor_input_indices) == len(input_tensors), \
87
- f'Mismatch between input tensors ({len(tensor_input_indices)}) and indices {len(input_tensors)}'
88
- for i, t in zip(tensor_input_indices, input_tensors):
89
- _input_list.insert(i, t)
87
+ if tensor_input_allocs is None:
88
+ tensor_input_allocs = _node.tensor_input_allocs
89
+ if len(tensor_input_allocs) != len(input_tensors):
90
+ Logger.error(f'Mismatch between input tensors ({len(tensor_input_allocs)}) '
91
+ f'and indices {len(input_tensors)} in node {_node.name}.') # pragma: no cover
92
+ for i, t in zip(tensor_input_allocs, input_tensors):
93
+ # insert input tensors in either args or kwargs, according to tensor_input_allocs
94
+ if isinstance(i, str):
95
+ assert i not in op_call_kwargs
96
+ op_call_kwargs.update({i: t})
97
+ else:
98
+ _input_list.insert(i, t)
90
99
  else:
91
100
  _input_list = input_tensors + op_call_args
92
101
 
93
- return _input_list
102
+ return _input_list, op_call_kwargs
94
103
 
95
104
 
96
105
  def _run_operation(n: BaseNode,
@@ -125,14 +134,15 @@ def _run_operation(n: BaseNode,
125
134
  # list separately, because in FX the tensors are FX objects and fail to_torch_tensor
126
135
  input_tensors = [to_torch_tensor(t, numpy_type=t.dtype) if isinstance(t, np.ndarray) else t
127
136
  for t in input_tensors]
128
- _tensor_input_indices = None
137
+ _tensor_input_allocs = None
129
138
  else:
130
- _tensor_input_indices = [i for i in n.tensor_input_indices if i not in n.weights]
139
+ _tensor_input_allocs = [i for i in n.tensor_input_allocs if i not in n.weights]
131
140
 
132
141
  if isinstance(n, FunctionalNode) and n.inputs_as_list:
133
142
  out_tensors_of_n_float = op_func(input_tensors, *op_call_args, **functional_kwargs)
134
143
  else:
135
- merged_inputs = _merge_inputs(n, input_tensors, op_call_args, tensor_input_indices=_tensor_input_indices)
144
+ merged_inputs, functional_kwargs = _merge_inputs(n, input_tensors, op_call_args, functional_kwargs.copy(),
145
+ tensor_input_allocs=_tensor_input_allocs)
136
146
  out_tensors_of_n_float = op_func(*merged_inputs, **functional_kwargs)
137
147
 
138
148
  # Add a fake quant node if the node has an activation threshold.
@@ -40,7 +40,7 @@ FUNCTIONAL_OP = 'functional_op'
40
40
  OP_CALL_ARGS = 'op_call_args'
41
41
  OP_CALL_KWARGS = 'op_call_kwargs'
42
42
  INPUTS_AS_LIST = 'inputs_as_list'
43
- TENSOR_INPUT_INDICES = 'tensor_input_indices'
43
+ TENSOR_INPUT_ALLOCS = 'tensor_input_allocs'
44
44
  INPLACE = 'inplace'
45
45
  HARDTANH_MIN_VAL = 'min_val'
46
46
  HARDTANH_MAX_VAL = 'max_val'
@@ -65,10 +65,10 @@ class ReshapeWithStaticShapes(common.BaseSubstitution):
65
65
 
66
66
  # When a "reshape" is called with multiple arguments (e.g. x.reshape(-1, channels, height, width)
67
67
  # this substitution converts it x.reshape((-1, channels, height, width)), so need to update the
68
- # tensor_input_indices attribute.
69
- # scalar argument's shape is [1] so remove those indices from tensor_input_indices
68
+ # tensor_input_allocs attribute.
69
+ # scalar argument's shape is [1] so remove those indices from tensor_input_allocs
70
70
  # node.input_shape example: [[1, 32, 4, 32], [1], [1], [1]]
71
- node.tensor_input_indices = node.tensor_input_indices[:sum([i != [1] for i in node.input_shape])]
71
+ node.tensor_input_allocs = node.tensor_input_allocs[:sum([i != [1] for i in node.input_shape])]
72
72
 
73
73
  # modify the node input info
74
74
  node.input_shape = [node.input_shape[0]]
@@ -23,7 +23,7 @@ from model_compression_toolkit.core.common.graph.base_graph import OutTensor
23
23
  from model_compression_toolkit.core.common.graph.edge import Edge
24
24
  from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode
25
25
  from model_compression_toolkit.core.pytorch.constants import OUTPUT, PLACEHOLDER, TENSOR_META, CALL_FUNCTION, TYPE, \
26
- CALL_METHOD, BIAS, FUNCTIONAL_OP, OP_CALL_KWARGS, OP_CALL_ARGS, INPUTS_AS_LIST, TENSOR_INPUT_INDICES, GET_ATTR
26
+ CALL_METHOD, BIAS, FUNCTIONAL_OP, OP_CALL_KWARGS, OP_CALL_ARGS, INPUTS_AS_LIST, TENSOR_INPUT_ALLOCS, GET_ATTR
27
27
  from model_compression_toolkit.core.pytorch.reader.node_holders import DummyPlaceHolder
28
28
  from model_compression_toolkit.logger import Logger
29
29
 
@@ -140,7 +140,7 @@ def nodes_builder(model: GraphModule,
140
140
  weights.update({i: consts_dict[input_node]})
141
141
 
142
142
  tensor_meta = input_node.meta
143
- if tensor_meta[TYPE] == torch.Tensor:
143
+ if tensor_meta[TYPE] in [torch.Tensor, torch.nn.parameter.Parameter]:
144
144
  input_shape += [list(tensor_meta[TENSOR_META].shape)]
145
145
  elif tensor_meta[TYPE] == tuple:
146
146
  input_shape += [list(n.shape) for n in tensor_meta[TENSOR_META]]
@@ -159,8 +159,11 @@ def nodes_builder(model: GraphModule,
159
159
 
160
160
  # filter Nodes from framework attributes, we replace these attributes with nx graph nodes
161
161
  framework_attr_filtered = {}
162
+ framework_attr_nodes = {}
162
163
  for k, v in framework_attr.items():
163
- if not isinstance(v, torch.fx.node.Node):
164
+ if isinstance(v, torch.fx.node.Node):
165
+ framework_attr_nodes[k] = v
166
+ else:
164
167
  framework_attr_filtered[k] = v
165
168
  framework_attr = framework_attr_filtered
166
169
 
@@ -177,7 +180,7 @@ def nodes_builder(model: GraphModule,
177
180
  [isinstance(n, torch.fx.node.Node) for n in node.args[0]])
178
181
  inputs_as_list = inputs_as_list1 or (len(node.args) > 0 and isinstance(node.args[0], Node) and
179
182
  node.args[0].op == PLACEHOLDER and node.args[0].meta[TYPE] in (list, tuple))
180
- tensor_input_index = []
183
+ tensor_input_alloc = []
181
184
  op_call_args = list(node.args)
182
185
  if inputs_as_list:
183
186
  op_call_args.pop(0)
@@ -185,7 +188,10 @@ def nodes_builder(model: GraphModule,
185
188
  for in_node in node.all_input_nodes:
186
189
  for i, arg in enumerate(node.args):
187
190
  if arg == in_node:
188
- tensor_input_index.append(i)
191
+ tensor_input_alloc.append(i)
192
+ for k, arg in framework_attr_nodes.items():
193
+ if arg == in_node:
194
+ tensor_input_alloc.append(k)
189
195
 
190
196
  # remove torch.fx.node.Node from inputs to graph_node_type
191
197
  op_call_args = [arg for arg in op_call_args if not isinstance(arg, Node)]
@@ -197,7 +203,7 @@ def nodes_builder(model: GraphModule,
197
203
  OP_CALL_ARGS: op_call_args,
198
204
  OP_CALL_KWARGS: node_kwargs,
199
205
  INPUTS_AS_LIST: inputs_as_list,
200
- TENSOR_INPUT_INDICES: tensor_input_index}
206
+ TENSOR_INPUT_ALLOCS: tensor_input_alloc}
201
207
  else:
202
208
  graph_node_type = BaseNode
203
209
  kwargs = {}
@@ -353,7 +353,7 @@ class KerasGPTQTrainer(GPTQTrainer):
353
353
  node.final_activation_quantization_cfg.set_quant_config_attr(config_attr, config_value)
354
354
  if self.gptq_config.train_bias:
355
355
  use_bias = layer.layer.get_config().get(USE_BIAS)
356
- if use_bias is not None and use_bias:
356
+ if use_bias is not None and use_bias and layer.layer.bias is not None:
357
357
  new_bias = layer.layer.bias.numpy()
358
358
  node.set_weights_by_keys(BIAS, new_bias)
359
359
 
@@ -63,7 +63,7 @@ def get_gptq_trainable_parameters(fxp_model: Model,
63
63
  kernel_ops_attrs = fw_info.kernel_ops_attributes_mapping.get(type(layer.layer))
64
64
  use_bias = kernel_ops_attrs is not None and kernel_ops_attrs[0] is not None \
65
65
  and layer.layer.get_config().get(USE_BIAS)
66
- if use_bias is not None and use_bias:
66
+ if use_bias is not None and use_bias and layer.layer.bias is not None:
67
67
  bias_weights.append([layer.layer.bias])
68
68
 
69
69
  return trainable_weights, bias_weights, trainable_threshold
@@ -299,7 +299,9 @@ class PytorchGPTQTrainer(GPTQTrainer):
299
299
  for config_attr, config_value in activation_quant_config.items():
300
300
  node.final_activation_quantization_cfg.set_quant_config_attr(config_attr, config_value)
301
301
  if self.gptq_config.train_bias and hasattr(layer.layer, BIAS):
302
- node.set_weights_by_keys(BIAS, self.fw_impl.to_numpy(getattr(layer.layer, BIAS)))
302
+ bias = getattr(layer.layer, BIAS)
303
+ if bias is not None:
304
+ node.set_weights_by_keys(BIAS, self.fw_impl.to_numpy(bias))
303
305
 
304
306
  return graph_quant
305
307
 
@@ -316,4 +318,5 @@ class PytorchGPTQTrainer(GPTQTrainer):
316
318
  if isinstance(layer, PytorchQuantizationWrapper):
317
319
  if hasattr(layer.layer, BIAS):
318
320
  bias = getattr(layer.layer, BIAS)
319
- bias.requires_grad = self.gptq_config.train_bias
321
+ if bias is not None:
322
+ bias.requires_grad = self.gptq_config.train_bias
@@ -56,7 +56,8 @@ def get_gptq_trainable_parameters(fxp_model: nn.Module,
56
56
 
57
57
  if add_bias and hasattr(layer.layer, BIAS):
58
58
  bias = getattr(layer.layer, BIAS)
59
- trainable_bias.append(bias)
59
+ if bias is not None:
60
+ trainable_bias.append(bias)
60
61
 
61
62
  return trainable_aux_weights, trainable_bias, trainable_threshold
62
63
 
@@ -18,7 +18,7 @@ import operator
18
18
  import torch
19
19
  from torch import add, sub, mul, div, flatten, reshape, split, unsqueeze, dropout, sigmoid, tanh, chunk, unbind, topk, \
20
20
  gather, equal, transpose, permute, argmax, squeeze
21
- from torch.nn import Conv2d, Linear, ConvTranspose2d
21
+ from torch.nn import Conv2d, Linear, ConvTranspose2d, MaxPool2d
22
22
  from torch.nn import Dropout, Flatten, Hardtanh, Identity
23
23
  from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, LeakyReLU
24
24
  from torch.nn.functional import relu, relu6, prelu, silu, hardtanh, hardswish, leaky_relu
@@ -83,7 +83,8 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
83
83
  argmax,
84
84
  gather,
85
85
  topk,
86
- squeeze])
86
+ squeeze,
87
+ MaxPool2d])
87
88
 
88
89
  tp.OperationsSetToLayers("Conv", [Conv2d, ConvTranspose2d],
89
90
  attr_mapping=pytorch_linear_attr_mapping)
@@ -18,7 +18,7 @@ import operator
18
18
  import torch
19
19
  from torch import add, sub, mul, div, flatten, reshape, split, unsqueeze, dropout, sigmoid, tanh, chunk, unbind, topk, \
20
20
  gather, equal, transpose, permute, argmax, squeeze
21
- from torch.nn import Conv2d, Linear, ConvTranspose2d
21
+ from torch.nn import Conv2d, Linear, ConvTranspose2d, MaxPool2d
22
22
  from torch.nn import Dropout, Flatten, Hardtanh, Identity
23
23
  from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, LeakyReLU
24
24
  from torch.nn.functional import relu, relu6, prelu, silu, hardtanh, hardswish, leaky_relu
@@ -82,7 +82,8 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
82
82
  argmax,
83
83
  gather,
84
84
  topk,
85
- squeeze])
85
+ squeeze,
86
+ MaxPool2d])
86
87
 
87
88
  tp.OperationsSetToLayers("Conv", [Conv2d, ConvTranspose2d],
88
89
  attr_mapping=pytorch_linear_attr_mapping)
@@ -0,0 +1,19 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from model_compression_toolkit.xquant.common.xquant_config import XQuantConfig
17
+ from model_compression_toolkit.xquant.keras.facade_xquant_report import xquant_report_keras_experimental
18
+ from model_compression_toolkit.xquant.pytorch.facade_xquant_report import xquant_report_pytorch_experimental
19
+
@@ -0,0 +1,15 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ # #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ # #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ # #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ #
@@ -0,0 +1,38 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # Default similarity metric names:
17
+ CS_SIMILARITY_METRIC_NAME = 'cs'
18
+ SQNR_SIMILARITY_METRIC_NAME = 'sqnr'
19
+ MSE_SIMILARITY_METRIC_NAME = 'mse'
20
+
21
+ # Report components names:
22
+ OUTPUT_SIMILARITY_METRICS_REPR = 'output_similarity_metrics_repr'
23
+ OUTPUT_SIMILARITY_METRICS_VAL = 'output_similarity_metrics_val'
24
+ INTERMEDIATE_SIMILARITY_METRICS_REPR = 'intermediate_similarity_metrics_repr'
25
+ INTERMEDIATE_SIMILARITY_METRICS_VAL = 'intermediate_similarity_metrics_val'
26
+
27
+ # Graph attribute names:
28
+ XQUANT_REPR = 'xquant_repr'
29
+ XQUANT_VAL = 'xquant_val'
30
+
31
+ # Report file name:
32
+ REPORT_FILENAME = 'quant_report.json'
33
+
34
+ # Tag to use in tensorboard for the graph we plot:
35
+ TENSORBOARD_DEFAULT_TAG = 'xquant'
36
+
37
+ # When extracting the activations of a model we hold the output using a dedicated key:
38
+ MODEL_OUTPUT_KEY = 'model_output_key'
@@ -0,0 +1,83 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from tqdm import tqdm
16
+ from typing import Callable, Any, Dict
17
+
18
+ from model_compression_toolkit.core.common.model_collector import ModelCollector
19
+ from model_compression_toolkit.xquant import XQuantConfig
20
+ from model_compression_toolkit.xquant.common.constants import OUTPUT_SIMILARITY_METRICS_REPR, OUTPUT_SIMILARITY_METRICS_VAL, INTERMEDIATE_SIMILARITY_METRICS_REPR, \
21
+ INTERMEDIATE_SIMILARITY_METRICS_VAL
22
+ from model_compression_toolkit.xquant.common.framework_report_utils import FrameworkReportUtils
23
+
24
+
25
+ def core_report_generator(float_model: Any,
26
+ quantized_model: Any,
27
+ repr_dataset: Callable,
28
+ validation_dataset: Callable,
29
+ fw_report_utils: FrameworkReportUtils,
30
+ xquant_config: XQuantConfig) -> Dict[str, Any]:
31
+ """
32
+ Generate report in tensorboard with a graph of the quantized model and similarity metrics that
33
+ have been measured when comparing to the float model (or any other two models).
34
+ The report also contains histograms that are collected on the baseline model (usually, the float
35
+ model).
36
+
37
+ Args:
38
+ float_model (Any): The original floating-point model.
39
+ quantized_model (Any): The model after quantization.
40
+ repr_dataset (Callable): Representative dataset used for similarity metrics computation.
41
+ validation_dataset (Callable): Validation dataset used for similarity metrics computation.
42
+ fw_report_utils (FrameworkReportUtils): Utilities for generating framework-specific reports.
43
+ xquant_config (XQuantConfig): Configuration settings for explainable quantization.
44
+
45
+ Returns:
46
+ Dict[str, Any]: A dictionary containing the collected similarity metrics and report data.
47
+ """
48
+ # Collect histograms on the float model.
49
+ float_graph = fw_report_utils.model_folding_utils.create_float_folded_graph(float_model, repr_dataset)
50
+ mi = ModelCollector(float_graph, fw_report_utils.fw_impl, fw_report_utils.fw_info)
51
+ for _data in tqdm(repr_dataset(), desc="Collecting Histograms"):
52
+ mi.infer(_data)
53
+
54
+ # Collect histograms and add them to Tensorboard.
55
+ fw_report_utils.tb_utils.add_histograms_to_tensorboard(graph=float_graph)
56
+
57
+ # Compute similarity metrics on representative dataset and validation set.
58
+ repr_similarity = fw_report_utils.similarity_calculator.compute_similarity_metrics(float_model=float_model,
59
+ quantized_model=quantized_model,
60
+ dataset=repr_dataset,
61
+ custom_similarity_metrics=xquant_config.custom_similarity_metrics)
62
+ val_similarity = fw_report_utils.similarity_calculator.compute_similarity_metrics(float_model=float_model,
63
+ quantized_model=quantized_model,
64
+ dataset=validation_dataset,
65
+ custom_similarity_metrics=xquant_config.custom_similarity_metrics,
66
+ is_validation=True)
67
+ similarity_metrics = {
68
+ OUTPUT_SIMILARITY_METRICS_REPR: repr_similarity[0],
69
+ OUTPUT_SIMILARITY_METRICS_VAL: val_similarity[0],
70
+ INTERMEDIATE_SIMILARITY_METRICS_REPR: repr_similarity[1],
71
+ INTERMEDIATE_SIMILARITY_METRICS_VAL: val_similarity[1]
72
+ }
73
+
74
+ # Add a graph of the quantized model with the similarity metrics to TensorBoard for visualization.
75
+ fw_report_utils.tb_utils.add_graph_to_tensorboard(quantized_model,
76
+ similarity_metrics,
77
+ repr_dataset)
78
+
79
+ # Save data to a json file.
80
+ fw_report_utils.dump_report_to_json(report_dir=xquant_config.report_dir,
81
+ collected_data=similarity_metrics)
82
+
83
+ return similarity_metrics
@@ -0,0 +1,43 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from typing import Callable
17
+
18
+ from model_compression_toolkit.logger import Logger
19
+
20
+
21
+ class DatasetUtils:
22
+ """
23
+ Class with helpful methods for handling different kinds of datasets from the user.
24
+ """
25
+
26
+ @staticmethod
27
+ def prepare_dataset(dataset: Callable, is_validation: bool, device: str = None):
28
+ """
29
+ Prepare the dataset so calling it will return only inputs for the model (like in the case
30
+ of the representative dataset). For example, when the validation dataset is used, the labels
31
+ should be removed.
32
+
33
+ Args:
34
+ dataset: Dataset to prepare.
35
+ is_validation: Whether it's validation dataset or not.
36
+ device: Device to transfer the data to.
37
+
38
+ Returns:
39
+ Generator to use for retrieving the dataset inputs.
40
+ """
41
+
42
+ Logger.critical("This method should be implemented by the framework-specific DatasetUtils.") # pragma: no cover
43
+
@@ -0,0 +1,89 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import json
17
+ import os
18
+
19
+ from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
20
+ from model_compression_toolkit.core.common.framework_info import FrameworkInfo
21
+ from typing import Any, Dict
22
+
23
+ from model_compression_toolkit.xquant.common.constants import REPORT_FILENAME
24
+ from model_compression_toolkit.xquant.common.dataset_utils import DatasetUtils
25
+ from model_compression_toolkit.xquant.common.model_folding_utils import ModelFoldingUtils
26
+ from model_compression_toolkit.xquant.common.similarity_calculator import SimilarityCalculator
27
+ from model_compression_toolkit.xquant.common.tensorboard_utils import TensorboardUtils
28
+ from model_compression_toolkit.logger import Logger
29
+
30
+
31
+ class FrameworkReportUtils:
32
+ """
33
+ Class with various utility components required for generating the report in a specific framework.
34
+ """
35
+
36
+ def __init__(self,
37
+ fw_info: FrameworkInfo,
38
+ fw_impl: FrameworkImplementation,
39
+ similarity_calculator: SimilarityCalculator,
40
+ dataset_utils: DatasetUtils,
41
+ model_folding_utils: ModelFoldingUtils,
42
+ tb_utils: TensorboardUtils):
43
+ """
44
+ Initializes the FrameworkReportUtils class with various utility components required for generating the report.
45
+
46
+ Args:
47
+ fw_info (FrameworkInfo): Information about the framework being used.
48
+ fw_impl (FrameworkImplementation): The implemented functions of the framework.
49
+ similarity_calculator (SimilarityCalculator): A utility for calculating similarity metrics.
50
+ dataset_utils (DatasetUtils): Utilities for handling datasets.
51
+ model_folding_utils (ModelFoldingUtils): Utilities for model folding operations.
52
+ tb_utils (TensorboardUtils): Utilities for TensorBoard operations.
53
+ """
54
+ self.fw_info = fw_info
55
+ self.fw_impl = fw_impl
56
+ self.similarity_calculator = similarity_calculator
57
+ self.dataset_utils = dataset_utils
58
+ self.model_folding_utils = model_folding_utils
59
+ self.tb_utils = tb_utils
60
+
61
+ def create_report_directory(self, dir_path: str):
62
+ """
63
+ Create a directory for saving reports.
64
+
65
+ Args:
66
+ dir_path (str): The path to the directory to create.
67
+
68
+ """
69
+ if not os.path.exists(dir_path):
70
+ os.makedirs(dir_path, exist_ok=True)
71
+ Logger.info(f"Directory created at: {dir_path}")
72
+
73
+ def dump_report_to_json(self,
74
+ report_dir: str,
75
+ collected_data: Dict[str, Any]):
76
+ """
77
+ Dump the collected data (similarity, etc.) into a JSON file.
78
+
79
+ Args:
80
+ report_dir (str): Directory where the report will be saved.
81
+ collected_data (Dict[str, Any]): Data collected during report generation.
82
+
83
+ """
84
+ report_file_name = os.path.join(report_dir, REPORT_FILENAME)
85
+ report_file_name = os.path.abspath(report_file_name)
86
+ Logger.info(f"Dumping report data to: {report_file_name}")
87
+
88
+ with open(report_file_name, 'w') as f:
89
+ json.dump(collected_data, f, indent=4)