mct-nightly 2.0.0.20240522.420__tar.gz → 2.0.0.20240522.172031__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/PKG-INFO +23 -23
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/README.md +22 -22
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/mct_nightly.egg-info/PKG-INFO +23 -23
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/framework_implementation.py +6 -4
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/base_node.py +6 -2
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +10 -5
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/keras_implementation.py +6 -4
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +1 -2
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +6 -4
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/LICENSE.md +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/mct_nightly.egg-info/SOURCES.txt +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/hessian/trace_hessian_request.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/permute_call_method.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/setup.cfg +0 -0
- {mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/setup.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mct-nightly
|
|
3
|
-
Version: 2.0.0.20240522.
|
|
3
|
+
Version: 2.0.0.20240522.172031
|
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
|
5
5
|
Home-page: UNKNOWN
|
|
6
6
|
License: UNKNOWN
|
|
@@ -12,7 +12,7 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
12
12
|
|
|
13
13
|
Specifically, this project aims to apply quantization to compress neural networks.
|
|
14
14
|
|
|
15
|
-
<img src="docsrc/images/mct_block_diagram.svg" width="10000">
|
|
15
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
|
|
16
16
|
|
|
17
17
|
MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
|
|
18
18
|
|
|
@@ -20,12 +20,12 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
20
20
|
|
|
21
21
|
## Table of Contents
|
|
22
22
|
|
|
23
|
-
- [Getting Started](#getting-started)
|
|
24
|
-
- [Supported features](#supported-features)
|
|
25
|
-
- [Results](#results)
|
|
26
|
-
- [Troubleshooting](#trouble-shooting)
|
|
27
|
-
- [Contributions](#contributions)
|
|
28
|
-
- [License](#license)
|
|
23
|
+
- [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
|
|
24
|
+
- [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
|
|
25
|
+
- [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
|
|
26
|
+
- [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
|
|
27
|
+
- [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
|
|
28
|
+
- [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
|
|
29
29
|
|
|
30
30
|
|
|
31
31
|
## Getting Started
|
|
@@ -39,17 +39,17 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
39
39
|
pip install model-compression-toolkit
|
|
40
40
|
```
|
|
41
41
|
|
|
42
|
-
For installing the nightly version or installing from source, refer to the [installation guide](INSTALLATION.md).
|
|
42
|
+
For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
|
|
43
43
|
|
|
44
44
|
|
|
45
45
|
### Quick start & tutorials
|
|
46
46
|
|
|
47
47
|
Explore the Model Compression Toolkit (MCT) through our tutorials,
|
|
48
|
-
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
|
|
48
|
+
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
|
|
49
49
|
for hands-on learning. For example:
|
|
50
|
-
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
51
|
-
* [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
52
|
-
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
50
|
+
* [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
51
|
+
* [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
52
|
+
* [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
53
53
|
|
|
54
54
|
|
|
55
55
|
### Supported Versions
|
|
@@ -73,15 +73,15 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
73
73
|
## Supported Features
|
|
74
74
|
MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
|
|
75
75
|
|
|
76
|
-
### Data Generation [*](#experimental-features)
|
|
76
|
+
### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
77
77
|
MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
|
|
78
|
-
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](model_compression_toolkit/data_generation/README.md)
|
|
78
|
+
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
|
|
79
79
|
|
|
80
80
|
### Quantization
|
|
81
81
|
MCT supports different quantization methods:
|
|
82
82
|
* Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
|
|
83
83
|
* Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
|
|
84
|
-
* Quantization-aware training (QAT) [*](#experimental-features)
|
|
84
|
+
* Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
85
85
|
|
|
86
86
|
|
|
87
87
|
| Quantization Method | Complexity | Computational Cost |
|
|
@@ -103,20 +103,20 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
103
103
|
* <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
|
|
104
104
|
* <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
|
|
105
105
|
* <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
|
|
106
|
-
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
|
|
106
|
+
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
107
107
|
* <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
|
|
108
108
|
* <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
|
|
109
|
-
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).
|
|
109
|
+
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
|
|
110
110
|
|
|
111
111
|
### Enhanced Post-Training Quantization (EPTQ)
|
|
112
112
|
As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
|
|
113
113
|
|
|
114
114
|
The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
|
|
115
115
|
|
|
116
|
-
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](model_compression_toolkit/gptq/README.md).
|
|
116
|
+
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
|
117
117
|
|
|
118
118
|
|
|
119
|
-
### Structured Pruning [*](#experimental-features)
|
|
119
|
+
### Structured Pruning [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
120
120
|
MCT introduces a structured and hardware-aware model pruning.
|
|
121
121
|
This pruning technique is designed to compress models for specific hardware architectures,
|
|
122
122
|
taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
|
|
@@ -138,7 +138,7 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
138
138
|
Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
|
|
139
139
|
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
|
140
140
|
|
|
141
|
-
<img src="docsrc/images/mbv2_accuracy_graph.png">
|
|
141
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
|
|
142
142
|
|
|
143
143
|
For more results, please see [1]
|
|
144
144
|
|
|
@@ -174,11 +174,11 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
174
174
|
## Contributions
|
|
175
175
|
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
|
|
176
176
|
|
|
177
|
-
*You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).
|
|
177
|
+
*You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
|
|
178
178
|
|
|
179
179
|
|
|
180
180
|
## License
|
|
181
|
-
[Apache License 2.0](LICENSE.md).
|
|
181
|
+
[Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
|
|
182
182
|
|
|
183
183
|
## References
|
|
184
184
|
|
|
@@ -6,7 +6,7 @@ This project provides researchers, developers, and engineers tools for optimizin
|
|
|
6
6
|
|
|
7
7
|
Specifically, this project aims to apply quantization to compress neural networks.
|
|
8
8
|
|
|
9
|
-
<img src="docsrc/images/mct_block_diagram.svg" width="10000">
|
|
9
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
|
|
10
10
|
|
|
11
11
|
MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
|
|
12
12
|
|
|
@@ -14,12 +14,12 @@ MCT is developed by researchers and engineers working at Sony Semiconductor Isra
|
|
|
14
14
|
|
|
15
15
|
## Table of Contents
|
|
16
16
|
|
|
17
|
-
- [Getting Started](#getting-started)
|
|
18
|
-
- [Supported features](#supported-features)
|
|
19
|
-
- [Results](#results)
|
|
20
|
-
- [Troubleshooting](#trouble-shooting)
|
|
21
|
-
- [Contributions](#contributions)
|
|
22
|
-
- [License](#license)
|
|
17
|
+
- [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
|
|
18
|
+
- [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
|
|
19
|
+
- [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
|
|
20
|
+
- [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
|
|
21
|
+
- [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
|
|
22
|
+
- [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
|
|
23
23
|
|
|
24
24
|
|
|
25
25
|
## Getting Started
|
|
@@ -33,17 +33,17 @@ To install the latest stable release of MCT, run the following command:
|
|
|
33
33
|
pip install model-compression-toolkit
|
|
34
34
|
```
|
|
35
35
|
|
|
36
|
-
For installing the nightly version or installing from source, refer to the [installation guide](INSTALLATION.md).
|
|
36
|
+
For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
|
|
37
37
|
|
|
38
38
|
|
|
39
39
|
### Quick start & tutorials
|
|
40
40
|
|
|
41
41
|
Explore the Model Compression Toolkit (MCT) through our tutorials,
|
|
42
|
-
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
|
|
42
|
+
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
|
|
43
43
|
for hands-on learning. For example:
|
|
44
|
-
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
45
|
-
* [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
46
|
-
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
44
|
+
* [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
45
|
+
* [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
46
|
+
* [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
47
47
|
|
|
48
48
|
|
|
49
49
|
### Supported Versions
|
|
@@ -67,15 +67,15 @@ Currently, MCT is being tested on various Python, Pytorch and TensorFlow version
|
|
|
67
67
|
## Supported Features
|
|
68
68
|
MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
|
|
69
69
|
|
|
70
|
-
### Data Generation [*](#experimental-features)
|
|
70
|
+
### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
71
71
|
MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
|
|
72
|
-
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](model_compression_toolkit/data_generation/README.md)
|
|
72
|
+
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
|
|
73
73
|
|
|
74
74
|
### Quantization
|
|
75
75
|
MCT supports different quantization methods:
|
|
76
76
|
* Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
|
|
77
77
|
* Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
|
|
78
|
-
* Quantization-aware training (QAT) [*](#experimental-features)
|
|
78
|
+
* Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
79
79
|
|
|
80
80
|
|
|
81
81
|
| Quantization Method | Complexity | Computational Cost |
|
|
@@ -97,20 +97,20 @@ Main features:
|
|
|
97
97
|
* <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
|
|
98
98
|
* <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
|
|
99
99
|
* <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
|
|
100
|
-
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
|
|
100
|
+
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
101
101
|
* <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
|
|
102
102
|
* <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
|
|
103
|
-
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).
|
|
103
|
+
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
|
|
104
104
|
|
|
105
105
|
### Enhanced Post-Training Quantization (EPTQ)
|
|
106
106
|
As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
|
|
107
107
|
|
|
108
108
|
The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
|
|
109
109
|
|
|
110
|
-
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](model_compression_toolkit/gptq/README.md).
|
|
110
|
+
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
|
111
111
|
|
|
112
112
|
|
|
113
|
-
### Structured Pruning [*](#experimental-features)
|
|
113
|
+
### Structured Pruning [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
114
114
|
MCT introduces a structured and hardware-aware model pruning.
|
|
115
115
|
This pruning technique is designed to compress models for specific hardware architectures,
|
|
116
116
|
taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
|
|
@@ -132,7 +132,7 @@ For more details, we highly recommend visiting our project website where experim
|
|
|
132
132
|
Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
|
|
133
133
|
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
|
134
134
|
|
|
135
|
-
<img src="docsrc/images/mbv2_accuracy_graph.png">
|
|
135
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
|
|
136
136
|
|
|
137
137
|
For more results, please see [1]
|
|
138
138
|
|
|
@@ -168,11 +168,11 @@ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md)
|
|
|
168
168
|
## Contributions
|
|
169
169
|
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
|
|
170
170
|
|
|
171
|
-
*You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).
|
|
171
|
+
*You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
|
|
172
172
|
|
|
173
173
|
|
|
174
174
|
## License
|
|
175
|
-
[Apache License 2.0](LICENSE.md).
|
|
175
|
+
[Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
|
|
176
176
|
|
|
177
177
|
## References
|
|
178
178
|
|
{mct-nightly-2.0.0.20240522.420 → mct-nightly-2.0.0.20240522.172031}/mct_nightly.egg-info/PKG-INFO
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mct-nightly
|
|
3
|
-
Version: 2.0.0.20240522.
|
|
3
|
+
Version: 2.0.0.20240522.172031
|
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
|
5
5
|
Home-page: UNKNOWN
|
|
6
6
|
License: UNKNOWN
|
|
@@ -12,7 +12,7 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
12
12
|
|
|
13
13
|
Specifically, this project aims to apply quantization to compress neural networks.
|
|
14
14
|
|
|
15
|
-
<img src="docsrc/images/mct_block_diagram.svg" width="10000">
|
|
15
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
|
|
16
16
|
|
|
17
17
|
MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
|
|
18
18
|
|
|
@@ -20,12 +20,12 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
20
20
|
|
|
21
21
|
## Table of Contents
|
|
22
22
|
|
|
23
|
-
- [Getting Started](#getting-started)
|
|
24
|
-
- [Supported features](#supported-features)
|
|
25
|
-
- [Results](#results)
|
|
26
|
-
- [Troubleshooting](#trouble-shooting)
|
|
27
|
-
- [Contributions](#contributions)
|
|
28
|
-
- [License](#license)
|
|
23
|
+
- [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
|
|
24
|
+
- [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
|
|
25
|
+
- [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
|
|
26
|
+
- [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
|
|
27
|
+
- [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
|
|
28
|
+
- [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
|
|
29
29
|
|
|
30
30
|
|
|
31
31
|
## Getting Started
|
|
@@ -39,17 +39,17 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
39
39
|
pip install model-compression-toolkit
|
|
40
40
|
```
|
|
41
41
|
|
|
42
|
-
For installing the nightly version or installing from source, refer to the [installation guide](INSTALLATION.md).
|
|
42
|
+
For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
|
|
43
43
|
|
|
44
44
|
|
|
45
45
|
### Quick start & tutorials
|
|
46
46
|
|
|
47
47
|
Explore the Model Compression Toolkit (MCT) through our tutorials,
|
|
48
|
-
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
|
|
48
|
+
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
|
|
49
49
|
for hands-on learning. For example:
|
|
50
|
-
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
51
|
-
* [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
52
|
-
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
50
|
+
* [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
51
|
+
* [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
52
|
+
* [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
53
53
|
|
|
54
54
|
|
|
55
55
|
### Supported Versions
|
|
@@ -73,15 +73,15 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
73
73
|
## Supported Features
|
|
74
74
|
MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
|
|
75
75
|
|
|
76
|
-
### Data Generation [*](#experimental-features)
|
|
76
|
+
### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
77
77
|
MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
|
|
78
|
-
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](model_compression_toolkit/data_generation/README.md)
|
|
78
|
+
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
|
|
79
79
|
|
|
80
80
|
### Quantization
|
|
81
81
|
MCT supports different quantization methods:
|
|
82
82
|
* Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
|
|
83
83
|
* Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
|
|
84
|
-
* Quantization-aware training (QAT) [*](#experimental-features)
|
|
84
|
+
* Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
85
85
|
|
|
86
86
|
|
|
87
87
|
| Quantization Method | Complexity | Computational Cost |
|
|
@@ -103,20 +103,20 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
103
103
|
* <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
|
|
104
104
|
* <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
|
|
105
105
|
* <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
|
|
106
|
-
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
|
|
106
|
+
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
107
107
|
* <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
|
|
108
108
|
* <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
|
|
109
|
-
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).
|
|
109
|
+
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
|
|
110
110
|
|
|
111
111
|
### Enhanced Post-Training Quantization (EPTQ)
|
|
112
112
|
As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
|
|
113
113
|
|
|
114
114
|
The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
|
|
115
115
|
|
|
116
|
-
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](model_compression_toolkit/gptq/README.md).
|
|
116
|
+
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
|
117
117
|
|
|
118
118
|
|
|
119
|
-
### Structured Pruning [*](#experimental-features)
|
|
119
|
+
### Structured Pruning [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
120
120
|
MCT introduces a structured and hardware-aware model pruning.
|
|
121
121
|
This pruning technique is designed to compress models for specific hardware architectures,
|
|
122
122
|
taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
|
|
@@ -138,7 +138,7 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
138
138
|
Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
|
|
139
139
|
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
|
140
140
|
|
|
141
|
-
<img src="docsrc/images/mbv2_accuracy_graph.png">
|
|
141
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
|
|
142
142
|
|
|
143
143
|
For more results, please see [1]
|
|
144
144
|
|
|
@@ -174,11 +174,11 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
174
174
|
## Contributions
|
|
175
175
|
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
|
|
176
176
|
|
|
177
|
-
*You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).
|
|
177
|
+
*You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
|
|
178
178
|
|
|
179
179
|
|
|
180
180
|
## License
|
|
181
|
-
[Apache License 2.0](LICENSE.md).
|
|
181
|
+
[Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
|
|
182
182
|
|
|
183
183
|
## References
|
|
184
184
|
|
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
|
27
27
|
from model_compression_toolkit import pruning
|
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
|
29
29
|
|
|
30
|
-
__version__ = "2.0.0.20240522.
|
|
30
|
+
__version__ = "2.0.0.20240522.172031"
|
|
@@ -348,13 +348,14 @@ class FrameworkImplementation(ABC):
|
|
|
348
348
|
raise NotImplemented(f'{self.__class__.__name__} have to implement the '
|
|
349
349
|
f'framework\'s count_node_for_mixed_precision_interest_points method.') # pragma: no cover
|
|
350
350
|
|
|
351
|
-
def
|
|
351
|
+
def get_mp_node_distance_fn(self, layer_class: type,
|
|
352
352
|
framework_attrs: Dict[str, Any],
|
|
353
353
|
compute_distance_fn: Callable = None,
|
|
354
|
-
axis: int = None
|
|
354
|
+
axis: int = None,
|
|
355
|
+
norm_mse: bool = False) -> Callable:
|
|
355
356
|
"""
|
|
356
357
|
A mapping between layers' types and a distance function for computing the distance between
|
|
357
|
-
two tensors (for loss computation purposes). Returns a specific function if node of specific types is
|
|
358
|
+
two tensors in mixed precision (for loss computation purposes). Returns a specific function if node of specific types is
|
|
358
359
|
given, or a default (normalized MSE) function otherwise.
|
|
359
360
|
|
|
360
361
|
Args:
|
|
@@ -362,12 +363,13 @@ class FrameworkImplementation(ABC):
|
|
|
362
363
|
framework_attrs: Framework attributes the layer had which the graph node holds.
|
|
363
364
|
compute_distance_fn: An optional distance function to use globally for all nodes.
|
|
364
365
|
axis: The axis on which the operation is preformed (if specified).
|
|
366
|
+
norm_mse: whether to normalize mse distance function.
|
|
365
367
|
|
|
366
368
|
Returns: A distance function between two tensors.
|
|
367
369
|
"""
|
|
368
370
|
|
|
369
371
|
raise NotImplemented(f'{self.__class__.__name__} have to implement the '
|
|
370
|
-
f'framework\'s
|
|
372
|
+
f'framework\'s get_mp_node_distance_fn method.') # pragma: no cover
|
|
371
373
|
|
|
372
374
|
|
|
373
375
|
@abstractmethod
|
|
@@ -238,8 +238,12 @@ class BaseNode:
|
|
|
238
238
|
"""
|
|
239
239
|
for pos, weight in sorted((pos, weight) for pos, weight in self.weights.items()
|
|
240
240
|
if isinstance(pos, int)):
|
|
241
|
-
|
|
242
|
-
|
|
241
|
+
if pos > len(input_tensors):
|
|
242
|
+
Logger.critical("The positional weight index cannot exceed the number of input tensors to the node.") # pragma: no cover
|
|
243
|
+
# Insert only positional weights that are not subject to quantization. If the positional weight is
|
|
244
|
+
# subject to quantization, the quantization wrapper inserts the positional weight into the node.
|
|
245
|
+
if not self.is_weights_quantization_enabled(pos):
|
|
246
|
+
input_tensors.insert(pos, weight)
|
|
243
247
|
|
|
244
248
|
return input_tensors
|
|
245
249
|
|
|
@@ -89,10 +89,13 @@ class SensitivityEvaluation:
|
|
|
89
89
|
fw_impl.count_node_for_mixed_precision_interest_points,
|
|
90
90
|
quant_config.num_interest_points_factor)
|
|
91
91
|
|
|
92
|
-
|
|
92
|
+
# We use normalized MSE when not running hessian-based. For Hessian-based normalized MSE is not needed
|
|
93
|
+
# beacause hessian weights already do normalization.
|
|
94
|
+
use_normalized_mse = self.quant_config.use_hessian_based_scores is False
|
|
95
|
+
self.ips_distance_fns, self.ips_axis = self._init_metric_points_lists(self.interest_points, use_normalized_mse)
|
|
93
96
|
|
|
94
97
|
self.output_points = get_output_nodes_for_metric(graph)
|
|
95
|
-
self.out_ps_distance_fns, self.out_ps_axis = self._init_metric_points_lists(self.output_points)
|
|
98
|
+
self.out_ps_distance_fns, self.out_ps_axis = self._init_metric_points_lists(self.output_points, use_normalized_mse)
|
|
96
99
|
|
|
97
100
|
# Setting lists with relative position of the interest points
|
|
98
101
|
# and output points in the list of all mp model activation tensors
|
|
@@ -128,7 +131,7 @@ class SensitivityEvaluation:
|
|
|
128
131
|
self.interest_points_hessians = self._compute_hessian_based_scores()
|
|
129
132
|
self.quant_config.distance_weighting_method = lambda d: self.interest_points_hessians
|
|
130
133
|
|
|
131
|
-
def _init_metric_points_lists(self, points: List[BaseNode]) -> Tuple[List[Callable], List[int]]:
|
|
134
|
+
def _init_metric_points_lists(self, points: List[BaseNode], norm_mse: bool = False) -> Tuple[List[Callable], List[int]]:
|
|
132
135
|
"""
|
|
133
136
|
Initiates required lists for future use when computing the sensitivity metric.
|
|
134
137
|
Each point on which the metric is computed uses a dedicated distance function based on its type.
|
|
@@ -136,6 +139,7 @@ class SensitivityEvaluation:
|
|
|
136
139
|
|
|
137
140
|
Args:
|
|
138
141
|
points: The set of nodes in the graph for which we need to initiate the lists.
|
|
142
|
+
norm_mse: whether to normalize mse distance function.
|
|
139
143
|
|
|
140
144
|
Returns: A lists with distance functions and an axis list for each node.
|
|
141
145
|
|
|
@@ -144,11 +148,12 @@ class SensitivityEvaluation:
|
|
|
144
148
|
axis_list = []
|
|
145
149
|
for n in points:
|
|
146
150
|
axis = n.framework_attr.get(AXIS) if not isinstance(n, FunctionalNode) else n.op_call_kwargs.get(AXIS)
|
|
147
|
-
distance_fn = self.fw_impl.
|
|
151
|
+
distance_fn = self.fw_impl.get_mp_node_distance_fn(
|
|
148
152
|
layer_class=n.layer_class,
|
|
149
153
|
framework_attrs=n.framework_attr,
|
|
150
154
|
compute_distance_fn=self.quant_config.compute_distance_fn,
|
|
151
|
-
axis=axis
|
|
155
|
+
axis=axis,
|
|
156
|
+
norm_mse=norm_mse)
|
|
152
157
|
distance_fns_list.append(distance_fn)
|
|
153
158
|
# Axis is needed only for KL Divergence calculation, otherwise we use per-tensor computation
|
|
154
159
|
axis_list.append(axis if distance_fn==compute_kl_divergence else None)
|
|
@@ -421,13 +421,14 @@ class KerasImplementation(FrameworkImplementation):
|
|
|
421
421
|
|
|
422
422
|
return False
|
|
423
423
|
|
|
424
|
-
def
|
|
424
|
+
def get_mp_node_distance_fn(self, layer_class: type,
|
|
425
425
|
framework_attrs: Dict[str, Any],
|
|
426
426
|
compute_distance_fn: Callable = None,
|
|
427
|
-
axis: int = None
|
|
427
|
+
axis: int = None,
|
|
428
|
+
norm_mse: bool = False) -> Callable:
|
|
428
429
|
"""
|
|
429
430
|
A mapping between layers' types and a distance function for computing the distance between
|
|
430
|
-
two tensors (for loss computation purposes). Returns a specific function if node of specific types is
|
|
431
|
+
two tensors in mixed precision (for loss computation purposes). Returns a specific function if node of specific types is
|
|
431
432
|
given, or a default (normalized MSE) function otherwise.
|
|
432
433
|
|
|
433
434
|
Args:
|
|
@@ -435,6 +436,7 @@ class KerasImplementation(FrameworkImplementation):
|
|
|
435
436
|
framework_attrs: Framework attributes the layer had which the graph node holds.
|
|
436
437
|
compute_distance_fn: An optional distance function to use globally for all nodes.
|
|
437
438
|
axis: The axis on which the operation is preformed (if specified).
|
|
439
|
+
norm_mse: whether to normalize mse distance function.
|
|
438
440
|
|
|
439
441
|
Returns: A distance function between two tensors.
|
|
440
442
|
"""
|
|
@@ -456,7 +458,7 @@ class KerasImplementation(FrameworkImplementation):
|
|
|
456
458
|
return compute_cs
|
|
457
459
|
elif layer_class == Dense:
|
|
458
460
|
return compute_cs
|
|
459
|
-
return compute_mse
|
|
461
|
+
return partial(compute_mse, norm=norm_mse)
|
|
460
462
|
|
|
461
463
|
def get_trace_hessian_calculator(self,
|
|
462
464
|
graph: Graph,
|
|
@@ -67,8 +67,7 @@ def _build_input_tensors_list(node: BaseNode,
|
|
|
67
67
|
_input_tensors = node_to_output_tensors_dict[ie.source_node]
|
|
68
68
|
input_tensors.append(_input_tensors)
|
|
69
69
|
input_tensors = [tensor for tensor_list in input_tensors for tensor in tensor_list] # flat list of lists
|
|
70
|
-
|
|
71
|
-
input_tensors = node.insert_positional_weights_to_input_list(input_tensors)
|
|
70
|
+
input_tensors = node.insert_positional_weights_to_input_list(input_tensors)
|
|
72
71
|
# convert inputs from positional weights (numpy arrays) to tensors. Must handle each element in the
|
|
73
72
|
# list separately, because in FX the tensors are FX objects and fail to_torch_tensor
|
|
74
73
|
input_tensors = [to_torch_tensor(t, numpy_type=t.dtype) if isinstance(t, np.ndarray) else t
|
|
@@ -403,13 +403,14 @@ class PytorchImplementation(FrameworkImplementation):
|
|
|
403
403
|
return True
|
|
404
404
|
return False
|
|
405
405
|
|
|
406
|
-
def
|
|
406
|
+
def get_mp_node_distance_fn(self, layer_class: type,
|
|
407
407
|
framework_attrs: Dict[str, Any],
|
|
408
408
|
compute_distance_fn: Callable = None,
|
|
409
|
-
axis: int = None
|
|
409
|
+
axis: int = None,
|
|
410
|
+
norm_mse: bool = False) -> Callable:
|
|
410
411
|
"""
|
|
411
412
|
A mapping between layers' types and a distance function for computing the distance between
|
|
412
|
-
two tensors (for loss computation purposes). Returns a specific function if node of specific types is
|
|
413
|
+
two tensors in mixed precision (for loss computation purposes). Returns a specific function if node of specific types is
|
|
413
414
|
given, or a default (normalized MSE) function otherwise.
|
|
414
415
|
|
|
415
416
|
Args:
|
|
@@ -417,6 +418,7 @@ class PytorchImplementation(FrameworkImplementation):
|
|
|
417
418
|
framework_attrs: Framework attributes the layer had which the graph node holds.
|
|
418
419
|
compute_distance_fn: An optional distance function to use globally for all nodes.
|
|
419
420
|
axis: The axis on which the operation is preformed (if specified).
|
|
421
|
+
norm_mse: whether to normalize mse distance function.
|
|
420
422
|
|
|
421
423
|
Returns: A distance function between two tensors.
|
|
422
424
|
"""
|
|
@@ -430,7 +432,7 @@ class PytorchImplementation(FrameworkImplementation):
|
|
|
430
432
|
return compute_cs
|
|
431
433
|
elif layer_class == Linear:
|
|
432
434
|
return compute_cs
|
|
433
|
-
return compute_mse
|
|
435
|
+
return partial(compute_mse, norm=norm_mse)
|
|
434
436
|
|
|
435
437
|
def is_output_node_compatible_for_hessian_score_computation(self,
|
|
436
438
|
node: BaseNode) -> bool:
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|