mct-nightly 2.0.0.20240521.151450__tar.gz → 2.0.0.20240522.172031__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (495) hide show
  1. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/PKG-INFO +1 -1
  2. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/__init__.py +1 -1
  4. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/framework_implementation.py +6 -4
  5. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/base_node.py +6 -2
  6. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +10 -5
  7. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/keras_implementation.py +6 -4
  8. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +1 -2
  9. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +6 -4
  10. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/LICENSE.md +0 -0
  11. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/README.md +0 -0
  12. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/mct_nightly.egg-info/SOURCES.txt +0 -0
  13. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/mct_nightly.egg-info/dependency_links.txt +0 -0
  14. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/mct_nightly.egg-info/requires.txt +0 -0
  15. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/mct_nightly.egg-info/top_level.txt +0 -0
  16. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/constants.py +0 -0
  17. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/__init__.py +0 -0
  18. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/analyzer.py +0 -0
  19. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/__init__.py +0 -0
  20. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  21. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  22. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  23. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  24. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  25. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  26. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  27. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  28. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  29. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/framework_info.py +0 -0
  30. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  31. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  32. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  33. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  34. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  35. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  36. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  37. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  38. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  39. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  40. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  41. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  42. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  43. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  44. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  45. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  46. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  47. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  48. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  49. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py +0 -0
  50. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/hessian/trace_hessian_request.py +0 -0
  51. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  52. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  53. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  54. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  55. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  56. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  57. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  58. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  59. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  60. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  61. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  62. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  63. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  64. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  65. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  66. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  67. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  68. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  69. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  70. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  71. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  72. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  73. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  74. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  75. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  76. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  77. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  78. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/model_collector.py +0 -0
  79. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/model_validation.py +0 -0
  80. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  81. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  82. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  83. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  84. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  85. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  86. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  87. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  88. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  89. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  90. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  91. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  92. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  93. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  94. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  95. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  96. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  97. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  98. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  99. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  100. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  101. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  102. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  103. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  104. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  105. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  106. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  107. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  108. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  109. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  110. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  111. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  112. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  113. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  114. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  115. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  116. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  117. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  118. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  119. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  120. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  121. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  122. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  123. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  124. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  125. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  126. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  127. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  128. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  129. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  130. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  131. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  132. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  133. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  134. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  135. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  136. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  137. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  138. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  139. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  140. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  141. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  142. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  143. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  144. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  145. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  146. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  147. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  148. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  149. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/user_info.py +0 -0
  150. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  151. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  152. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  153. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  154. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  155. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/__init__.py +0 -0
  156. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  157. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  158. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  159. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  160. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  161. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  162. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  163. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/constants.py +0 -0
  164. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  165. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  166. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  167. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  168. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  169. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  170. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  171. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  172. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  173. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  174. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  175. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  176. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  177. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  178. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  179. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  180. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  181. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  182. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  183. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  184. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  185. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  186. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  187. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  188. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +0 -0
  189. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py +0 -0
  190. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py +0 -0
  191. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  192. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  193. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  194. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  195. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  196. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  197. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  198. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  199. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  200. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  201. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  202. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  203. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  204. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  205. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  206. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  207. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  208. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  209. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  210. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  211. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  212. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  213. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  214. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  215. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  216. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  217. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  218. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  219. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  220. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  221. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  222. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  223. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  224. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  225. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  226. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  227. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  228. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  229. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  230. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  231. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  232. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  233. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  234. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  235. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  236. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  237. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  238. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  239. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  240. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/permute_call_method.py +0 -0
  241. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  242. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  243. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  244. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  245. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  246. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  247. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  248. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  249. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  250. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  251. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +0 -0
  252. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py +0 -0
  253. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py +0 -0
  254. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  255. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  256. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  257. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  258. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  259. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  260. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  261. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  262. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  263. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  264. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  265. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  266. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  267. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  268. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  269. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  270. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  271. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  272. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  273. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/core/runner.py +0 -0
  274. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/__init__.py +0 -0
  275. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  276. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  277. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  278. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  279. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  280. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  281. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  282. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  283. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  284. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  285. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  286. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  287. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  288. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  289. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  290. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  291. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  292. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  293. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  294. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  295. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  296. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  297. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  298. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  299. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  300. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  301. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  302. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  303. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  304. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  305. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  306. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  307. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/defaultdict.py +0 -0
  308. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/__init__.py +0 -0
  309. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  310. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  311. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  312. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  313. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  314. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  315. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  316. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  317. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  318. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  319. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  320. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  321. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  322. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  323. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  324. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  325. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  326. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  327. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  328. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  329. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  330. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  331. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  332. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  333. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  334. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  335. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  336. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  337. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  338. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  339. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  340. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/__init__.py +0 -0
  341. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  342. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  343. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  344. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  345. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  346. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  347. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  348. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  349. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  350. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  351. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  352. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  353. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  354. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  355. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  356. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  357. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  358. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  359. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  360. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  361. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  362. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  363. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  364. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  365. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  366. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  367. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  368. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  369. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  370. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  371. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  372. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  373. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  374. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  375. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  376. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  377. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  378. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  379. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  380. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  381. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/gptq/runner.py +0 -0
  382. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/logger.py +0 -0
  383. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/metadata.py +0 -0
  384. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/pruning/__init__.py +0 -0
  385. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  386. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  387. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  388. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  389. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/__init__.py +0 -0
  390. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  391. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  392. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  393. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  394. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/ptq/runner.py +0 -0
  395. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/__init__.py +0 -0
  396. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/common/__init__.py +0 -0
  397. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  398. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  399. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  400. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  401. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  402. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  403. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  404. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  405. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  406. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  407. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  408. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  409. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  410. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  411. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  412. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  413. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
  414. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  415. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  416. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  417. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  418. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
  419. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  420. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  421. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  422. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  423. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  424. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  425. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  426. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  427. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  428. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  429. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  430. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  431. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  432. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  433. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  434. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  435. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  436. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  437. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  438. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  439. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  440. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  441. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  442. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  443. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  444. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  445. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  446. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  447. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  448. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  449. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  450. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  451. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  452. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  453. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  454. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  455. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  456. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  457. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  458. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  459. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  460. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  461. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  462. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  463. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  464. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  465. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  466. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  467. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  468. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  469. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  470. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  471. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  472. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  473. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  474. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  475. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  476. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  477. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  478. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  479. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  480. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  481. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  482. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  483. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  484. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  485. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  486. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  487. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  488. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  489. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  490. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  491. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  492. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  493. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  494. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/setup.cfg +0 -0
  495. {mct-nightly-2.0.0.20240521.151450 → mct-nightly-2.0.0.20240522.172031}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240521.151450
3
+ Version: 2.0.0.20240522.172031
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240521.151450
3
+ Version: 2.0.0.20240522.172031
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.0.0.20240521.151450"
30
+ __version__ = "2.0.0.20240522.172031"
@@ -348,13 +348,14 @@ class FrameworkImplementation(ABC):
348
348
  raise NotImplemented(f'{self.__class__.__name__} have to implement the '
349
349
  f'framework\'s count_node_for_mixed_precision_interest_points method.') # pragma: no cover
350
350
 
351
- def get_node_distance_fn(self, layer_class: type,
351
+ def get_mp_node_distance_fn(self, layer_class: type,
352
352
  framework_attrs: Dict[str, Any],
353
353
  compute_distance_fn: Callable = None,
354
- axis: int = None) -> Callable:
354
+ axis: int = None,
355
+ norm_mse: bool = False) -> Callable:
355
356
  """
356
357
  A mapping between layers' types and a distance function for computing the distance between
357
- two tensors (for loss computation purposes). Returns a specific function if node of specific types is
358
+ two tensors in mixed precision (for loss computation purposes). Returns a specific function if node of specific types is
358
359
  given, or a default (normalized MSE) function otherwise.
359
360
 
360
361
  Args:
@@ -362,12 +363,13 @@ class FrameworkImplementation(ABC):
362
363
  framework_attrs: Framework attributes the layer had which the graph node holds.
363
364
  compute_distance_fn: An optional distance function to use globally for all nodes.
364
365
  axis: The axis on which the operation is preformed (if specified).
366
+ norm_mse: whether to normalize mse distance function.
365
367
 
366
368
  Returns: A distance function between two tensors.
367
369
  """
368
370
 
369
371
  raise NotImplemented(f'{self.__class__.__name__} have to implement the '
370
- f'framework\'s get_node_distance_fn method.') # pragma: no cover
372
+ f'framework\'s get_mp_node_distance_fn method.') # pragma: no cover
371
373
 
372
374
 
373
375
  @abstractmethod
@@ -238,8 +238,12 @@ class BaseNode:
238
238
  """
239
239
  for pos, weight in sorted((pos, weight) for pos, weight in self.weights.items()
240
240
  if isinstance(pos, int)):
241
- assert pos <= len(input_tensors), 'Positional weight index mismatch'
242
- input_tensors.insert(pos, weight)
241
+ if pos > len(input_tensors):
242
+ Logger.critical("The positional weight index cannot exceed the number of input tensors to the node.") # pragma: no cover
243
+ # Insert only positional weights that are not subject to quantization. If the positional weight is
244
+ # subject to quantization, the quantization wrapper inserts the positional weight into the node.
245
+ if not self.is_weights_quantization_enabled(pos):
246
+ input_tensors.insert(pos, weight)
243
247
 
244
248
  return input_tensors
245
249
 
@@ -89,10 +89,13 @@ class SensitivityEvaluation:
89
89
  fw_impl.count_node_for_mixed_precision_interest_points,
90
90
  quant_config.num_interest_points_factor)
91
91
 
92
- self.ips_distance_fns, self.ips_axis = self._init_metric_points_lists(self.interest_points)
92
+ # We use normalized MSE when not running hessian-based. For Hessian-based normalized MSE is not needed
93
+ # beacause hessian weights already do normalization.
94
+ use_normalized_mse = self.quant_config.use_hessian_based_scores is False
95
+ self.ips_distance_fns, self.ips_axis = self._init_metric_points_lists(self.interest_points, use_normalized_mse)
93
96
 
94
97
  self.output_points = get_output_nodes_for_metric(graph)
95
- self.out_ps_distance_fns, self.out_ps_axis = self._init_metric_points_lists(self.output_points)
98
+ self.out_ps_distance_fns, self.out_ps_axis = self._init_metric_points_lists(self.output_points, use_normalized_mse)
96
99
 
97
100
  # Setting lists with relative position of the interest points
98
101
  # and output points in the list of all mp model activation tensors
@@ -128,7 +131,7 @@ class SensitivityEvaluation:
128
131
  self.interest_points_hessians = self._compute_hessian_based_scores()
129
132
  self.quant_config.distance_weighting_method = lambda d: self.interest_points_hessians
130
133
 
131
- def _init_metric_points_lists(self, points: List[BaseNode]) -> Tuple[List[Callable], List[int]]:
134
+ def _init_metric_points_lists(self, points: List[BaseNode], norm_mse: bool = False) -> Tuple[List[Callable], List[int]]:
132
135
  """
133
136
  Initiates required lists for future use when computing the sensitivity metric.
134
137
  Each point on which the metric is computed uses a dedicated distance function based on its type.
@@ -136,6 +139,7 @@ class SensitivityEvaluation:
136
139
 
137
140
  Args:
138
141
  points: The set of nodes in the graph for which we need to initiate the lists.
142
+ norm_mse: whether to normalize mse distance function.
139
143
 
140
144
  Returns: A lists with distance functions and an axis list for each node.
141
145
 
@@ -144,11 +148,12 @@ class SensitivityEvaluation:
144
148
  axis_list = []
145
149
  for n in points:
146
150
  axis = n.framework_attr.get(AXIS) if not isinstance(n, FunctionalNode) else n.op_call_kwargs.get(AXIS)
147
- distance_fn = self.fw_impl.get_node_distance_fn(
151
+ distance_fn = self.fw_impl.get_mp_node_distance_fn(
148
152
  layer_class=n.layer_class,
149
153
  framework_attrs=n.framework_attr,
150
154
  compute_distance_fn=self.quant_config.compute_distance_fn,
151
- axis=axis)
155
+ axis=axis,
156
+ norm_mse=norm_mse)
152
157
  distance_fns_list.append(distance_fn)
153
158
  # Axis is needed only for KL Divergence calculation, otherwise we use per-tensor computation
154
159
  axis_list.append(axis if distance_fn==compute_kl_divergence else None)
@@ -421,13 +421,14 @@ class KerasImplementation(FrameworkImplementation):
421
421
 
422
422
  return False
423
423
 
424
- def get_node_distance_fn(self, layer_class: type,
424
+ def get_mp_node_distance_fn(self, layer_class: type,
425
425
  framework_attrs: Dict[str, Any],
426
426
  compute_distance_fn: Callable = None,
427
- axis: int = None) -> Callable:
427
+ axis: int = None,
428
+ norm_mse: bool = False) -> Callable:
428
429
  """
429
430
  A mapping between layers' types and a distance function for computing the distance between
430
- two tensors (for loss computation purposes). Returns a specific function if node of specific types is
431
+ two tensors in mixed precision (for loss computation purposes). Returns a specific function if node of specific types is
431
432
  given, or a default (normalized MSE) function otherwise.
432
433
 
433
434
  Args:
@@ -435,6 +436,7 @@ class KerasImplementation(FrameworkImplementation):
435
436
  framework_attrs: Framework attributes the layer had which the graph node holds.
436
437
  compute_distance_fn: An optional distance function to use globally for all nodes.
437
438
  axis: The axis on which the operation is preformed (if specified).
439
+ norm_mse: whether to normalize mse distance function.
438
440
 
439
441
  Returns: A distance function between two tensors.
440
442
  """
@@ -456,7 +458,7 @@ class KerasImplementation(FrameworkImplementation):
456
458
  return compute_cs
457
459
  elif layer_class == Dense:
458
460
  return compute_cs
459
- return compute_mse
461
+ return partial(compute_mse, norm=norm_mse)
460
462
 
461
463
  def get_trace_hessian_calculator(self,
462
464
  graph: Graph,
@@ -67,8 +67,7 @@ def _build_input_tensors_list(node: BaseNode,
67
67
  _input_tensors = node_to_output_tensors_dict[ie.source_node]
68
68
  input_tensors.append(_input_tensors)
69
69
  input_tensors = [tensor for tensor_list in input_tensors for tensor in tensor_list] # flat list of lists
70
- if not is_op_quantize_wrapper:
71
- input_tensors = node.insert_positional_weights_to_input_list(input_tensors)
70
+ input_tensors = node.insert_positional_weights_to_input_list(input_tensors)
72
71
  # convert inputs from positional weights (numpy arrays) to tensors. Must handle each element in the
73
72
  # list separately, because in FX the tensors are FX objects and fail to_torch_tensor
74
73
  input_tensors = [to_torch_tensor(t, numpy_type=t.dtype) if isinstance(t, np.ndarray) else t
@@ -403,13 +403,14 @@ class PytorchImplementation(FrameworkImplementation):
403
403
  return True
404
404
  return False
405
405
 
406
- def get_node_distance_fn(self, layer_class: type,
406
+ def get_mp_node_distance_fn(self, layer_class: type,
407
407
  framework_attrs: Dict[str, Any],
408
408
  compute_distance_fn: Callable = None,
409
- axis: int = None) -> Callable:
409
+ axis: int = None,
410
+ norm_mse: bool = False) -> Callable:
410
411
  """
411
412
  A mapping between layers' types and a distance function for computing the distance between
412
- two tensors (for loss computation purposes). Returns a specific function if node of specific types is
413
+ two tensors in mixed precision (for loss computation purposes). Returns a specific function if node of specific types is
413
414
  given, or a default (normalized MSE) function otherwise.
414
415
 
415
416
  Args:
@@ -417,6 +418,7 @@ class PytorchImplementation(FrameworkImplementation):
417
418
  framework_attrs: Framework attributes the layer had which the graph node holds.
418
419
  compute_distance_fn: An optional distance function to use globally for all nodes.
419
420
  axis: The axis on which the operation is preformed (if specified).
421
+ norm_mse: whether to normalize mse distance function.
420
422
 
421
423
  Returns: A distance function between two tensors.
422
424
  """
@@ -430,7 +432,7 @@ class PytorchImplementation(FrameworkImplementation):
430
432
  return compute_cs
431
433
  elif layer_class == Linear:
432
434
  return compute_cs
433
- return compute_mse
435
+ return partial(compute_mse, norm=norm_mse)
434
436
 
435
437
  def is_output_node_compatible_for_hessian_score_computation(self,
436
438
  node: BaseNode) -> bool: