mct-nightly 2.0.0.20240521.140523__tar.gz → 2.0.0.20240521.145957__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (495) hide show
  1. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/PKG-INFO +22 -22
  2. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/README.md +21 -21
  3. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/mct_nightly.egg-info/PKG-INFO +22 -22
  4. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/__init__.py +1 -1
  5. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/LICENSE.md +0 -0
  6. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/mct_nightly.egg-info/SOURCES.txt +0 -0
  7. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/mct_nightly.egg-info/dependency_links.txt +0 -0
  8. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/mct_nightly.egg-info/requires.txt +0 -0
  9. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/mct_nightly.egg-info/top_level.txt +0 -0
  10. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/constants.py +0 -0
  11. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/__init__.py +0 -0
  12. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/analyzer.py +0 -0
  13. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/__init__.py +0 -0
  14. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  15. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  16. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  17. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  18. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  19. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  20. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  21. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  22. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  23. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  24. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/framework_info.py +0 -0
  25. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  26. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  27. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  28. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  29. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  30. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  31. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  32. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  33. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  34. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  35. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  36. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  37. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  38. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  39. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  40. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  41. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  42. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  43. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  44. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  45. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py +0 -0
  46. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/hessian/trace_hessian_request.py +0 -0
  47. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  48. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  49. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  50. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  51. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  52. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  53. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  54. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  55. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  56. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  57. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  58. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  59. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  60. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  61. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  62. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  63. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  64. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  65. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  66. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  67. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  68. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  69. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  70. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  71. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  72. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  73. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  74. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  75. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/model_collector.py +0 -0
  76. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/model_validation.py +0 -0
  77. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  78. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  79. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  80. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  81. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  82. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  83. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  84. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  85. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  86. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  87. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  88. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  89. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  90. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  91. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  92. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  93. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  94. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  95. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  96. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  97. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  98. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  99. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  100. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  101. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  102. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  103. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  104. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  105. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  106. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  107. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  108. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  109. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  110. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  111. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  112. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  113. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  114. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  115. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  116. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  117. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  118. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  119. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  120. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  121. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  122. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  123. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  124. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  125. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  126. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  127. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  128. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  129. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  130. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  131. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  132. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  133. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  134. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  135. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  136. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  137. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  138. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  139. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  140. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  141. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  142. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  143. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  144. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  145. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  146. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/user_info.py +0 -0
  147. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  148. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  149. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  150. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  151. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  152. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/__init__.py +0 -0
  153. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  154. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  155. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  156. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  157. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  158. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  159. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  160. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/constants.py +0 -0
  161. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  162. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  163. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  164. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  165. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  166. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  167. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  168. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  169. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  170. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  171. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  172. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  173. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  174. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  175. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  176. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  177. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  178. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  179. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  180. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  181. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  182. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  183. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  184. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  185. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +0 -0
  186. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py +0 -0
  187. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py +0 -0
  188. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  189. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  190. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  191. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  192. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  193. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  194. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  195. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  196. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  197. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  198. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  199. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  200. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  201. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  202. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  203. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  204. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  205. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  206. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  207. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  208. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  209. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  210. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  211. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  212. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  213. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  214. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  215. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  216. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  217. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  218. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  219. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  220. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  221. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  222. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  223. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  224. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  225. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  226. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  227. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  228. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  229. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  230. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  231. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  232. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  233. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  234. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  235. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  236. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  237. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  238. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  239. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/permute_call_method.py +0 -0
  240. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  241. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  242. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  243. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  244. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  245. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  246. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  247. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  248. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  249. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  250. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +0 -0
  251. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py +0 -0
  252. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py +0 -0
  253. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  254. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  255. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  256. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  257. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  258. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  259. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  260. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  261. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  262. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  263. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  264. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  265. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  266. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  267. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  268. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  269. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  270. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  271. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  272. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  273. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/runner.py +0 -0
  274. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/__init__.py +0 -0
  275. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  276. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  277. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  278. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  279. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  280. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  281. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  282. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  283. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  284. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  285. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  286. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  287. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  288. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  289. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  290. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  291. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  292. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  293. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  294. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  295. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  296. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  297. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  298. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  299. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  300. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  301. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  302. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  303. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  304. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  305. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  306. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  307. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/defaultdict.py +0 -0
  308. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/__init__.py +0 -0
  309. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  310. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  311. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  312. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  313. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  314. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  315. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  316. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  317. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  318. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  319. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  320. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  321. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  322. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  323. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  324. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  325. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  326. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  327. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  328. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  329. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  330. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  331. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  332. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  333. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  334. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  335. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  336. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  337. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  338. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  339. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  340. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/__init__.py +0 -0
  341. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  342. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  343. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  344. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  345. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  346. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  347. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  348. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  349. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  350. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  351. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  352. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  353. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  354. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  355. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  356. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  357. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  358. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  359. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  360. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  361. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  362. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  363. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  364. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  365. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  366. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  367. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  368. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  369. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  370. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  371. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  372. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  373. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  374. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  375. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  376. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  377. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  378. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  379. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  380. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  381. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/runner.py +0 -0
  382. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/logger.py +0 -0
  383. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/metadata.py +0 -0
  384. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/pruning/__init__.py +0 -0
  385. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  386. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  387. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  388. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  389. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/__init__.py +0 -0
  390. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  391. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  392. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  393. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  394. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/runner.py +0 -0
  395. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/__init__.py +0 -0
  396. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/common/__init__.py +0 -0
  397. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  398. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  399. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  400. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  401. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  402. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  403. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  404. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  405. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  406. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  407. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  408. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  409. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  410. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  411. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  412. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  413. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
  414. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  415. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  416. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  417. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  418. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
  419. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  420. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  421. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  422. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  423. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  424. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  425. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  426. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  427. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  428. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  429. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  430. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  431. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  432. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  433. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  434. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  435. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  436. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  437. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  438. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  439. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  440. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  441. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  442. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  443. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  444. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  445. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  446. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  447. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  448. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  449. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  450. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  451. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  452. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  453. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  454. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  455. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  456. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  457. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  458. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  459. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  460. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  461. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  462. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  463. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  464. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  465. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  466. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  467. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  468. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  469. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  470. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  471. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  472. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  473. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  474. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  475. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  476. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  477. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  478. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  479. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  480. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  481. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  482. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  483. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  484. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  485. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  486. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  487. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  488. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  489. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  490. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  491. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  492. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  493. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  494. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/setup.cfg +0 -0
  495. {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240521.140523
3
+ Version: 2.0.0.20240521.145957
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -12,7 +12,7 @@ Description: # Model Compression Toolkit (MCT)
12
12
 
13
13
  Specifically, this project aims to apply quantization to compress neural networks.
14
14
 
15
- <img src="docsrc/images/mct_block_diagram.svg" width="10000">
15
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
16
16
 
17
17
  MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
18
18
 
@@ -20,12 +20,12 @@ Description: # Model Compression Toolkit (MCT)
20
20
 
21
21
  ## Table of Contents
22
22
 
23
- - [Getting Started](#getting-started)
24
- - [Supported features](#supported-features)
25
- - [Results](#results)
26
- - [Troubleshooting](#trouble-shooting)
27
- - [Contributions](#contributions)
28
- - [License](#license)
23
+ - [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
24
+ - [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
25
+ - [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
26
+ - [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
27
+ - [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
28
+ - [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
29
29
 
30
30
 
31
31
  ## Getting Started
@@ -45,11 +45,11 @@ Description: # Model Compression Toolkit (MCT)
45
45
  ### Quick start & tutorials
46
46
 
47
47
  Explore the Model Compression Toolkit (MCT) through our tutorials,
48
- covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
48
+ covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
49
49
  for hands-on learning. For example:
50
- * [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
51
- * [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
52
- * [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
50
+ * [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
51
+ * [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
52
+ * [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
53
53
 
54
54
 
55
55
  ### Supported Versions
@@ -73,15 +73,15 @@ Description: # Model Compression Toolkit (MCT)
73
73
  ## Supported Features
74
74
  MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
75
75
 
76
- ### Data Generation [*](#experimental-features)
76
+ ### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
77
77
  MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
78
- You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](model_compression_toolkit/data_generation/README.md)
78
+ You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
79
79
 
80
80
  ### Quantization
81
81
  MCT supports different quantization methods:
82
82
  * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
83
83
  * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
84
- * Quantization-aware training (QAT) [*](#experimental-features)
84
+ * Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
85
85
 
86
86
 
87
87
  | Quantization Method | Complexity | Computational Cost |
@@ -103,20 +103,20 @@ Description: # Model Compression Toolkit (MCT)
103
103
  * <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
104
104
  * <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
105
105
  * <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
106
- * <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
106
+ * <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
107
107
  * <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
108
108
  * <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
109
- * <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).
109
+ * <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
110
110
 
111
111
  ### Enhanced Post-Training Quantization (EPTQ)
112
112
  As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
113
113
 
114
114
  The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
115
115
 
116
- More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](model_compression_toolkit/gptq/README.md).
116
+ More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
117
117
 
118
118
 
119
- ### Structured Pruning [*](#experimental-features)
119
+ ### Structured Pruning [*]((https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features))
120
120
  MCT introduces a structured and hardware-aware model pruning.
121
121
  This pruning technique is designed to compress models for specific hardware architectures,
122
122
  taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
@@ -138,7 +138,7 @@ Description: # Model Compression Toolkit (MCT)
138
138
  Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
139
139
  single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
140
140
 
141
- <img src="docsrc/images/mbv2_accuracy_graph.png">
141
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
142
142
 
143
143
  For more results, please see [1]
144
144
 
@@ -174,11 +174,11 @@ Description: # Model Compression Toolkit (MCT)
174
174
  ## Contributions
175
175
  MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
176
176
 
177
- *You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).
177
+ *You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
178
178
 
179
179
 
180
180
  ## License
181
- [Apache License 2.0](LICENSE.md).
181
+ [Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
182
182
 
183
183
  ## References
184
184
 
@@ -6,7 +6,7 @@ This project provides researchers, developers, and engineers tools for optimizin
6
6
 
7
7
  Specifically, this project aims to apply quantization to compress neural networks.
8
8
 
9
- <img src="docsrc/images/mct_block_diagram.svg" width="10000">
9
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
10
10
 
11
11
  MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
12
12
 
@@ -14,12 +14,12 @@ MCT is developed by researchers and engineers working at Sony Semiconductor Isra
14
14
 
15
15
  ## Table of Contents
16
16
 
17
- - [Getting Started](#getting-started)
18
- - [Supported features](#supported-features)
19
- - [Results](#results)
20
- - [Troubleshooting](#trouble-shooting)
21
- - [Contributions](#contributions)
22
- - [License](#license)
17
+ - [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
18
+ - [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
19
+ - [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
20
+ - [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
21
+ - [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
22
+ - [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
23
23
 
24
24
 
25
25
  ## Getting Started
@@ -39,11 +39,11 @@ For installing the nightly version or installing from source, refer to the [inst
39
39
  ### Quick start & tutorials
40
40
 
41
41
  Explore the Model Compression Toolkit (MCT) through our tutorials,
42
- covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
42
+ covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
43
43
  for hands-on learning. For example:
44
- * [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
45
- * [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
46
- * [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
44
+ * [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
45
+ * [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
46
+ * [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
47
47
 
48
48
 
49
49
  ### Supported Versions
@@ -67,15 +67,15 @@ Currently, MCT is being tested on various Python, Pytorch and TensorFlow version
67
67
  ## Supported Features
68
68
  MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
69
69
 
70
- ### Data Generation [*](#experimental-features)
70
+ ### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
71
71
  MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
72
- You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](model_compression_toolkit/data_generation/README.md)
72
+ You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
73
73
 
74
74
  ### Quantization
75
75
  MCT supports different quantization methods:
76
76
  * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
77
77
  * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
78
- * Quantization-aware training (QAT) [*](#experimental-features)
78
+ * Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
79
79
 
80
80
 
81
81
  | Quantization Method | Complexity | Computational Cost |
@@ -97,20 +97,20 @@ Main features:
97
97
  * <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
98
98
  * <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
99
99
  * <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
100
- * <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
100
+ * <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
101
101
  * <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
102
102
  * <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
103
- * <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).
103
+ * <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
104
104
 
105
105
  ### Enhanced Post-Training Quantization (EPTQ)
106
106
  As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
107
107
 
108
108
  The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
109
109
 
110
- More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](model_compression_toolkit/gptq/README.md).
110
+ More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
111
111
 
112
112
 
113
- ### Structured Pruning [*](#experimental-features)
113
+ ### Structured Pruning [*]((https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features))
114
114
  MCT introduces a structured and hardware-aware model pruning.
115
115
  This pruning technique is designed to compress models for specific hardware architectures,
116
116
  taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
@@ -132,7 +132,7 @@ For more details, we highly recommend visiting our project website where experim
132
132
  Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
133
133
  single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
134
134
 
135
- <img src="docsrc/images/mbv2_accuracy_graph.png">
135
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
136
136
 
137
137
  For more results, please see [1]
138
138
 
@@ -168,11 +168,11 @@ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md)
168
168
  ## Contributions
169
169
  MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
170
170
 
171
- *You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).
171
+ *You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
172
172
 
173
173
 
174
174
  ## License
175
- [Apache License 2.0](LICENSE.md).
175
+ [Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
176
176
 
177
177
  ## References
178
178
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240521.140523
3
+ Version: 2.0.0.20240521.145957
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -12,7 +12,7 @@ Description: # Model Compression Toolkit (MCT)
12
12
 
13
13
  Specifically, this project aims to apply quantization to compress neural networks.
14
14
 
15
- <img src="docsrc/images/mct_block_diagram.svg" width="10000">
15
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
16
16
 
17
17
  MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
18
18
 
@@ -20,12 +20,12 @@ Description: # Model Compression Toolkit (MCT)
20
20
 
21
21
  ## Table of Contents
22
22
 
23
- - [Getting Started](#getting-started)
24
- - [Supported features](#supported-features)
25
- - [Results](#results)
26
- - [Troubleshooting](#trouble-shooting)
27
- - [Contributions](#contributions)
28
- - [License](#license)
23
+ - [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
24
+ - [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
25
+ - [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
26
+ - [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
27
+ - [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
28
+ - [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
29
29
 
30
30
 
31
31
  ## Getting Started
@@ -45,11 +45,11 @@ Description: # Model Compression Toolkit (MCT)
45
45
  ### Quick start & tutorials
46
46
 
47
47
  Explore the Model Compression Toolkit (MCT) through our tutorials,
48
- covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
48
+ covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
49
49
  for hands-on learning. For example:
50
- * [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
51
- * [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
52
- * [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
50
+ * [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
51
+ * [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
52
+ * [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
53
53
 
54
54
 
55
55
  ### Supported Versions
@@ -73,15 +73,15 @@ Description: # Model Compression Toolkit (MCT)
73
73
  ## Supported Features
74
74
  MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
75
75
 
76
- ### Data Generation [*](#experimental-features)
76
+ ### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
77
77
  MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
78
- You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](model_compression_toolkit/data_generation/README.md)
78
+ You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
79
79
 
80
80
  ### Quantization
81
81
  MCT supports different quantization methods:
82
82
  * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
83
83
  * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
84
- * Quantization-aware training (QAT) [*](#experimental-features)
84
+ * Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
85
85
 
86
86
 
87
87
  | Quantization Method | Complexity | Computational Cost |
@@ -103,20 +103,20 @@ Description: # Model Compression Toolkit (MCT)
103
103
  * <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
104
104
  * <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
105
105
  * <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
106
- * <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
106
+ * <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
107
107
  * <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
108
108
  * <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
109
- * <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).
109
+ * <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
110
110
 
111
111
  ### Enhanced Post-Training Quantization (EPTQ)
112
112
  As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
113
113
 
114
114
  The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
115
115
 
116
- More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](model_compression_toolkit/gptq/README.md).
116
+ More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
117
117
 
118
118
 
119
- ### Structured Pruning [*](#experimental-features)
119
+ ### Structured Pruning [*]((https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features))
120
120
  MCT introduces a structured and hardware-aware model pruning.
121
121
  This pruning technique is designed to compress models for specific hardware architectures,
122
122
  taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
@@ -138,7 +138,7 @@ Description: # Model Compression Toolkit (MCT)
138
138
  Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
139
139
  single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
140
140
 
141
- <img src="docsrc/images/mbv2_accuracy_graph.png">
141
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
142
142
 
143
143
  For more results, please see [1]
144
144
 
@@ -174,11 +174,11 @@ Description: # Model Compression Toolkit (MCT)
174
174
  ## Contributions
175
175
  MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
176
176
 
177
- *You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).
177
+ *You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
178
178
 
179
179
 
180
180
  ## License
181
- [Apache License 2.0](LICENSE.md).
181
+ [Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
182
182
 
183
183
  ## References
184
184
 
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.0.0.20240521.140523"
30
+ __version__ = "2.0.0.20240521.145957"