mct-nightly 2.0.0.20240521.140523__tar.gz → 2.0.0.20240521.145957__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/PKG-INFO +22 -22
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/README.md +21 -21
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/mct_nightly.egg-info/PKG-INFO +22 -22
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/LICENSE.md +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/mct_nightly.egg-info/SOURCES.txt +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/hessian/trace_hessian_request.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/permute_call_method.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/setup.cfg +0 -0
- {mct-nightly-2.0.0.20240521.140523 → mct-nightly-2.0.0.20240521.145957}/setup.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mct-nightly
|
|
3
|
-
Version: 2.0.0.20240521.
|
|
3
|
+
Version: 2.0.0.20240521.145957
|
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
|
5
5
|
Home-page: UNKNOWN
|
|
6
6
|
License: UNKNOWN
|
|
@@ -12,7 +12,7 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
12
12
|
|
|
13
13
|
Specifically, this project aims to apply quantization to compress neural networks.
|
|
14
14
|
|
|
15
|
-
<img src="docsrc/images/mct_block_diagram.svg" width="10000">
|
|
15
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
|
|
16
16
|
|
|
17
17
|
MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
|
|
18
18
|
|
|
@@ -20,12 +20,12 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
20
20
|
|
|
21
21
|
## Table of Contents
|
|
22
22
|
|
|
23
|
-
- [Getting Started](#getting-started)
|
|
24
|
-
- [Supported features](#supported-features)
|
|
25
|
-
- [Results](#results)
|
|
26
|
-
- [Troubleshooting](#trouble-shooting)
|
|
27
|
-
- [Contributions](#contributions)
|
|
28
|
-
- [License](#license)
|
|
23
|
+
- [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
|
|
24
|
+
- [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
|
|
25
|
+
- [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
|
|
26
|
+
- [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
|
|
27
|
+
- [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
|
|
28
|
+
- [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
|
|
29
29
|
|
|
30
30
|
|
|
31
31
|
## Getting Started
|
|
@@ -45,11 +45,11 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
45
45
|
### Quick start & tutorials
|
|
46
46
|
|
|
47
47
|
Explore the Model Compression Toolkit (MCT) through our tutorials,
|
|
48
|
-
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
|
|
48
|
+
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
|
|
49
49
|
for hands-on learning. For example:
|
|
50
|
-
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
51
|
-
* [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
52
|
-
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
50
|
+
* [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
51
|
+
* [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
52
|
+
* [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
53
53
|
|
|
54
54
|
|
|
55
55
|
### Supported Versions
|
|
@@ -73,15 +73,15 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
73
73
|
## Supported Features
|
|
74
74
|
MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
|
|
75
75
|
|
|
76
|
-
### Data Generation [*](#experimental-features)
|
|
76
|
+
### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
77
77
|
MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
|
|
78
|
-
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](model_compression_toolkit/data_generation/README.md)
|
|
78
|
+
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
|
|
79
79
|
|
|
80
80
|
### Quantization
|
|
81
81
|
MCT supports different quantization methods:
|
|
82
82
|
* Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
|
|
83
83
|
* Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
|
|
84
|
-
* Quantization-aware training (QAT) [*](#experimental-features)
|
|
84
|
+
* Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
85
85
|
|
|
86
86
|
|
|
87
87
|
| Quantization Method | Complexity | Computational Cost |
|
|
@@ -103,20 +103,20 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
103
103
|
* <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
|
|
104
104
|
* <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
|
|
105
105
|
* <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
|
|
106
|
-
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
|
|
106
|
+
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
107
107
|
* <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
|
|
108
108
|
* <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
|
|
109
|
-
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).
|
|
109
|
+
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
|
|
110
110
|
|
|
111
111
|
### Enhanced Post-Training Quantization (EPTQ)
|
|
112
112
|
As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
|
|
113
113
|
|
|
114
114
|
The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
|
|
115
115
|
|
|
116
|
-
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](model_compression_toolkit/gptq/README.md).
|
|
116
|
+
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
|
117
117
|
|
|
118
118
|
|
|
119
|
-
### Structured Pruning [*](#experimental-features)
|
|
119
|
+
### Structured Pruning [*]((https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features))
|
|
120
120
|
MCT introduces a structured and hardware-aware model pruning.
|
|
121
121
|
This pruning technique is designed to compress models for specific hardware architectures,
|
|
122
122
|
taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
|
|
@@ -138,7 +138,7 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
138
138
|
Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
|
|
139
139
|
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
|
140
140
|
|
|
141
|
-
<img src="docsrc/images/mbv2_accuracy_graph.png">
|
|
141
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
|
|
142
142
|
|
|
143
143
|
For more results, please see [1]
|
|
144
144
|
|
|
@@ -174,11 +174,11 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
174
174
|
## Contributions
|
|
175
175
|
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
|
|
176
176
|
|
|
177
|
-
*You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).
|
|
177
|
+
*You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
|
|
178
178
|
|
|
179
179
|
|
|
180
180
|
## License
|
|
181
|
-
[Apache License 2.0](LICENSE.md).
|
|
181
|
+
[Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
|
|
182
182
|
|
|
183
183
|
## References
|
|
184
184
|
|
|
@@ -6,7 +6,7 @@ This project provides researchers, developers, and engineers tools for optimizin
|
|
|
6
6
|
|
|
7
7
|
Specifically, this project aims to apply quantization to compress neural networks.
|
|
8
8
|
|
|
9
|
-
<img src="docsrc/images/mct_block_diagram.svg" width="10000">
|
|
9
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
|
|
10
10
|
|
|
11
11
|
MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
|
|
12
12
|
|
|
@@ -14,12 +14,12 @@ MCT is developed by researchers and engineers working at Sony Semiconductor Isra
|
|
|
14
14
|
|
|
15
15
|
## Table of Contents
|
|
16
16
|
|
|
17
|
-
- [Getting Started](#getting-started)
|
|
18
|
-
- [Supported features](#supported-features)
|
|
19
|
-
- [Results](#results)
|
|
20
|
-
- [Troubleshooting](#trouble-shooting)
|
|
21
|
-
- [Contributions](#contributions)
|
|
22
|
-
- [License](#license)
|
|
17
|
+
- [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
|
|
18
|
+
- [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
|
|
19
|
+
- [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
|
|
20
|
+
- [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
|
|
21
|
+
- [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
|
|
22
|
+
- [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
|
|
23
23
|
|
|
24
24
|
|
|
25
25
|
## Getting Started
|
|
@@ -39,11 +39,11 @@ For installing the nightly version or installing from source, refer to the [inst
|
|
|
39
39
|
### Quick start & tutorials
|
|
40
40
|
|
|
41
41
|
Explore the Model Compression Toolkit (MCT) through our tutorials,
|
|
42
|
-
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
|
|
42
|
+
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
|
|
43
43
|
for hands-on learning. For example:
|
|
44
|
-
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
45
|
-
* [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
46
|
-
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
44
|
+
* [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
45
|
+
* [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
46
|
+
* [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
47
47
|
|
|
48
48
|
|
|
49
49
|
### Supported Versions
|
|
@@ -67,15 +67,15 @@ Currently, MCT is being tested on various Python, Pytorch and TensorFlow version
|
|
|
67
67
|
## Supported Features
|
|
68
68
|
MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
|
|
69
69
|
|
|
70
|
-
### Data Generation [*](#experimental-features)
|
|
70
|
+
### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
71
71
|
MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
|
|
72
|
-
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](model_compression_toolkit/data_generation/README.md)
|
|
72
|
+
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
|
|
73
73
|
|
|
74
74
|
### Quantization
|
|
75
75
|
MCT supports different quantization methods:
|
|
76
76
|
* Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
|
|
77
77
|
* Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
|
|
78
|
-
* Quantization-aware training (QAT) [*](#experimental-features)
|
|
78
|
+
* Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
79
79
|
|
|
80
80
|
|
|
81
81
|
| Quantization Method | Complexity | Computational Cost |
|
|
@@ -97,20 +97,20 @@ Main features:
|
|
|
97
97
|
* <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
|
|
98
98
|
* <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
|
|
99
99
|
* <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
|
|
100
|
-
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
|
|
100
|
+
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
101
101
|
* <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
|
|
102
102
|
* <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
|
|
103
|
-
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).
|
|
103
|
+
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
|
|
104
104
|
|
|
105
105
|
### Enhanced Post-Training Quantization (EPTQ)
|
|
106
106
|
As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
|
|
107
107
|
|
|
108
108
|
The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
|
|
109
109
|
|
|
110
|
-
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](model_compression_toolkit/gptq/README.md).
|
|
110
|
+
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
|
111
111
|
|
|
112
112
|
|
|
113
|
-
### Structured Pruning [*](#experimental-features)
|
|
113
|
+
### Structured Pruning [*]((https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features))
|
|
114
114
|
MCT introduces a structured and hardware-aware model pruning.
|
|
115
115
|
This pruning technique is designed to compress models for specific hardware architectures,
|
|
116
116
|
taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
|
|
@@ -132,7 +132,7 @@ For more details, we highly recommend visiting our project website where experim
|
|
|
132
132
|
Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
|
|
133
133
|
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
|
134
134
|
|
|
135
|
-
<img src="docsrc/images/mbv2_accuracy_graph.png">
|
|
135
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
|
|
136
136
|
|
|
137
137
|
For more results, please see [1]
|
|
138
138
|
|
|
@@ -168,11 +168,11 @@ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md)
|
|
|
168
168
|
## Contributions
|
|
169
169
|
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
|
|
170
170
|
|
|
171
|
-
*You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).
|
|
171
|
+
*You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
|
|
172
172
|
|
|
173
173
|
|
|
174
174
|
## License
|
|
175
|
-
[Apache License 2.0](LICENSE.md).
|
|
175
|
+
[Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
|
|
176
176
|
|
|
177
177
|
## References
|
|
178
178
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mct-nightly
|
|
3
|
-
Version: 2.0.0.20240521.
|
|
3
|
+
Version: 2.0.0.20240521.145957
|
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
|
5
5
|
Home-page: UNKNOWN
|
|
6
6
|
License: UNKNOWN
|
|
@@ -12,7 +12,7 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
12
12
|
|
|
13
13
|
Specifically, this project aims to apply quantization to compress neural networks.
|
|
14
14
|
|
|
15
|
-
<img src="docsrc/images/mct_block_diagram.svg" width="10000">
|
|
15
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
|
|
16
16
|
|
|
17
17
|
MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
|
|
18
18
|
|
|
@@ -20,12 +20,12 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
20
20
|
|
|
21
21
|
## Table of Contents
|
|
22
22
|
|
|
23
|
-
- [Getting Started](#getting-started)
|
|
24
|
-
- [Supported features](#supported-features)
|
|
25
|
-
- [Results](#results)
|
|
26
|
-
- [Troubleshooting](#trouble-shooting)
|
|
27
|
-
- [Contributions](#contributions)
|
|
28
|
-
- [License](#license)
|
|
23
|
+
- [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
|
|
24
|
+
- [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
|
|
25
|
+
- [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
|
|
26
|
+
- [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
|
|
27
|
+
- [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
|
|
28
|
+
- [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
|
|
29
29
|
|
|
30
30
|
|
|
31
31
|
## Getting Started
|
|
@@ -45,11 +45,11 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
45
45
|
### Quick start & tutorials
|
|
46
46
|
|
|
47
47
|
Explore the Model Compression Toolkit (MCT) through our tutorials,
|
|
48
|
-
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
|
|
48
|
+
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
|
|
49
49
|
for hands-on learning. For example:
|
|
50
|
-
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
51
|
-
* [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
52
|
-
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
50
|
+
* [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
51
|
+
* [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
52
|
+
* [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
53
53
|
|
|
54
54
|
|
|
55
55
|
### Supported Versions
|
|
@@ -73,15 +73,15 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
73
73
|
## Supported Features
|
|
74
74
|
MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
|
|
75
75
|
|
|
76
|
-
### Data Generation [*](#experimental-features)
|
|
76
|
+
### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
77
77
|
MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
|
|
78
|
-
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](model_compression_toolkit/data_generation/README.md)
|
|
78
|
+
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
|
|
79
79
|
|
|
80
80
|
### Quantization
|
|
81
81
|
MCT supports different quantization methods:
|
|
82
82
|
* Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
|
|
83
83
|
* Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
|
|
84
|
-
* Quantization-aware training (QAT) [*](#experimental-features)
|
|
84
|
+
* Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
85
85
|
|
|
86
86
|
|
|
87
87
|
| Quantization Method | Complexity | Computational Cost |
|
|
@@ -103,20 +103,20 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
103
103
|
* <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
|
|
104
104
|
* <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
|
|
105
105
|
* <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
|
|
106
|
-
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
|
|
106
|
+
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
|
107
107
|
* <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
|
|
108
108
|
* <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
|
|
109
|
-
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).
|
|
109
|
+
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
|
|
110
110
|
|
|
111
111
|
### Enhanced Post-Training Quantization (EPTQ)
|
|
112
112
|
As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
|
|
113
113
|
|
|
114
114
|
The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
|
|
115
115
|
|
|
116
|
-
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](model_compression_toolkit/gptq/README.md).
|
|
116
|
+
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
|
117
117
|
|
|
118
118
|
|
|
119
|
-
### Structured Pruning [*](#experimental-features)
|
|
119
|
+
### Structured Pruning [*]((https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features))
|
|
120
120
|
MCT introduces a structured and hardware-aware model pruning.
|
|
121
121
|
This pruning technique is designed to compress models for specific hardware architectures,
|
|
122
122
|
taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
|
|
@@ -138,7 +138,7 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
138
138
|
Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
|
|
139
139
|
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
|
140
140
|
|
|
141
|
-
<img src="docsrc/images/mbv2_accuracy_graph.png">
|
|
141
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
|
|
142
142
|
|
|
143
143
|
For more results, please see [1]
|
|
144
144
|
|
|
@@ -174,11 +174,11 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
174
174
|
## Contributions
|
|
175
175
|
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
|
|
176
176
|
|
|
177
|
-
*You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).
|
|
177
|
+
*You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
|
|
178
178
|
|
|
179
179
|
|
|
180
180
|
## License
|
|
181
|
-
[Apache License 2.0](LICENSE.md).
|
|
181
|
+
[Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
|
|
182
182
|
|
|
183
183
|
## References
|
|
184
184
|
|
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
|
27
27
|
from model_compression_toolkit import pruning
|
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
|
29
29
|
|
|
30
|
-
__version__ = "2.0.0.20240521.
|
|
30
|
+
__version__ = "2.0.0.20240521.145957"
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|