mct-nightly 2.0.0.20240508.145608__tar.gz → 2.0.0.20240510.421__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/PKG-INFO +4 -9
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/README.md +3 -8
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/mct_nightly.egg-info/PKG-INFO +4 -9
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +8 -11
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +3 -3
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +3 -4
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +1 -1
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +4 -17
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +4 -17
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/LICENSE.md +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/mct_nightly.egg-info/SOURCES.txt +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/hessian/trace_hessian_request.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/permute_call_method.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/setup.cfg +0 -0
- {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/setup.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mct-nightly
|
|
3
|
-
Version: 2.0.0.
|
|
3
|
+
Version: 2.0.0.20240510.421
|
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
|
5
5
|
Home-page: UNKNOWN
|
|
6
6
|
License: UNKNOWN
|
|
@@ -47,13 +47,10 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
47
47
|
Explore the Model Compression Toolkit (MCT) through our tutorials,
|
|
48
48
|
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
|
|
49
49
|
for hands-on learning. For example:
|
|
50
|
-
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/keras/
|
|
51
|
-
* [Post training quantization with PyTorch](tutorials/notebooks/pytorch/
|
|
52
|
-
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/pytorch/
|
|
50
|
+
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
51
|
+
* [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
52
|
+
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
53
53
|
|
|
54
|
-
Additionally, for quick quantization of a variety of models from well-known collections,
|
|
55
|
-
visit the [quick-start page](tutorials/quick_start/README.md) and the
|
|
56
|
-
[results CSV](tutorials/quick_start/results/model_quantization_results.csv).
|
|
57
54
|
|
|
58
55
|
### Supported Versions
|
|
59
56
|
|
|
@@ -155,8 +152,6 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
155
152
|
| ResNet-18 [3] | 69.86 | 69.63 |69.53|
|
|
156
153
|
| SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
|
|
157
154
|
|
|
158
|
-
For more results, please refer to [quick start](https://github.com/sony/model_optimization/tree/main/tutorials/quick_start).
|
|
159
|
-
|
|
160
155
|
|
|
161
156
|
#### Pruning Results
|
|
162
157
|
|
|
@@ -41,13 +41,10 @@ For installing the nightly version or installing from source, refer to the [inst
|
|
|
41
41
|
Explore the Model Compression Toolkit (MCT) through our tutorials,
|
|
42
42
|
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
|
|
43
43
|
for hands-on learning. For example:
|
|
44
|
-
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/keras/
|
|
45
|
-
* [Post training quantization with PyTorch](tutorials/notebooks/pytorch/
|
|
46
|
-
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/pytorch/
|
|
44
|
+
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
45
|
+
* [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
46
|
+
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
47
47
|
|
|
48
|
-
Additionally, for quick quantization of a variety of models from well-known collections,
|
|
49
|
-
visit the [quick-start page](tutorials/quick_start/README.md) and the
|
|
50
|
-
[results CSV](tutorials/quick_start/results/model_quantization_results.csv).
|
|
51
48
|
|
|
52
49
|
### Supported Versions
|
|
53
50
|
|
|
@@ -149,8 +146,6 @@ In the following table we present the ImageNet validation results for these mode
|
|
|
149
146
|
| ResNet-18 [3] | 69.86 | 69.63 |69.53|
|
|
150
147
|
| SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
|
|
151
148
|
|
|
152
|
-
For more results, please refer to [quick start](https://github.com/sony/model_optimization/tree/main/tutorials/quick_start).
|
|
153
|
-
|
|
154
149
|
|
|
155
150
|
#### Pruning Results
|
|
156
151
|
|
{mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/mct_nightly.egg-info/PKG-INFO
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mct-nightly
|
|
3
|
-
Version: 2.0.0.
|
|
3
|
+
Version: 2.0.0.20240510.421
|
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
|
5
5
|
Home-page: UNKNOWN
|
|
6
6
|
License: UNKNOWN
|
|
@@ -47,13 +47,10 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
47
47
|
Explore the Model Compression Toolkit (MCT) through our tutorials,
|
|
48
48
|
covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
|
|
49
49
|
for hands-on learning. For example:
|
|
50
|
-
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/keras/
|
|
51
|
-
* [Post training quantization with PyTorch](tutorials/notebooks/pytorch/
|
|
52
|
-
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/pytorch/
|
|
50
|
+
* [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
|
|
51
|
+
* [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
|
|
52
|
+
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
|
|
53
53
|
|
|
54
|
-
Additionally, for quick quantization of a variety of models from well-known collections,
|
|
55
|
-
visit the [quick-start page](tutorials/quick_start/README.md) and the
|
|
56
|
-
[results CSV](tutorials/quick_start/results/model_quantization_results.csv).
|
|
57
54
|
|
|
58
55
|
### Supported Versions
|
|
59
56
|
|
|
@@ -155,8 +152,6 @@ Description: # Model Compression Toolkit (MCT)
|
|
|
155
152
|
| ResNet-18 [3] | 69.86 | 69.63 |69.53|
|
|
156
153
|
| SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
|
|
157
154
|
|
|
158
|
-
For more results, please refer to [quick start](https://github.com/sony/model_optimization/tree/main/tutorials/quick_start).
|
|
159
|
-
|
|
160
155
|
|
|
161
156
|
#### Pruning Results
|
|
162
157
|
|
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
|
27
27
|
from model_compression_toolkit import pruning
|
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
|
29
29
|
|
|
30
|
-
__version__ = "2.0.0.
|
|
30
|
+
__version__ = "2.0.0.20240510.000421"
|
|
@@ -72,19 +72,10 @@ def get_node_properties(node_dict_to_log: dict,
|
|
|
72
72
|
# Create protobuf for the node's output shapes
|
|
73
73
|
if output_shapes is not None:
|
|
74
74
|
tshape_protos = []
|
|
75
|
-
is_tf_combined_non_max_suppression = len(output_shapes) == 1 and 'function' in node_dict_to_log and node_dict_to_log['function'] == 'image.combined_non_max_suppression'
|
|
76
|
-
|
|
77
|
-
if is_tf_combined_non_max_suppression:
|
|
78
|
-
combined_nms_output = output_shapes[0]
|
|
79
|
-
output_shapes = [combined_nms_output.nmsed_boxes,
|
|
80
|
-
combined_nms_output.nmsed_scores,
|
|
81
|
-
combined_nms_output.nmsed_classes,
|
|
82
|
-
combined_nms_output.valid_detections]
|
|
83
|
-
|
|
84
75
|
for output_shape in output_shapes: # create protobuf for each output shape
|
|
85
76
|
proto_dims_list = []
|
|
86
77
|
for dim in output_shape:
|
|
87
|
-
proto_dims_list.append(TensorShapeProto.Dim(size=dim))
|
|
78
|
+
proto_dims_list.append(TensorShapeProto.Dim(size=dim)) # dim is expected to be an integer
|
|
88
79
|
tshape_proto = TensorShapeProto(dim=proto_dims_list)
|
|
89
80
|
tshape_protos.append(tshape_proto)
|
|
90
81
|
node_properties['_output_shapes'] = AttrValue(list=AttrValue.ListValue(shape=tshape_protos))
|
|
@@ -272,7 +263,13 @@ class TensorboardWriter(object):
|
|
|
272
263
|
|
|
273
264
|
# For nodes with an "empty" output shape.
|
|
274
265
|
output_shape = (None,) if n.output_shape == () else n.output_shape
|
|
275
|
-
|
|
266
|
+
if 'CombinedNonMaxSuppression' in str(output_shape):
|
|
267
|
+
# output_shapes is expected to be a list of tuples where each tuple is an output shape.
|
|
268
|
+
# For NMS layers, we need to align the node's output shapes before creating the node's properties.
|
|
269
|
+
output_shape = [output_shape.nmsed_boxes,
|
|
270
|
+
output_shape.nmsed_scores,
|
|
271
|
+
output_shape.nmsed_classes,
|
|
272
|
+
output_shape.valid_detections]
|
|
276
273
|
dims = []
|
|
277
274
|
if isinstance(output_shape, list):
|
|
278
275
|
for o in output_shape:
|
|
@@ -354,9 +354,9 @@ else:
|
|
|
354
354
|
# If torch is not installed,
|
|
355
355
|
# we raise an exception when trying to use these functions.
|
|
356
356
|
def get_pytorch_data_generation_config(*args, **kwargs):
|
|
357
|
-
msg = f"
|
|
357
|
+
msg = f"PyTorch and torchvision must be installed to use get_pytorch_data_generation_config. " + ("" if FOUND_TORCH else "The 'torch' package is missing. ") + ("" if FOUND_TORCHVISION else "The 'torchvision' package is missing. ") # pragma: no cover
|
|
358
358
|
Logger.critical(msg) # pragma: no cover
|
|
359
359
|
|
|
360
360
|
def pytorch_data_generation_experimental(*args, **kwargs):
|
|
361
|
-
msg = f"
|
|
362
|
-
Logger.critical(msg) # pragma: no cover
|
|
361
|
+
msg = f"PyTorch and torchvision must be installed to use pytorch_data_generation_experimental. " + ("" if FOUND_TORCH else "The 'torch' package is missing. ") + ("" if FOUND_TORCHVISION else "The 'torchvision' package is missing. ") # pragma: no cover
|
|
362
|
+
Logger.critical(msg) # pragma: no cover
|
|
@@ -43,7 +43,7 @@ if FOUND_ONNX:
|
|
|
43
43
|
save_model_path: str,
|
|
44
44
|
repr_dataset: Callable,
|
|
45
45
|
onnx_opset_version: int,
|
|
46
|
-
use_onnx_custom_quantizer_ops: bool = False
|
|
46
|
+
use_onnx_custom_quantizer_ops: bool = False):
|
|
47
47
|
"""
|
|
48
48
|
|
|
49
49
|
Args:
|
|
@@ -134,6 +134,5 @@ if FOUND_ONNX:
|
|
|
134
134
|
|
|
135
135
|
else:
|
|
136
136
|
def FakelyQuantONNXPyTorchExporter(*args, **kwargs):
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
'Could not find onnx package.') # pragma: no cover
|
|
137
|
+
Logger.critical("ONNX must be installed to use 'FakelyQuantONNXPyTorchExporter'. "
|
|
138
|
+
"The 'onnx' package is missing.") # pragma: no cover
|
|
@@ -14,7 +14,7 @@
|
|
|
14
14
|
# ==============================================================================
|
|
15
15
|
from typing import Callable
|
|
16
16
|
|
|
17
|
-
from model_compression_toolkit.constants import FOUND_TORCH
|
|
17
|
+
from model_compression_toolkit.constants import FOUND_TORCH
|
|
18
18
|
from model_compression_toolkit.exporter.model_exporter.fw_agonstic.quantization_format import QuantizationFormat
|
|
19
19
|
from model_compression_toolkit.exporter.model_exporter.pytorch.export_serialization_format import \
|
|
20
20
|
PytorchExportSerializationFormat
|
|
@@ -152,19 +152,6 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
|
152
152
|
# this configuration will be used for the operation quantization:
|
|
153
153
|
default_configuration_options = tp.QuantizationConfigOptions([default_config])
|
|
154
154
|
|
|
155
|
-
# Create a QuantizationConfigOptions for quantizing constants in functional ops.
|
|
156
|
-
# Constant configuration is similar to the default eight bit configuration except for PoT
|
|
157
|
-
# quantization method for the constant.
|
|
158
|
-
# Since the constants are not named attributes of the layer, we use the default_weight_attr_config to
|
|
159
|
-
# define the desired quantization properties for them.
|
|
160
|
-
const_config = default_config.clone_and_edit(
|
|
161
|
-
default_weight_attr_config=default_config.default_weight_attr_config.clone_and_edit(
|
|
162
|
-
enable_weights_quantization=True))
|
|
163
|
-
if not (const_config.default_weight_attr_config.weights_quantization_method == tp.QuantizationMethod.POWER_OF_TWO and
|
|
164
|
-
const_config.default_weight_attr_config.weights_per_channel_threshold is False):
|
|
165
|
-
mct.logger.Logger.error('Constant quantization config should be per-tensor PoT.')
|
|
166
|
-
const_configuration_options = tp.QuantizationConfigOptions([const_config])
|
|
167
|
-
|
|
168
155
|
# Create a TargetPlatformModel and set its default quantization config.
|
|
169
156
|
# This default configuration will be used for all operations
|
|
170
157
|
# unless specified otherwise (see OperatorsSet, for example):
|
|
@@ -198,10 +185,10 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
|
198
185
|
# Define operations sets without quantization configuration
|
|
199
186
|
# options (useful for creating fusing patterns, for example):
|
|
200
187
|
any_relu = tp.OperatorsSet("AnyReLU")
|
|
201
|
-
add = tp.OperatorsSet("Add"
|
|
202
|
-
sub = tp.OperatorsSet("Sub"
|
|
203
|
-
mul = tp.OperatorsSet("Mul"
|
|
204
|
-
div = tp.OperatorsSet("Div"
|
|
188
|
+
add = tp.OperatorsSet("Add")
|
|
189
|
+
sub = tp.OperatorsSet("Sub")
|
|
190
|
+
mul = tp.OperatorsSet("Mul")
|
|
191
|
+
div = tp.OperatorsSet("Div")
|
|
205
192
|
prelu = tp.OperatorsSet("PReLU")
|
|
206
193
|
swish = tp.OperatorsSet("Swish")
|
|
207
194
|
sigmoid = tp.OperatorsSet("Sigmoid")
|
|
@@ -151,19 +151,6 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
|
151
151
|
# this configuration will be used for the operation quantization:
|
|
152
152
|
default_configuration_options = tp.QuantizationConfigOptions([default_config])
|
|
153
153
|
|
|
154
|
-
# Create a QuantizationConfigOptions for quantizing constants in functional ops.
|
|
155
|
-
# Constant configuration is similar to the default eight bit configuration except for PoT
|
|
156
|
-
# quantization method for the constant.
|
|
157
|
-
# Since the constants are not named attributes of the layer, we use the default_weight_attr_config to
|
|
158
|
-
# define the desired quantization properties for them.
|
|
159
|
-
const_config = default_config.clone_and_edit(
|
|
160
|
-
default_weight_attr_config=default_config.default_weight_attr_config.clone_and_edit(
|
|
161
|
-
enable_weights_quantization=True))
|
|
162
|
-
if not (const_config.default_weight_attr_config.weights_quantization_method == tp.QuantizationMethod.POWER_OF_TWO and
|
|
163
|
-
const_config.default_weight_attr_config.weights_per_channel_threshold is False):
|
|
164
|
-
mct.logger.Logger.error('Constant quantization config should be per-tensor PoT.')
|
|
165
|
-
const_configuration_options = tp.QuantizationConfigOptions([const_config])
|
|
166
|
-
|
|
167
154
|
# Create a TargetPlatformModel and set its default quantization config.
|
|
168
155
|
# This default configuration will be used for all operations
|
|
169
156
|
# unless specified otherwise (see OperatorsSet, for example):
|
|
@@ -195,10 +182,10 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
|
195
182
|
# Define operations sets without quantization configuration
|
|
196
183
|
# options (useful for creating fusing patterns, for example):
|
|
197
184
|
any_relu = tp.OperatorsSet("AnyReLU")
|
|
198
|
-
add = tp.OperatorsSet("Add"
|
|
199
|
-
sub = tp.OperatorsSet("Sub"
|
|
200
|
-
mul = tp.OperatorsSet("Mul"
|
|
201
|
-
div = tp.OperatorsSet("Div"
|
|
185
|
+
add = tp.OperatorsSet("Add")
|
|
186
|
+
sub = tp.OperatorsSet("Sub")
|
|
187
|
+
mul = tp.OperatorsSet("Mul")
|
|
188
|
+
div = tp.OperatorsSet("Div")
|
|
202
189
|
prelu = tp.OperatorsSet("PReLU")
|
|
203
190
|
swish = tp.OperatorsSet("Swish")
|
|
204
191
|
sigmoid = tp.OperatorsSet("Sigmoid")
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|