mct-nightly 2.0.0.20240508.145608__tar.gz → 2.0.0.20240510.421__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (495) hide show
  1. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/PKG-INFO +4 -9
  2. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/README.md +3 -8
  3. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/mct_nightly.egg-info/PKG-INFO +4 -9
  4. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/__init__.py +1 -1
  5. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +8 -11
  6. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +3 -3
  7. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +3 -4
  8. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +1 -1
  9. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +4 -17
  10. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +4 -17
  11. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/LICENSE.md +0 -0
  12. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/mct_nightly.egg-info/SOURCES.txt +0 -0
  13. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/mct_nightly.egg-info/dependency_links.txt +0 -0
  14. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/mct_nightly.egg-info/requires.txt +0 -0
  15. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/mct_nightly.egg-info/top_level.txt +0 -0
  16. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/constants.py +0 -0
  17. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/__init__.py +0 -0
  18. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/analyzer.py +0 -0
  19. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/__init__.py +0 -0
  20. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  21. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  22. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  23. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  24. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  25. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  26. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  27. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  28. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  29. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  30. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/framework_info.py +0 -0
  31. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  32. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  33. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  34. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  35. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  36. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  37. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  38. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  39. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  40. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  41. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  42. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  43. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  44. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  45. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  46. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  47. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  48. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  49. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  50. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  51. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py +0 -0
  52. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/hessian/trace_hessian_request.py +0 -0
  53. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  54. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  55. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  56. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  57. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  58. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  59. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  60. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  61. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  62. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  63. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  64. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  65. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  66. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  67. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  68. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  69. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  70. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  71. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  72. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  73. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  74. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  75. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  76. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  77. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  78. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  79. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  80. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  81. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/model_collector.py +0 -0
  82. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/model_validation.py +0 -0
  83. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  84. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  85. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  86. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  87. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  88. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  89. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  90. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  91. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  92. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  93. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  94. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  95. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  96. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  97. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  98. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  99. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  100. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  101. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  102. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  103. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  104. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  105. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  106. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  107. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  108. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  109. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  110. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  111. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  112. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  113. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  114. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  115. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  116. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  117. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  118. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  119. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  120. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  121. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  122. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  123. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  124. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  125. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  126. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  127. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  128. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  129. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  130. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  131. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  132. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  133. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  134. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  135. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  136. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  137. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  138. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  139. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  140. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  141. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  142. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  143. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  144. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  145. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  146. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  147. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  148. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  149. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  150. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  151. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  152. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/user_info.py +0 -0
  153. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  154. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  155. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  156. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  157. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/__init__.py +0 -0
  158. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  159. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  160. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  161. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  162. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  163. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  164. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  165. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/constants.py +0 -0
  166. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  167. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  168. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  169. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  170. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  171. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  172. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  173. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  174. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  175. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  176. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  177. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  178. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  179. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  180. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  181. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  182. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  183. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  184. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  185. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  186. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  187. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  188. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  189. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  190. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +0 -0
  191. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py +0 -0
  192. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py +0 -0
  193. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  194. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  195. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  196. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  197. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  198. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  199. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  200. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  201. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  202. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  203. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  204. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  205. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  206. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  207. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  208. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  209. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  210. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  211. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  212. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  213. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  214. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  215. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  216. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  217. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  218. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  219. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  220. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  221. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  222. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  223. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  224. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  225. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  226. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  227. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  228. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  229. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  230. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  231. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  232. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  233. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  234. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  235. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  236. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  237. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  238. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  239. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  240. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  241. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  242. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  243. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  244. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/permute_call_method.py +0 -0
  245. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  246. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  247. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  248. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  249. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  250. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  251. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  252. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  253. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  254. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  255. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +0 -0
  256. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py +0 -0
  257. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py +0 -0
  258. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  259. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  260. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  261. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  262. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  263. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  264. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  265. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  266. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  267. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  268. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  269. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  270. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  271. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  272. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  273. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  274. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  275. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  276. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  277. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  278. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/core/runner.py +0 -0
  279. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/__init__.py +0 -0
  280. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  281. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  282. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  283. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  284. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  285. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  286. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  287. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  288. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  289. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  290. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  291. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  292. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  293. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  294. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  295. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  296. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  297. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  298. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  299. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  300. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  301. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  302. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  303. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  304. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  305. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  306. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  307. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  308. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  309. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  310. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  311. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/defaultdict.py +0 -0
  312. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/__init__.py +0 -0
  313. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  314. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  315. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  316. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  317. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  318. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  319. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  320. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  321. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  322. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  323. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  324. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  325. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  326. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  327. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  328. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  329. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  330. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  331. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  332. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  333. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  334. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  335. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  336. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  337. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  338. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  339. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  340. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  341. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  342. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/__init__.py +0 -0
  343. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  344. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  345. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  346. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  347. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  348. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  349. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  350. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  351. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  352. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  353. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  354. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  355. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  356. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  357. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  358. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  359. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  360. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  361. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  362. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  363. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  364. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  365. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  366. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  367. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  368. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  369. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  370. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  371. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  372. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  373. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  374. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  375. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  376. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  377. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  378. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  379. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  380. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  381. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  382. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  383. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/gptq/runner.py +0 -0
  384. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/logger.py +0 -0
  385. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/metadata.py +0 -0
  386. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/pruning/__init__.py +0 -0
  387. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  388. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  389. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  390. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  391. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/__init__.py +0 -0
  392. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  393. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  394. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  395. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  396. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/ptq/runner.py +0 -0
  397. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/__init__.py +0 -0
  398. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/common/__init__.py +0 -0
  399. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  400. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  401. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  402. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  403. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  404. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  405. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  406. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  407. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  408. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  409. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  410. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  411. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  412. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  413. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  414. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  415. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
  416. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  417. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  418. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  419. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  420. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
  421. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  422. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  423. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  424. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  425. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  426. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  427. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  428. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  429. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  430. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  431. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  432. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  433. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  434. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  435. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  436. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  437. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  438. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  439. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  440. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  441. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  442. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  443. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  444. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  445. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  446. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  447. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  448. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  449. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  450. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  451. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  452. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  453. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  454. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  455. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  456. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  457. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  458. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  459. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  460. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  461. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  462. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  463. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  464. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  465. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  466. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  467. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  468. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  469. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  470. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  471. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  472. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  473. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  474. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  475. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  476. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  477. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  478. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  479. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  480. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  481. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  482. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  483. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  484. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  485. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  486. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  487. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  488. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  489. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  490. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  491. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  492. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  493. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  494. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/setup.cfg +0 -0
  495. {mct-nightly-2.0.0.20240508.145608 → mct-nightly-2.0.0.20240510.421}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240508.145608
3
+ Version: 2.0.0.20240510.421
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -47,13 +47,10 @@ Description: # Model Compression Toolkit (MCT)
47
47
  Explore the Model Compression Toolkit (MCT) through our tutorials,
48
48
  covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
49
49
  for hands-on learning. For example:
50
- * [Keras MobileNetV2 post training quantization](tutorials/notebooks/keras/ptq/example_keras_imagenet.ipynb)
51
- * [Post training quantization with PyTorch](tutorials/notebooks/pytorch/ptq/example_pytorch_quantization_mnist.ipynb)
52
- * [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/pytorch/data_generation/example_pytorch_data_generation.ipynb).
50
+ * [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
51
+ * [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
52
+ * [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
53
53
 
54
- Additionally, for quick quantization of a variety of models from well-known collections,
55
- visit the [quick-start page](tutorials/quick_start/README.md) and the
56
- [results CSV](tutorials/quick_start/results/model_quantization_results.csv).
57
54
 
58
55
  ### Supported Versions
59
56
 
@@ -155,8 +152,6 @@ Description: # Model Compression Toolkit (MCT)
155
152
  | ResNet-18 [3] | 69.86 | 69.63 |69.53|
156
153
  | SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
157
154
 
158
- For more results, please refer to [quick start](https://github.com/sony/model_optimization/tree/main/tutorials/quick_start).
159
-
160
155
 
161
156
  #### Pruning Results
162
157
 
@@ -41,13 +41,10 @@ For installing the nightly version or installing from source, refer to the [inst
41
41
  Explore the Model Compression Toolkit (MCT) through our tutorials,
42
42
  covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
43
43
  for hands-on learning. For example:
44
- * [Keras MobileNetV2 post training quantization](tutorials/notebooks/keras/ptq/example_keras_imagenet.ipynb)
45
- * [Post training quantization with PyTorch](tutorials/notebooks/pytorch/ptq/example_pytorch_quantization_mnist.ipynb)
46
- * [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/pytorch/data_generation/example_pytorch_data_generation.ipynb).
44
+ * [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
45
+ * [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
46
+ * [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
47
47
 
48
- Additionally, for quick quantization of a variety of models from well-known collections,
49
- visit the [quick-start page](tutorials/quick_start/README.md) and the
50
- [results CSV](tutorials/quick_start/results/model_quantization_results.csv).
51
48
 
52
49
  ### Supported Versions
53
50
 
@@ -149,8 +146,6 @@ In the following table we present the ImageNet validation results for these mode
149
146
  | ResNet-18 [3] | 69.86 | 69.63 |69.53|
150
147
  | SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
151
148
 
152
- For more results, please refer to [quick start](https://github.com/sony/model_optimization/tree/main/tutorials/quick_start).
153
-
154
149
 
155
150
  #### Pruning Results
156
151
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240508.145608
3
+ Version: 2.0.0.20240510.421
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -47,13 +47,10 @@ Description: # Model Compression Toolkit (MCT)
47
47
  Explore the Model Compression Toolkit (MCT) through our tutorials,
48
48
  covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
49
49
  for hands-on learning. For example:
50
- * [Keras MobileNetV2 post training quantization](tutorials/notebooks/keras/ptq/example_keras_imagenet.ipynb)
51
- * [Post training quantization with PyTorch](tutorials/notebooks/pytorch/ptq/example_pytorch_quantization_mnist.ipynb)
52
- * [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/pytorch/data_generation/example_pytorch_data_generation.ipynb).
50
+ * [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
51
+ * [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
52
+ * [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
53
53
 
54
- Additionally, for quick quantization of a variety of models from well-known collections,
55
- visit the [quick-start page](tutorials/quick_start/README.md) and the
56
- [results CSV](tutorials/quick_start/results/model_quantization_results.csv).
57
54
 
58
55
  ### Supported Versions
59
56
 
@@ -155,8 +152,6 @@ Description: # Model Compression Toolkit (MCT)
155
152
  | ResNet-18 [3] | 69.86 | 69.63 |69.53|
156
153
  | SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
157
154
 
158
- For more results, please refer to [quick start](https://github.com/sony/model_optimization/tree/main/tutorials/quick_start).
159
-
160
155
 
161
156
  #### Pruning Results
162
157
 
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.0.0.20240508.145608"
30
+ __version__ = "2.0.0.20240510.000421"
@@ -72,19 +72,10 @@ def get_node_properties(node_dict_to_log: dict,
72
72
  # Create protobuf for the node's output shapes
73
73
  if output_shapes is not None:
74
74
  tshape_protos = []
75
- is_tf_combined_non_max_suppression = len(output_shapes) == 1 and 'function' in node_dict_to_log and node_dict_to_log['function'] == 'image.combined_non_max_suppression'
76
-
77
- if is_tf_combined_non_max_suppression:
78
- combined_nms_output = output_shapes[0]
79
- output_shapes = [combined_nms_output.nmsed_boxes,
80
- combined_nms_output.nmsed_scores,
81
- combined_nms_output.nmsed_classes,
82
- combined_nms_output.valid_detections]
83
-
84
75
  for output_shape in output_shapes: # create protobuf for each output shape
85
76
  proto_dims_list = []
86
77
  for dim in output_shape:
87
- proto_dims_list.append(TensorShapeProto.Dim(size=dim)) # dim shold ne an integer
78
+ proto_dims_list.append(TensorShapeProto.Dim(size=dim)) # dim is expected to be an integer
88
79
  tshape_proto = TensorShapeProto(dim=proto_dims_list)
89
80
  tshape_protos.append(tshape_proto)
90
81
  node_properties['_output_shapes'] = AttrValue(list=AttrValue.ListValue(shape=tshape_protos))
@@ -272,7 +263,13 @@ class TensorboardWriter(object):
272
263
 
273
264
  # For nodes with an "empty" output shape.
274
265
  output_shape = (None,) if n.output_shape == () else n.output_shape
275
-
266
+ if 'CombinedNonMaxSuppression' in str(output_shape):
267
+ # output_shapes is expected to be a list of tuples where each tuple is an output shape.
268
+ # For NMS layers, we need to align the node's output shapes before creating the node's properties.
269
+ output_shape = [output_shape.nmsed_boxes,
270
+ output_shape.nmsed_scores,
271
+ output_shape.nmsed_classes,
272
+ output_shape.valid_detections]
276
273
  dims = []
277
274
  if isinstance(output_shape, list):
278
275
  for o in output_shape:
@@ -354,9 +354,9 @@ else:
354
354
  # If torch is not installed,
355
355
  # we raise an exception when trying to use these functions.
356
356
  def get_pytorch_data_generation_config(*args, **kwargs):
357
- msg = f"torch and torchvision must be installed to use get_pytorch_data_generation_config. " + ("" if FOUND_TORCH else "'torch' package is missing. ") + ("" if FOUND_TORCHVISION else "'torchvision' package is missing. ") # pragma: no cover
357
+ msg = f"PyTorch and torchvision must be installed to use get_pytorch_data_generation_config. " + ("" if FOUND_TORCH else "The 'torch' package is missing. ") + ("" if FOUND_TORCHVISION else "The 'torchvision' package is missing. ") # pragma: no cover
358
358
  Logger.critical(msg) # pragma: no cover
359
359
 
360
360
  def pytorch_data_generation_experimental(*args, **kwargs):
361
- msg = f"torch and torchvision must be installed to use pytorch_data_generation_experimental. " + ("" if FOUND_TORCH else "'torch' package is missing. ") + ("" if FOUND_TORCHVISION else "'torchvision' package is missing. ") # pragma: no cover
362
- Logger.critical(msg) # pragma: no cover
361
+ msg = f"PyTorch and torchvision must be installed to use pytorch_data_generation_experimental. " + ("" if FOUND_TORCH else "The 'torch' package is missing. ") + ("" if FOUND_TORCHVISION else "The 'torchvision' package is missing. ") # pragma: no cover
362
+ Logger.critical(msg) # pragma: no cover
@@ -43,7 +43,7 @@ if FOUND_ONNX:
43
43
  save_model_path: str,
44
44
  repr_dataset: Callable,
45
45
  onnx_opset_version: int,
46
- use_onnx_custom_quantizer_ops: bool = False,):
46
+ use_onnx_custom_quantizer_ops: bool = False):
47
47
  """
48
48
 
49
49
  Args:
@@ -134,6 +134,5 @@ if FOUND_ONNX:
134
134
 
135
135
  else:
136
136
  def FakelyQuantONNXPyTorchExporter(*args, **kwargs):
137
- Logger.critical('Installing onnx is mandatory '
138
- 'when using FakelyQuantONNXPyTorchExporter. '
139
- 'Could not find onnx package.') # pragma: no cover
137
+ Logger.critical("ONNX must be installed to use 'FakelyQuantONNXPyTorchExporter'. "
138
+ "The 'onnx' package is missing.") # pragma: no cover
@@ -14,7 +14,7 @@
14
14
  # ==============================================================================
15
15
  from typing import Callable
16
16
 
17
- from model_compression_toolkit.constants import FOUND_TORCH, FOUND_ONNX
17
+ from model_compression_toolkit.constants import FOUND_TORCH
18
18
  from model_compression_toolkit.exporter.model_exporter.fw_agonstic.quantization_format import QuantizationFormat
19
19
  from model_compression_toolkit.exporter.model_exporter.pytorch.export_serialization_format import \
20
20
  PytorchExportSerializationFormat
@@ -152,19 +152,6 @@ def generate_tp_model(default_config: OpQuantizationConfig,
152
152
  # this configuration will be used for the operation quantization:
153
153
  default_configuration_options = tp.QuantizationConfigOptions([default_config])
154
154
 
155
- # Create a QuantizationConfigOptions for quantizing constants in functional ops.
156
- # Constant configuration is similar to the default eight bit configuration except for PoT
157
- # quantization method for the constant.
158
- # Since the constants are not named attributes of the layer, we use the default_weight_attr_config to
159
- # define the desired quantization properties for them.
160
- const_config = default_config.clone_and_edit(
161
- default_weight_attr_config=default_config.default_weight_attr_config.clone_and_edit(
162
- enable_weights_quantization=True))
163
- if not (const_config.default_weight_attr_config.weights_quantization_method == tp.QuantizationMethod.POWER_OF_TWO and
164
- const_config.default_weight_attr_config.weights_per_channel_threshold is False):
165
- mct.logger.Logger.error('Constant quantization config should be per-tensor PoT.')
166
- const_configuration_options = tp.QuantizationConfigOptions([const_config])
167
-
168
155
  # Create a TargetPlatformModel and set its default quantization config.
169
156
  # This default configuration will be used for all operations
170
157
  # unless specified otherwise (see OperatorsSet, for example):
@@ -198,10 +185,10 @@ def generate_tp_model(default_config: OpQuantizationConfig,
198
185
  # Define operations sets without quantization configuration
199
186
  # options (useful for creating fusing patterns, for example):
200
187
  any_relu = tp.OperatorsSet("AnyReLU")
201
- add = tp.OperatorsSet("Add", const_configuration_options)
202
- sub = tp.OperatorsSet("Sub", const_configuration_options)
203
- mul = tp.OperatorsSet("Mul", const_configuration_options)
204
- div = tp.OperatorsSet("Div", const_configuration_options)
188
+ add = tp.OperatorsSet("Add")
189
+ sub = tp.OperatorsSet("Sub")
190
+ mul = tp.OperatorsSet("Mul")
191
+ div = tp.OperatorsSet("Div")
205
192
  prelu = tp.OperatorsSet("PReLU")
206
193
  swish = tp.OperatorsSet("Swish")
207
194
  sigmoid = tp.OperatorsSet("Sigmoid")
@@ -151,19 +151,6 @@ def generate_tp_model(default_config: OpQuantizationConfig,
151
151
  # this configuration will be used for the operation quantization:
152
152
  default_configuration_options = tp.QuantizationConfigOptions([default_config])
153
153
 
154
- # Create a QuantizationConfigOptions for quantizing constants in functional ops.
155
- # Constant configuration is similar to the default eight bit configuration except for PoT
156
- # quantization method for the constant.
157
- # Since the constants are not named attributes of the layer, we use the default_weight_attr_config to
158
- # define the desired quantization properties for them.
159
- const_config = default_config.clone_and_edit(
160
- default_weight_attr_config=default_config.default_weight_attr_config.clone_and_edit(
161
- enable_weights_quantization=True))
162
- if not (const_config.default_weight_attr_config.weights_quantization_method == tp.QuantizationMethod.POWER_OF_TWO and
163
- const_config.default_weight_attr_config.weights_per_channel_threshold is False):
164
- mct.logger.Logger.error('Constant quantization config should be per-tensor PoT.')
165
- const_configuration_options = tp.QuantizationConfigOptions([const_config])
166
-
167
154
  # Create a TargetPlatformModel and set its default quantization config.
168
155
  # This default configuration will be used for all operations
169
156
  # unless specified otherwise (see OperatorsSet, for example):
@@ -195,10 +182,10 @@ def generate_tp_model(default_config: OpQuantizationConfig,
195
182
  # Define operations sets without quantization configuration
196
183
  # options (useful for creating fusing patterns, for example):
197
184
  any_relu = tp.OperatorsSet("AnyReLU")
198
- add = tp.OperatorsSet("Add", const_configuration_options)
199
- sub = tp.OperatorsSet("Sub", const_configuration_options)
200
- mul = tp.OperatorsSet("Mul", const_configuration_options)
201
- div = tp.OperatorsSet("Div", const_configuration_options)
185
+ add = tp.OperatorsSet("Add")
186
+ sub = tp.OperatorsSet("Sub")
187
+ mul = tp.OperatorsSet("Mul")
188
+ div = tp.OperatorsSet("Div")
202
189
  prelu = tp.OperatorsSet("PReLU")
203
190
  swish = tp.OperatorsSet("Swish")
204
191
  sigmoid = tp.OperatorsSet("Sigmoid")