mct-nightly 2.0.0.20240416.403__tar.gz → 2.0.0.20240418.439__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (495) hide show
  1. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/PKG-INFO +1 -1
  2. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/mct_nightly.egg-info/SOURCES.txt +3 -0
  4. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/__init__.py +1 -1
  5. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/constants.py +2 -0
  6. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/base_node.py +1 -1
  7. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +2 -3
  8. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/hessian/trace_hessian_request.py +1 -3
  9. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_config.py +5 -2
  10. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +67 -4
  11. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +10 -3
  12. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +14 -4
  13. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +30 -3
  14. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +17 -7
  15. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +14 -3
  16. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +13 -3
  17. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +16 -3
  18. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/similarity_analyzer.py +14 -2
  19. mct-nightly-2.0.0.20240418.439/model_compression_toolkit/core/common/substitutions/remove_identity.py +48 -0
  20. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/graph_prep_runner.py +10 -4
  21. mct-nightly-2.0.0.20240418.439/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +51 -0
  22. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/keras_implementation.py +3 -1
  23. mct-nightly-2.0.0.20240418.439/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +50 -0
  24. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +3 -1
  25. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/quantization_prep_runner.py +6 -2
  26. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/runner.py +5 -2
  27. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantization_facade.py +2 -1
  28. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +3 -1
  29. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/runner.py +1 -0
  30. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/LICENSE.md +0 -0
  31. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/README.md +0 -0
  32. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/mct_nightly.egg-info/dependency_links.txt +0 -0
  33. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/mct_nightly.egg-info/requires.txt +0 -0
  34. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/mct_nightly.egg-info/top_level.txt +0 -0
  35. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/__init__.py +0 -0
  36. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/analyzer.py +0 -0
  37. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/__init__.py +0 -0
  38. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  39. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  40. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  41. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  42. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  43. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  44. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  45. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  46. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  47. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  48. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/framework_info.py +0 -0
  49. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  50. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  51. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  52. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  53. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  54. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  55. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  56. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  57. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  58. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  59. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  60. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  61. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  62. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  63. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  64. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  65. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  66. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  67. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py +0 -0
  68. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  69. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  70. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  71. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  72. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  73. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  74. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  75. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  76. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  77. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  78. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  79. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  80. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  81. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  82. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  83. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  84. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  85. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  86. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  87. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  88. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  89. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  90. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  91. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  92. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  93. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  94. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  95. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  96. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/model_collector.py +0 -0
  97. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/model_validation.py +0 -0
  98. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  99. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  100. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  101. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  102. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  103. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  104. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  105. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  106. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  107. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  108. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  109. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  110. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  111. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  112. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  113. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  114. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  115. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  116. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  117. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  118. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  119. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  120. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  121. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  122. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  123. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  124. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  125. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  126. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  127. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  128. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  129. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  130. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  131. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  132. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  133. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  134. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  135. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  136. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  137. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  138. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  139. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  140. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  141. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  142. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  143. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  144. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  145. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  146. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  147. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  148. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  149. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  150. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  151. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  152. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  153. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  154. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  155. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  156. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/user_info.py +0 -0
  157. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  158. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  159. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  160. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  161. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/__init__.py +0 -0
  162. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  163. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  164. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  165. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  166. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  167. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  168. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  169. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/constants.py +0 -0
  170. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  171. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  172. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  173. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  174. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  175. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  176. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  177. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  178. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  179. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  180. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  181. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  182. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  183. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  184. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  185. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  186. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  187. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  188. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  189. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  190. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  191. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  192. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  193. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +0 -0
  194. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py +0 -0
  195. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py +0 -0
  196. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  197. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  198. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  199. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  200. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  201. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  202. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  203. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  204. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  205. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  206. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  207. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  208. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  209. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  210. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  211. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  212. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  213. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  214. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  215. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  216. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  217. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  218. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  219. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  220. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  221. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  222. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  223. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  224. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  225. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  226. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  227. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  228. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  229. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  230. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  231. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  232. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  233. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  234. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  235. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  236. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  237. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  238. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  239. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  240. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  241. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  242. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  243. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  244. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  245. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  246. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/permute_call_method.py +0 -0
  247. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  248. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  249. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  250. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  251. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  252. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  253. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  254. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  255. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  256. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +0 -0
  257. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py +0 -0
  258. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py +0 -0
  259. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  260. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  261. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  262. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  263. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  264. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  265. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  266. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  267. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  268. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  269. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  270. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  271. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  272. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  273. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  274. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  275. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  276. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  277. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/__init__.py +0 -0
  278. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  279. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  280. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  281. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  282. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  283. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  284. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  285. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  286. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  287. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  288. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  289. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  290. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  291. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  292. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  293. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  294. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  295. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  296. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  297. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  298. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  299. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  300. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  301. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  302. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  303. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  304. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  305. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  306. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  307. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  308. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  309. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  310. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/defaultdict.py +0 -0
  311. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/__init__.py +0 -0
  312. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  313. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  314. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  315. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  316. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  317. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  318. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  319. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  320. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  321. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  322. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  323. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  324. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  325. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  326. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  327. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  328. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  329. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  330. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  331. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  332. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  333. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  334. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  335. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  336. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  337. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  338. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  339. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  340. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  341. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  342. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  343. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/__init__.py +0 -0
  344. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  345. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  346. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  347. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  348. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  349. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  350. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  351. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  352. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  353. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  354. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  355. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  356. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  357. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  358. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  359. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  360. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  361. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  362. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  363. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  364. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  365. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  366. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  367. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  368. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  369. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  370. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  371. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  372. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  373. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  374. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  375. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  376. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  377. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  378. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  379. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  380. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  381. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  382. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/logger.py +0 -0
  383. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/metadata.py +0 -0
  384. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/pruning/__init__.py +0 -0
  385. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  386. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  387. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  388. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  389. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/ptq/__init__.py +0 -0
  390. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  391. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  392. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  393. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  394. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/ptq/runner.py +0 -0
  395. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/__init__.py +0 -0
  396. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/common/__init__.py +0 -0
  397. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  398. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  399. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  400. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  401. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  402. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  403. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  404. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  405. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  406. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  407. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  408. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  409. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  410. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  411. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  412. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  413. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
  414. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  415. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  416. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  417. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  418. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
  419. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  420. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  421. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  422. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  423. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  424. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  425. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  426. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  427. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  428. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  429. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  430. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  431. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  432. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  433. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  434. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  435. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  436. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  437. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  438. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  439. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  440. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  441. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  442. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  443. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  444. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  445. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  446. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  447. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  448. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  449. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  450. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  451. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  452. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  453. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  454. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  455. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  456. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  457. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  458. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  459. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  460. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  461. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  462. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  463. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  464. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  465. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  466. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  467. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  468. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  469. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  470. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  471. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  472. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  473. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  474. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  475. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  476. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  477. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  478. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  479. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  480. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  481. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  482. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  483. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  484. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  485. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  486. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  487. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  488. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  489. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  490. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  491. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  492. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  493. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  494. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/setup.cfg +0 -0
  495. {mct-nightly-2.0.0.20240416.403 → mct-nightly-2.0.0.20240418.439}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240416.403
3
+ Version: 2.0.0.20240418.439
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240416.403
3
+ Version: 2.0.0.20240418.439
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -144,6 +144,7 @@ model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py
144
144
  model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py
145
145
  model_compression_toolkit/core/common/substitutions/linear_collapsing.py
146
146
  model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py
147
+ model_compression_toolkit/core/common/substitutions/remove_identity.py
147
148
  model_compression_toolkit/core/common/substitutions/residual_collapsing.py
148
149
  model_compression_toolkit/core/common/substitutions/scale_equalization.py
149
150
  model_compression_toolkit/core/common/substitutions/shift_negative_activation.py
@@ -183,6 +184,7 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_co
183
184
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py
184
185
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py
185
186
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py
187
+ model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py
186
188
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py
187
189
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py
188
190
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py
@@ -247,6 +249,7 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_
247
249
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py
248
250
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/permute_call_method.py
249
251
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py
252
+ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py
250
253
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py
251
254
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py
252
255
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.0.0.20240416.000403"
30
+ __version__ = "2.0.0.20240418.000439"
@@ -97,6 +97,8 @@ UPPER_FACTOR = 1.2
97
97
  DEC_RANGE_BOTTOM = 0.97
98
98
  DEC_RANGE_UPPER = 1.03
99
99
 
100
+ NUM_QPARAM_HESSIAN_SAMPLES = 16
101
+
100
102
  # Resource utilization computation parameters
101
103
  BITS_TO_BYTES = 8.0
102
104
 
@@ -14,7 +14,7 @@
14
14
  # ==============================================================================
15
15
 
16
16
  import copy
17
- from typing import Dict, Any, Tuple, List, Type
17
+ from typing import Dict, Any, Tuple, List, Type, Union
18
18
 
19
19
  import numpy as np
20
20
 
@@ -17,7 +17,6 @@ from functools import partial
17
17
  from typing import Callable, List
18
18
 
19
19
  from model_compression_toolkit.constants import HESSIAN_NUM_ITERATIONS
20
- from model_compression_toolkit.core.common import Graph
21
20
  from model_compression_toolkit.core.common.hessian.trace_hessian_request import TraceHessianRequest
22
21
  from model_compression_toolkit.logger import Logger
23
22
 
@@ -38,7 +37,7 @@ class HessianInfoService:
38
37
  """
39
38
 
40
39
  def __init__(self,
41
- graph: Graph,
40
+ graph,
42
41
  representative_dataset: Callable,
43
42
  fw_impl,
44
43
  num_iterations_for_approximation: int = HESSIAN_NUM_ITERATIONS
@@ -151,7 +150,7 @@ class HessianInfoService:
151
150
  if required_size==0:
152
151
  return []
153
152
 
154
- Logger.info(f"Ensuring {required_size} Hessian-trace approximation for node {trace_hessian_request.target_node}.")
153
+ Logger.info(f"\nEnsuring {required_size} Hessian-trace approximation for node {trace_hessian_request.target_node}.")
155
154
 
156
155
  # Replace request of a reused target node with a request of the 'reuse group'.
157
156
  if trace_hessian_request.target_node.reuse_group:
@@ -16,8 +16,6 @@ from typing import List
16
16
 
17
17
  from enum import Enum
18
18
 
19
- from model_compression_toolkit.core.common import BaseNode
20
-
21
19
 
22
20
  class HessianMode(Enum):
23
21
  """
@@ -54,7 +52,7 @@ class TraceHessianRequest:
54
52
  def __init__(self,
55
53
  mode: HessianMode,
56
54
  granularity: HessianInfoGranularity,
57
- target_node: BaseNode,
55
+ target_node,
58
56
  ):
59
57
  """
60
58
  Attributes:
@@ -26,14 +26,16 @@ class QuantizationErrorMethod(Enum):
26
26
 
27
27
  NOCLIPPING - Use min/max values as thresholds.
28
28
 
29
- MSE - Use min square error for minimizing quantization noise.
29
+ MSE - Use mean square error for minimizing quantization noise.
30
30
 
31
- MAE - Use min absolute error for minimizing quantization noise.
31
+ MAE - Use mean absolute error for minimizing quantization noise.
32
32
 
33
33
  KL - Use KL-divergence to make signals distributions to be similar as possible.
34
34
 
35
35
  Lp - Use Lp-norm to minimizing quantization noise.
36
36
 
37
+ HMSE - Use Hessian-based mean squared error for minimizing quantization noise. This method is using Hessian scores to factorize more valuable parameters when computing the error induced by quantization.
38
+
37
39
  """
38
40
 
39
41
  NOCLIPPING = 0
@@ -41,6 +43,7 @@ class QuantizationErrorMethod(Enum):
41
43
  MAE = 2
42
44
  KL = 4
43
45
  LP = 5
46
+ HMSE = 6
44
47
 
45
48
 
46
49
  class QuantizationConfig:
@@ -13,13 +13,16 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
  from copy import deepcopy
16
- from typing import Tuple, Callable
16
+ from typing import Tuple, Callable, List
17
17
  import numpy as np
18
18
  import model_compression_toolkit.core.common.quantization.quantization_config as qc
19
+ from model_compression_toolkit.core.common.hessian import TraceHessianRequest, HessianMode, HessianInfoGranularity, \
20
+ HessianInfoService
19
21
  from model_compression_toolkit.core.common.similarity_analyzer import compute_mse, compute_mae, compute_lp_norm
20
22
  from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
21
- from model_compression_toolkit.constants import FLOAT_32
22
- from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import uniform_quantize_tensor
23
+ from model_compression_toolkit.constants import FLOAT_32, NUM_QPARAM_HESSIAN_SAMPLES
24
+ from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import uniform_quantize_tensor, \
25
+ reshape_tensor_for_per_channel_search
23
26
 
24
27
 
25
28
  def _mse_error_histogram(q_bins: np.ndarray,
@@ -371,13 +374,63 @@ def _get_sliced_histogram(bins: np.ndarray,
371
374
  return bins_subset, counts_subset
372
375
 
373
376
 
377
+ def _compute_hessian_for_hmse(node,
378
+ hessian_info_service: HessianInfoService,
379
+ num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> List[np.ndarray]:
380
+ """
381
+ Compute and retrieve Hessian-based scores for using during HMSE error computation.
382
+
383
+ Args:
384
+ node: The node to compute Hessian-based scores for.
385
+ hessian_info_service: HessianInfoService object for retrieving Hessian-based scores.
386
+ num_hessian_samples: Number of samples to approximate Hessian-based scores on.
387
+
388
+ Returns: A list with computed Hessian-based scores tensors for the given node.
389
+
390
+ """
391
+ _request = TraceHessianRequest(mode=HessianMode.WEIGHTS,
392
+ granularity=HessianInfoGranularity.PER_ELEMENT,
393
+ target_node=node)
394
+ _scores_for_node = hessian_info_service.fetch_hessian(_request,
395
+ required_size=num_hessian_samples)
396
+
397
+ return _scores_for_node
398
+
399
+
400
+ def _hmse_error_function_wrapper(float_tensor: np.ndarray,
401
+ fxp_tensor: np.ndarray,
402
+ axis: int,
403
+ norm: bool,
404
+ hessian_scores: np.ndarray):
405
+ """
406
+ This function wraps the HMSE error method to enable using it during parameters selection.
407
+
408
+ Args:
409
+ float_tensor: Float tensor.
410
+ fxp_tensor: Quantized tensor.
411
+ axis: Axis along which the operation has been performed. If not None, then per-channel computation is expected.
412
+ norm: Indicates whether to normalize the result of the error function.
413
+ hessian_scores: A tensor with Hessian-based scores to use for Hessian-based MSE (HMSE) error computation.
414
+
415
+ Returns: The HMSE error between the float and fixed-point tensors.
416
+
417
+ """
418
+ if axis is not None:
419
+ hessian_scores = reshape_tensor_for_per_channel_search(hessian_scores, 0)
420
+
421
+ return compute_mse(float_tensor, fxp_tensor, axis, norm, weights=hessian_scores)
422
+
423
+
374
424
  def get_threshold_selection_tensor_error_function(quantization_method: QuantizationMethod,
375
425
  quant_error_method: qc.QuantizationErrorMethod,
376
426
  p: int,
377
427
  axis: int = None,
378
428
  norm: bool = False,
379
429
  n_bits: int = 8,
380
- signed: bool = True) -> Callable:
430
+ signed: bool = True,
431
+ node=None,
432
+ hessian_info_service: HessianInfoService = None,
433
+ num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> Callable:
381
434
  """
382
435
  Returns the error function compatible to the provided threshold method,
383
436
  to be used in the threshold optimization search for tensor quantization.
@@ -389,6 +442,9 @@ def get_threshold_selection_tensor_error_function(quantization_method: Quantizat
389
442
  norm: Indicates whether to normalize the result of the error function.
390
443
  n_bits: Number of bits used to quantize the tensor.
391
444
  signed: Indicates whether the input is signed.
445
+ node: The node for which the quantization error is computed (used only with HMSE error method).
446
+ hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
447
+ num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
392
448
 
393
449
  Returns: a Callable method that calculates the error between a tensor and a quantized tensor.
394
450
  """
@@ -418,6 +474,13 @@ def get_threshold_selection_tensor_error_function(quantization_method: Quantizat
418
474
  n_bits=n_bits,
419
475
  per_channel=True)
420
476
 
477
+ if quant_error_method == qc.QuantizationErrorMethod.HMSE:
478
+ node_hessian_scores = _compute_hessian_for_hmse(node, hessian_info_service, num_hessian_samples)
479
+ node_hessian_scores = np.sqrt(np.mean(node_hessian_scores, axis=0))
480
+
481
+ return lambda x, y, threshold: _hmse_error_function_wrapper(x, y, norm=norm, axis=axis,
482
+ hessian_scores=node_hessian_scores)
483
+
421
484
  quant_method_error_function_mapping = {
422
485
  qc.QuantizationErrorMethod.MSE: lambda x, y, threshold: compute_mse(x, y, norm=norm, axis=axis),
423
486
  qc.QuantizationErrorMethod.MAE: lambda x, y, threshold: compute_mae(x, y, norm=norm, axis=axis),
@@ -18,7 +18,8 @@ from sklearn.cluster import KMeans
18
18
 
19
19
  import model_compression_toolkit.core.common.quantization.quantization_config as qc
20
20
  from model_compression_toolkit.constants import LUT_VALUES, MIN_THRESHOLD, SCALE_PER_CHANNEL, \
21
- LUT_VALUES_BITWIDTH, THRESHOLD
21
+ LUT_VALUES_BITWIDTH, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES
22
+ from model_compression_toolkit.core.common.hessian import HessianInfoService
22
23
  from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import \
23
24
  max_power_of_two, int_quantization_with_threshold
24
25
  from model_compression_toolkit.core.common.quantization.quantization_params_generation.symmetric_selection import \
@@ -37,7 +38,10 @@ def lut_kmeans_tensor(tensor_data: np.ndarray,
37
38
  n_iter: int = 10,
38
39
  min_threshold: float = MIN_THRESHOLD,
39
40
  quant_error_method: qc.QuantizationErrorMethod = None,
40
- is_symmetric=False) -> dict:
41
+ is_symmetric=False,
42
+ node=None,
43
+ hessian_info_service: HessianInfoService = None,
44
+ num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> dict:
41
45
  """
42
46
  The quantizer first finds the closest max value per channel of tensor_data.
43
47
  Now, we divide tensor_data with the threshold vector per channel. In addition, we scale the result to the range
@@ -53,7 +57,10 @@ def lut_kmeans_tensor(tensor_data: np.ndarray,
53
57
  n_iter: Number of iterations to search_methods for the optimal threshold.
54
58
  min_threshold: Minimal threshold to chose when the computed one is smaller.
55
59
  quant_error_method: an error function to optimize the parameters' selection accordingly (not used for this method).
56
- is_symmetric (bool): Whether to apply symmetric weight quantization (default is False, meaning power of 2 quantization)
60
+ is_symmetric (bool): Whether to apply symmetric weight quantization (default is False, meaning power of 2 quantization).
61
+ node: The node for which the quantization error is computed (not used for this method).
62
+ hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (not used for this method).
63
+ num_hessian_samples: Number of samples to approximate Hessian-based scores on (not used for this method).
57
64
 
58
65
  Returns:
59
66
  A dictionary containing the cluster assignments according to the k-means algorithm,
@@ -15,7 +15,8 @@
15
15
  import numpy as np
16
16
 
17
17
  import model_compression_toolkit.core.common.quantization.quantization_config as qc
18
- from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD
18
+ from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES
19
+ from model_compression_toolkit.core.common.hessian import HessianInfoService
19
20
  from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_search import \
20
21
  qparams_selection_tensor_search, qparams_selection_histogram_search
21
22
  from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import max_power_of_two, get_tensor_max
@@ -31,7 +32,11 @@ def power_of_two_selection_tensor(tensor_data: np.ndarray,
31
32
  channel_axis: int = 1,
32
33
  n_iter: int = 10,
33
34
  min_threshold: float = MIN_THRESHOLD,
34
- quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE) -> dict:
35
+ quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE,
36
+ node=None,
37
+ hessian_info_service: HessianInfoService = None,
38
+ num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES,
39
+ ) -> dict:
35
40
  """
36
41
  Compute the power of two threshold based on the provided QuantizationErrorMethod to quantize the tensor.
37
42
  Different search is applied, depends on the value of the selected QuantizationErrorMethod.
@@ -45,6 +50,9 @@ def power_of_two_selection_tensor(tensor_data: np.ndarray,
45
50
  n_iter: Number of iterations to search for the optimal threshold (not used for this method).
46
51
  min_threshold: Minimal threshold to use if threshold is too small (not used for this method).
47
52
  quant_error_method: an error function to optimize the parameters' selection accordingly.
53
+ node: The node for which the quantization error is computed (used only with HMSE error method).
54
+ hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
55
+ num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
48
56
 
49
57
  Returns:
50
58
  Power of two threshold to quantize the tensor in a power of 2 manner.
@@ -57,8 +65,10 @@ def power_of_two_selection_tensor(tensor_data: np.ndarray,
57
65
  signed = True # weights are always signed
58
66
  axis = -1 if per_channel else None
59
67
  error_function = get_threshold_selection_tensor_error_function(QuantizationMethod.POWER_OF_TWO,
60
- quant_error_method, p, axis=axis, norm=False, n_bits=n_bits,
61
- signed=signed)
68
+ quant_error_method, p, axis=axis, norm=False,
69
+ n_bits=n_bits, signed=signed, node=node,
70
+ hessian_info_service=hessian_info_service,
71
+ num_hessian_samples=num_hessian_samples)
62
72
  threshold = qparams_selection_tensor_search(error_function,
63
73
  tensor_data,
64
74
  n_bits,
@@ -12,10 +12,15 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
+ import copy
16
+
15
17
  from tqdm import tqdm
16
18
  from typing import List
17
19
 
20
+ from model_compression_toolkit.constants import NUM_QPARAM_HESSIAN_SAMPLES
21
+ from model_compression_toolkit.core import QuantizationErrorMethod
18
22
  from model_compression_toolkit.core.common import Graph, BaseNode
23
+ from model_compression_toolkit.core.common.hessian import HessianInfoService
19
24
  from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_activations_computation \
20
25
  import get_activations_qparams
21
26
  from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_weights_computation import \
@@ -25,7 +30,9 @@ from model_compression_toolkit.logger import Logger
25
30
 
26
31
  def calculate_quantization_params(graph: Graph,
27
32
  nodes: List[BaseNode] = [],
28
- specific_nodes: bool = False):
33
+ specific_nodes: bool = False,
34
+ hessian_info_service: HessianInfoService = None,
35
+ num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES):
29
36
  """
30
37
  For a graph, go over its nodes, compute quantization params (for both weights and activations according
31
38
  to the given framework info), and create and attach a NodeQuantizationConfig to each node (containing the
@@ -39,6 +46,8 @@ def calculate_quantization_params(graph: Graph,
39
46
  graph: Graph to compute its nodes' thresholds.
40
47
  nodes: List of nodes to compute their thresholds instead of computing it for all nodes in the graph.
41
48
  specific_nodes: Flag to compute thresholds for only specific nodes.
49
+ hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
50
+ num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
42
51
 
43
52
  """
44
53
 
@@ -60,10 +69,28 @@ def calculate_quantization_params(graph: Graph,
60
69
  output_channels_axis = channels_axis[0]
61
70
  else:
62
71
  output_channels_axis = None
72
+
73
+ mod_attr_cfg = attr_cfg
74
+
75
+ if attr_cfg.weights_error_method == QuantizationErrorMethod.HMSE:
76
+ kernel_attr_name = graph.fw_info.get_kernel_op_attributes(n.type)
77
+ if len(kernel_attr_name) > 0:
78
+ kernel_attr_name = kernel_attr_name[0]
79
+
80
+ if kernel_attr_name is None or kernel_attr_name not in attr:
81
+ Logger.warning(f"The HMSE error method for parameters selection is only supported for "
82
+ f"kernel weights attributes. Running parameters selection for attribute "
83
+ f"'{attr}' in node '{n.name}' with the default MSE error method instead.")
84
+ mod_attr_cfg = copy.deepcopy(attr_cfg)
85
+ mod_attr_cfg.weights_error_method = QuantizationErrorMethod.MSE
86
+
63
87
  weights_params = get_weights_qparams(n.get_weights_by_keys(attr),
64
88
  candidate_qc.weights_quantization_cfg,
65
- attr_cfg,
66
- output_channels_axis)
89
+ mod_attr_cfg,
90
+ output_channels_axis,
91
+ node=n,
92
+ hessian_info_service=hessian_info_service,
93
+ num_hessian_samples=num_hessian_samples)
67
94
  attr_cfg.set_weights_quantization_param(weights_params)
68
95
 
69
96
  if n.is_activation_quantization_enabled():
@@ -12,11 +12,12 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
- from typing import Dict, Any, Tuple
15
+ from typing import Dict, Any
16
16
 
17
17
  import numpy as np
18
18
 
19
- from model_compression_toolkit.logger import Logger
19
+ from model_compression_toolkit.constants import NUM_QPARAM_HESSIAN_SAMPLES
20
+ from model_compression_toolkit.core.common.hessian import HessianInfoService
20
21
  from model_compression_toolkit.defaultdict import DefaultDict
21
22
  from model_compression_toolkit.core.common.framework_info import FrameworkInfo
22
23
  from model_compression_toolkit.core.common.quantization.node_quantization_config import NodeWeightsQuantizationConfig, \
@@ -27,31 +28,40 @@ from model_compression_toolkit.core.common.quantization.node_quantization_config
27
28
  dummy_channel_mapping = DefaultDict(default_value=(None, None))
28
29
 
29
30
 
30
- def get_weights_qparams(kernel: np.ndarray,
31
+ def get_weights_qparams(weights_attr_values: np.ndarray,
31
32
  weights_quant_config: NodeWeightsQuantizationConfig,
32
33
  attr_quant_config: WeightsAttrQuantizationConfig,
33
- output_channels_axis: int) -> Dict[Any, Any]:
34
+ output_channels_axis: int,
35
+ node=None,
36
+ hessian_info_service: HessianInfoService = None,
37
+ num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> Dict[Any, Any]:
34
38
  """
35
39
  Compute thresholds to quantize a kernel according to a NodeWeightsQuantizationConfig
36
40
  instance.
37
41
 
38
42
  Args:
39
- kernel: Kernel to compute the quantization thresholds to.
43
+ weights_attr_values: Weights attribute parameter to compute the quantization thresholds for.
40
44
  weights_quant_config: Weights quantization configuration to define how the thresholds are computed.
41
45
  attr_quant_config: A specific weights attribute quantization configuration to get its params.
42
46
  output_channels_axis: Index of the kernel output channels dimension.
47
+ node: The node for which the quantization error is computed (used only with HMSE error method).
48
+ hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
49
+ num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
43
50
 
44
51
  Returns:
45
52
  A dictionary with the quantization threshold of the kernel.
46
53
  """
47
54
  if attr_quant_config.weights_quantization_params_fn is not None:
48
- weights_params = attr_quant_config.weights_quantization_params_fn(kernel,
55
+ weights_params = attr_quant_config.weights_quantization_params_fn(weights_attr_values,
49
56
  p=attr_quant_config.l_p_value,
50
57
  n_bits=attr_quant_config.weights_n_bits,
51
58
  per_channel=attr_quant_config.weights_per_channel_threshold and output_channels_axis is not None,
52
59
  channel_axis=output_channels_axis,
53
60
  min_threshold=weights_quant_config.min_threshold,
54
- quant_error_method=attr_quant_config.weights_error_method)
61
+ quant_error_method=attr_quant_config.weights_error_method,
62
+ node=node,
63
+ hessian_info_service=hessian_info_service,
64
+ num_hessian_samples=num_hessian_samples)
55
65
  else:
56
66
  weights_params = {}
57
67
 
@@ -15,7 +15,8 @@
15
15
  import numpy as np
16
16
 
17
17
  import model_compression_toolkit.core.common.quantization.quantization_config as qc
18
- from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD
18
+ from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES
19
+ from model_compression_toolkit.core.common.hessian import HessianInfoService
19
20
  from model_compression_toolkit.core.common.quantization.quantization_params_generation.error_functions import \
20
21
  get_threshold_selection_tensor_error_function, get_threshold_selection_histogram_error_function, _kl_error_histogram
21
22
  from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_search import \
@@ -33,7 +34,10 @@ def symmetric_selection_tensor(tensor_data: np.ndarray,
33
34
  channel_axis: int = 1,
34
35
  n_iter: int = 10,
35
36
  min_threshold: float = MIN_THRESHOLD,
36
- quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE) -> dict:
37
+ quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE,
38
+ node=None,
39
+ hessian_info_service: HessianInfoService = None,
40
+ num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> dict:
37
41
  """
38
42
  Compute the optimal threshold based on the provided QuantizationErrorMethod to quantize the tensor.
39
43
  Different search is applied, depends on the value of the selected QuantizationErrorMethod.
@@ -47,6 +51,9 @@ def symmetric_selection_tensor(tensor_data: np.ndarray,
47
51
  n_iter: Number of iterations to search for the optimal threshold (not used for this method).
48
52
  min_threshold: Minimal threshold to use if threshold is too small (not used for this method).
49
53
  quant_error_method: an error function to optimize the parameters' selection accordingly.
54
+ node: The node for which the quantization error is computed (used only with HMSE error method).
55
+ hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
56
+ num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
50
57
 
51
58
  Returns:
52
59
  Optimal threshold to quantize the tensor in a symmetric manner.
@@ -59,7 +66,11 @@ def symmetric_selection_tensor(tensor_data: np.ndarray,
59
66
  else:
60
67
  signed = True # weights are always signed
61
68
  axis = -1 if per_channel else None
62
- error_function = get_threshold_selection_tensor_error_function(QuantizationMethod.SYMMETRIC, quant_error_method, p, axis=axis, norm=False, n_bits=n_bits, signed=signed)
69
+ error_function = get_threshold_selection_tensor_error_function(QuantizationMethod.SYMMETRIC, quant_error_method,
70
+ p, axis=axis, norm=False, n_bits=n_bits,
71
+ signed=signed, node=node,
72
+ hessian_info_service=hessian_info_service,
73
+ num_hessian_samples=num_hessian_samples)
63
74
  threshold = qparams_symmetric_selection_tensor_search(error_function,
64
75
  tensor_data,
65
76
  tensor_max,
@@ -15,7 +15,8 @@
15
15
  import numpy as np
16
16
 
17
17
  import model_compression_toolkit.core.common.quantization.quantization_config as qc
18
- from model_compression_toolkit.constants import MIN_THRESHOLD, RANGE_MIN, RANGE_MAX
18
+ from model_compression_toolkit.constants import MIN_THRESHOLD, RANGE_MIN, RANGE_MAX, NUM_QPARAM_HESSIAN_SAMPLES
19
+ from model_compression_toolkit.core.common.hessian import HessianInfoService
19
20
  from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_search import \
20
21
  qparams_uniform_selection_tensor_search, qparams_uniform_selection_histogram_search
21
22
  from model_compression_toolkit.core.common.quantization.quantization_params_generation.error_functions import \
@@ -31,7 +32,10 @@ def uniform_selection_tensor(tensor_data: np.ndarray,
31
32
  channel_axis: int = 1,
32
33
  n_iter: int = 10,
33
34
  min_threshold: float = MIN_THRESHOLD,
34
- quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE) -> dict:
35
+ quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE,
36
+ node=None,
37
+ hessian_info_service: HessianInfoService = None,
38
+ num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> dict:
35
39
  """
36
40
  Compute the optimal quantization range based on the provided QuantizationErrorMethod
37
41
  to uniformly quantize the tensor.
@@ -46,6 +50,9 @@ def uniform_selection_tensor(tensor_data: np.ndarray,
46
50
  n_iter: Number of iterations to search for the optimal threshold (not used for this method).
47
51
  min_threshold: Minimal threshold to use if threshold is too small (not used for this method).
48
52
  quant_error_method: an error function to optimize the range parameters' selection accordingly.
53
+ node: The node for which the quantization error is computed (used only with HMSE error method).
54
+ hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
55
+ num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
49
56
 
50
57
  Returns:
51
58
  Optimal quantization range to quantize the tensor uniformly.
@@ -57,7 +64,10 @@ def uniform_selection_tensor(tensor_data: np.ndarray,
57
64
  mm = tensor_min, tensor_max
58
65
  else:
59
66
  axis = -1 if per_channel else None
60
- error_function = get_threshold_selection_tensor_error_function(QuantizationMethod.UNIFORM, quant_error_method, p, axis=axis, norm=False)
67
+ error_function = get_threshold_selection_tensor_error_function(QuantizationMethod.UNIFORM, quant_error_method,
68
+ p, axis=axis, norm=False, node=node,
69
+ hessian_info_service=hessian_info_service,
70
+ num_hessian_samples=num_hessian_samples)
61
71
  mm = qparams_uniform_selection_tensor_search(error_function,
62
72
  tensor_data,
63
73
  tensor_min,
@@ -24,7 +24,8 @@ from model_compression_toolkit.core.common.graph.base_graph import Graph
24
24
  from model_compression_toolkit.core.common.quantization.candidate_node_quantization_config import \
25
25
  CandidateNodeQuantizationConfig
26
26
  from model_compression_toolkit.core.common.quantization.node_quantization_config import NodeActivationQuantizationConfig
27
- from model_compression_toolkit.core.common.quantization.quantization_config import QuantizationConfig
27
+ from model_compression_toolkit.core.common.quantization.quantization_config import QuantizationConfig, \
28
+ QuantizationErrorMethod
28
29
  from model_compression_toolkit.core.common.quantization.quantization_params_fn_selection import \
29
30
  get_activation_quantization_params_fn, get_weights_quantization_params_fn
30
31
  from model_compression_toolkit.core.common.quantization.quantization_fn_selection import \
@@ -36,19 +37,31 @@ from model_compression_toolkit.target_platform_capabilities.target_platform.op_q
36
37
 
37
38
  def set_quantization_configuration_to_graph(graph: Graph,
38
39
  quant_config: QuantizationConfig,
39
- mixed_precision_enable: bool = False) -> Graph:
40
+ mixed_precision_enable: bool = False,
41
+ running_gptq: bool = False) -> Graph:
40
42
  """
41
43
  Add quantization configuration for each graph node.
42
44
 
43
45
  Args:
44
46
  graph: Graph for which to add quantization info to each node.
45
47
  quant_config: Quantization configuration containing parameters for how the graph should be quantized.
46
- mixed_precision_enable: is mixed precision enabled
48
+ mixed_precision_enable: is mixed precision enabled.
49
+ running_gptq: Whether or not a GPTQ optimization is planned to run after the PTQ process.
47
50
 
48
51
  Returns:
49
52
  The graph with quantization configurations attached to each node in it.
50
53
  """
51
54
 
55
+ if quant_config.weights_error_method == QuantizationErrorMethod.HMSE:
56
+ if not running_gptq:
57
+ Logger.warning(f"The HMSE error method for parameters selection is only supported when running GPTQ "
58
+ f"optimization due to long execution time that is not suitable for basic PTQ. "
59
+ f"Using the default MSE error method instead.")
60
+ quant_config.weights_error_method = QuantizationErrorMethod.MSE
61
+ else:
62
+ Logger.warning("Using the HMSE error method for weights quantization parameters search. "
63
+ "Note: This method may significantly increase runtime during the parameter search process.")
64
+
52
65
  for n in graph.nodes:
53
66
  set_quantization_configs_to_node(node=n,
54
67
  quant_config=quant_config,
@@ -18,6 +18,8 @@ from typing import Any
18
18
  import numpy as np
19
19
 
20
20
  from model_compression_toolkit.constants import EPS
21
+ from model_compression_toolkit.logger import Logger
22
+
21
23
 
22
24
  #########################
23
25
  # Helpful functions
@@ -87,7 +89,8 @@ def compute_mse(float_tensor: np.ndarray,
87
89
  norm: bool = False,
88
90
  norm_eps: float = 1e-8,
89
91
  batch: bool = False,
90
- axis: int = None) -> float:
92
+ axis: int = None,
93
+ weights: np.ndarray = None) -> float:
91
94
  """
92
95
  Compute the mean square error between two numpy arrays.
93
96
 
@@ -98,6 +101,7 @@ def compute_mse(float_tensor: np.ndarray,
98
101
  norm_eps: epsilon value for error normalization stability.
99
102
  batch: Whether to run batch similarity analysis or not.
100
103
  axis: Axis along which the operator has been computed.
104
+ weights: Weights tensor to use for computing Weighted-MSE error computation.
101
105
 
102
106
  Returns:
103
107
  The MSE distance between the two tensors.
@@ -107,7 +111,15 @@ def compute_mse(float_tensor: np.ndarray,
107
111
  float_flat = flatten_tensor(float_tensor, batch, axis)
108
112
  fxp_flat = flatten_tensor(fxp_tensor, batch, axis)
109
113
 
110
- error = ((float_flat - fxp_flat) ** 2).mean(axis=-1)
114
+ if weights is not None:
115
+ w_flat = flatten_tensor(weights, batch, axis)
116
+ if w_flat.shape != float_flat.shape:
117
+ Logger.critical(f"Shape mismatch: The shape of the weights tensor {weights.shape} does not match the shape "
118
+ f"of the input tensors {float_flat.shape} for Weighted-MSE computation.") # pragma: no cover
119
+ error = ((w_flat * (float_flat - fxp_flat)) ** 2).mean(axis=-1)
120
+ else:
121
+ error = ((float_flat - fxp_flat) ** 2).mean(axis=-1)
122
+
111
123
  if norm:
112
124
  error /= ((float_flat ** 2).mean(axis=-1) + norm_eps)
113
125