mct-nightly 2.0.0.20240402.404__tar.gz → 2.0.0.20240404.424__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (483) hide show
  1. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/PKG-INFO +5 -5
  2. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/README.md +4 -4
  3. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/mct_nightly.egg-info/PKG-INFO +5 -5
  4. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/mct_nightly.egg-info/SOURCES.txt +0 -2
  5. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/__init__.py +1 -1
  6. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/framework_implementation.py +0 -9
  7. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/keras_implementation.py +0 -10
  8. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -5
  9. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +1 -1
  10. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +1 -1
  11. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +1 -1
  12. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -2
  13. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -1
  14. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -1
  15. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -1
  16. mct-nightly-2.0.0.20240402.404/model_compression_toolkit/core/exporter.py +0 -90
  17. mct-nightly-2.0.0.20240402.404/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_relu_upper_bound.py +0 -61
  18. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/LICENSE.md +0 -0
  19. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/mct_nightly.egg-info/dependency_links.txt +0 -0
  20. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/mct_nightly.egg-info/requires.txt +0 -0
  21. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/mct_nightly.egg-info/top_level.txt +0 -0
  22. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/constants.py +0 -0
  23. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/__init__.py +0 -0
  24. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/analyzer.py +0 -0
  25. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/__init__.py +0 -0
  26. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  27. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  28. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  29. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  30. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  31. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  32. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  33. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  34. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  35. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/framework_info.py +0 -0
  36. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  37. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  38. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  39. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  40. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  41. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  42. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  43. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  44. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  45. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  46. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  47. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  48. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  49. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  50. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  51. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  52. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  53. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  54. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  55. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  56. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py +0 -0
  57. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/hessian/trace_hessian_request.py +0 -0
  58. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  59. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  60. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  61. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  62. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  63. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  64. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  65. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  66. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  67. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  68. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  69. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  70. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  71. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  72. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  73. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  74. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  75. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  76. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  77. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  78. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  79. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  80. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  81. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  82. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  83. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  84. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  85. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  86. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/model_collector.py +0 -0
  87. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/model_validation.py +0 -0
  88. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  89. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  90. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  91. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  92. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  93. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  94. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  95. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  96. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  97. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  98. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  99. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  100. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  101. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  102. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  103. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  104. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  105. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  106. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  107. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  108. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  109. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  110. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  111. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  112. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  113. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  114. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  115. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  116. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  117. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  118. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  119. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  120. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  121. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  122. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  123. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  124. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  125. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  126. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  127. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  128. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  129. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  130. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  131. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  132. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  133. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  134. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  135. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  136. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  137. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  138. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  139. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  140. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  141. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  142. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  143. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  144. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  145. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  146. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  147. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  148. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  149. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  150. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  151. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  152. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  153. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  154. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  155. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  156. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/user_info.py +0 -0
  157. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  158. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  159. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  160. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  161. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  162. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/__init__.py +0 -0
  163. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  164. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  165. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  166. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  167. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  168. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  169. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  170. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/constants.py +0 -0
  171. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  172. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  173. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  174. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  175. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  176. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  177. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  178. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  179. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  180. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  181. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  182. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  183. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  184. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  185. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  186. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  187. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  188. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  189. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  190. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  191. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  192. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  193. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +0 -0
  194. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py +0 -0
  195. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py +0 -0
  196. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  197. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  198. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  199. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  200. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  201. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  202. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  203. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  204. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  205. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  206. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  207. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  208. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  209. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  210. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  211. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  212. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  213. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  214. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  215. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  216. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  217. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  218. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  219. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  220. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  221. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  222. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  223. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  224. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  225. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  226. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  227. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  228. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  229. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  230. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  231. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  232. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  233. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  234. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  235. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  236. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  237. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  238. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  239. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  240. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  241. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  242. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  243. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  244. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  245. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/permute_call_method.py +0 -0
  246. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  247. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  248. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  249. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  250. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  251. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  252. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  253. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  254. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  255. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +0 -0
  256. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py +0 -0
  257. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py +0 -0
  258. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  259. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  260. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  261. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  262. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  263. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  264. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  265. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  266. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  267. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  268. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  269. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  270. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  271. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  272. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  273. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  274. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  275. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  276. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  277. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/core/runner.py +0 -0
  278. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/__init__.py +0 -0
  279. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  280. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  281. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  282. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  283. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  284. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  285. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  286. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  287. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  288. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  289. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  290. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  291. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  292. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  293. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  294. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  295. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  296. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  297. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  298. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  299. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  300. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  301. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  302. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  303. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  304. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  305. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  306. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  307. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  308. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  309. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  310. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  311. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/defaultdict.py +0 -0
  312. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/__init__.py +0 -0
  313. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  314. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  315. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  316. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  317. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  318. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  319. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  320. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  321. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  322. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  323. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  324. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  325. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  326. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  327. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  328. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  329. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  330. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  331. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  332. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  333. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  334. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  335. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  336. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  337. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  338. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  339. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  340. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  341. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/__init__.py +0 -0
  342. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  343. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  344. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  345. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  346. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  347. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  348. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  349. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  350. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  351. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  352. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  353. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  354. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  355. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  356. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  357. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  358. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  359. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  360. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  361. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  362. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  363. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  364. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  365. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  366. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  367. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  368. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  369. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  370. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  371. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  372. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  373. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  374. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  375. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  376. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  377. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  378. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  379. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  380. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/gptq/runner.py +0 -0
  381. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/logger.py +0 -0
  382. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/pruning/__init__.py +0 -0
  383. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  384. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  385. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  386. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  387. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/ptq/__init__.py +0 -0
  388. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  389. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  390. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/ptq/runner.py +0 -0
  391. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/__init__.py +0 -0
  392. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/common/__init__.py +0 -0
  393. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  394. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  395. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  396. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  397. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  398. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  399. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  400. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  401. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  402. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  403. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  404. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  405. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  406. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  407. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  408. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  409. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
  410. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  411. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  412. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  413. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  414. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
  415. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  416. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  417. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  418. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  419. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  420. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  421. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  422. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  423. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  424. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  425. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  426. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  427. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  428. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  429. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  430. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  431. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  432. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  433. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  434. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  435. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  436. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  437. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  438. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  439. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  440. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  441. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  442. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  443. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  444. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  445. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  446. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  447. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  448. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  449. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  450. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  451. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  452. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  453. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  454. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  455. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  456. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  457. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  458. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  459. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  460. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  461. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  462. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  463. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  464. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  465. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  466. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  467. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  468. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  469. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  470. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  471. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  472. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  473. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  474. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  475. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  476. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  477. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  478. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  479. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  480. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  481. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  482. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/setup.cfg +0 -0
  483. {mct-nightly-2.0.0.20240402.404 → mct-nightly-2.0.0.20240404.424}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240402.404
3
+ Version: 2.0.0.20240404.424
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -82,8 +82,8 @@ Description: # Model Compression Toolkit (MCT)
82
82
 
83
83
  ### Quantization
84
84
  MCT supports different quantization methods:
85
- * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_post_training_quantization_experimental.html#ug-keras-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_post_training_quantization_experimental.html#ug-pytorch-post-training-quantization-experimental)
86
- * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_gradient_post_training_quantization_experimental.html#ug-keras-gradient-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_gradient_post_training_quantization_experimental.html#ug-pytorch-gradient-post-training-quantization-experimental)
85
+ * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
86
+ * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
87
87
  * Quantization-aware training (QAT) [*](#experimental-features)
88
88
 
89
89
 
@@ -126,8 +126,8 @@ Description: # Model Compression Toolkit (MCT)
126
126
  By pruning groups of channels (SIMD groups), our approach not only reduces model size
127
127
  and complexity, but ensures that better utilization of channels is in line with the SIMD architecture
128
128
  for a target Resource Utilization of weights memory footprint.
129
- [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_pruning_experimental.html)
130
- [Pytorch API](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/pruning/pytorch/pruning_facade.py#L43)
129
+ [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)
130
+ [Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html)
131
131
 
132
132
  #### Experimental features
133
133
 
@@ -76,8 +76,8 @@ You can customize data generation configurations to suit your specific needs. [G
76
76
 
77
77
  ### Quantization
78
78
  MCT supports different quantization methods:
79
- * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_post_training_quantization_experimental.html#ug-keras-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_post_training_quantization_experimental.html#ug-pytorch-post-training-quantization-experimental)
80
- * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_gradient_post_training_quantization_experimental.html#ug-keras-gradient-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_gradient_post_training_quantization_experimental.html#ug-pytorch-gradient-post-training-quantization-experimental)
79
+ * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
80
+ * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
81
81
  * Quantization-aware training (QAT) [*](#experimental-features)
82
82
 
83
83
 
@@ -120,8 +120,8 @@ taking into account the target platform's Single Instruction, Multiple Data (SIM
120
120
  By pruning groups of channels (SIMD groups), our approach not only reduces model size
121
121
  and complexity, but ensures that better utilization of channels is in line with the SIMD architecture
122
122
  for a target Resource Utilization of weights memory footprint.
123
- [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_pruning_experimental.html)
124
- [Pytorch API](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/pruning/pytorch/pruning_facade.py#L43)
123
+ [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)
124
+ [Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html)
125
125
 
126
126
  #### Experimental features
127
127
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240402.404
3
+ Version: 2.0.0.20240404.424
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -82,8 +82,8 @@ Description: # Model Compression Toolkit (MCT)
82
82
 
83
83
  ### Quantization
84
84
  MCT supports different quantization methods:
85
- * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_post_training_quantization_experimental.html#ug-keras-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_post_training_quantization_experimental.html#ug-pytorch-post-training-quantization-experimental)
86
- * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_gradient_post_training_quantization_experimental.html#ug-keras-gradient-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_gradient_post_training_quantization_experimental.html#ug-pytorch-gradient-post-training-quantization-experimental)
85
+ * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
86
+ * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
87
87
  * Quantization-aware training (QAT) [*](#experimental-features)
88
88
 
89
89
 
@@ -126,8 +126,8 @@ Description: # Model Compression Toolkit (MCT)
126
126
  By pruning groups of channels (SIMD groups), our approach not only reduces model size
127
127
  and complexity, but ensures that better utilization of channels is in line with the SIMD architecture
128
128
  for a target Resource Utilization of weights memory footprint.
129
- [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_pruning_experimental.html)
130
- [Pytorch API](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/pruning/pytorch/pruning_facade.py#L43)
129
+ [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)
130
+ [Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html)
131
131
 
132
132
  #### Experimental features
133
133
 
@@ -13,7 +13,6 @@ model_compression_toolkit/defaultdict.py
13
13
  model_compression_toolkit/logger.py
14
14
  model_compression_toolkit/core/__init__.py
15
15
  model_compression_toolkit/core/analyzer.py
16
- model_compression_toolkit/core/exporter.py
17
16
  model_compression_toolkit/core/graph_prep_runner.py
18
17
  model_compression_toolkit/core/quantization_prep_runner.py
19
18
  model_compression_toolkit/core/runner.py
@@ -182,7 +181,6 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_co
182
181
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py
183
182
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py
184
183
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py
185
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_relu_upper_bound.py
186
184
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py
187
185
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py
188
186
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.0.0.20240402.000404"
30
+ __version__ = "2.0.0.20240404.000424"
@@ -250,15 +250,6 @@ class FrameworkImplementation(ABC):
250
250
  raise NotImplemented(f'{self.__class__.__name__} have to implement the '
251
251
  f'framework\'s get_residual_collapsing_substitution method.') # pragma: no cover
252
252
 
253
- @abstractmethod
254
- def get_substitutions_pre_build(self) -> List[common.BaseSubstitution]:
255
- """
256
-
257
- Returns: A list of the framework substitutions used before we build a quantized model.
258
-
259
- """
260
- raise NotImplemented(f'{self.__class__.__name__} have to implement the '
261
- f'framework\'s get_substitutions_pre_build method.') # pragma: no cover
262
253
 
263
254
  @abstractmethod
264
255
  def get_substitutions_post_statistics_collection(self, quant_config: QuantizationConfig) -> List[
@@ -83,8 +83,6 @@ from model_compression_toolkit.core.keras.graph_substitutions.substitutions.inpu
83
83
  InputScalingWithPad
84
84
  from model_compression_toolkit.core.keras.graph_substitutions.substitutions.relu_bound_to_power_of_2 import \
85
85
  ReLUBoundToPowerOfTwo
86
- from model_compression_toolkit.core.keras.graph_substitutions.substitutions.remove_relu_upper_bound import \
87
- RemoveReLUUpperBound
88
86
  from model_compression_toolkit.core.keras.graph_substitutions.substitutions.multi_head_attention_decomposition import \
89
87
  MultiHeadAttentionDecomposition
90
88
  from model_compression_toolkit.core.keras.graph_substitutions.substitutions.scale_equalization import \
@@ -321,14 +319,6 @@ class KerasImplementation(FrameworkImplementation):
321
319
  substitutions_list.append(InputScalingWithPad())
322
320
  return substitutions_list
323
321
 
324
- def get_substitutions_pre_build(self) -> List[common.BaseSubstitution]:
325
- """
326
-
327
- Returns: A list of the framework substitutions used before we build a quantized model.
328
-
329
- """
330
-
331
- return [RemoveReLUUpperBound()]
332
322
 
333
323
  def get_substitutions_virtual_weights_activation_coupling(self) -> List[common.BaseSubstitution]:
334
324
  """
@@ -304,11 +304,6 @@ class PytorchImplementation(FrameworkImplementation):
304
304
  Logger.critical('Input scaling is currently not supported for Pytorch.')
305
305
  return substitutions_list
306
306
 
307
- def get_substitutions_pre_build(self) -> List[common.BaseSubstitution]:
308
- """
309
- Returns: A list of the framework substitutions used before we build a quantized module.
310
- """
311
- return []
312
307
 
313
308
  def get_substitutions_virtual_weights_activation_coupling(self) -> List[common.BaseSubstitution]:
314
309
  """
@@ -103,7 +103,7 @@ class FakelyQuantONNXPyTorchExporter(BasePyTorchExporter):
103
103
  with custom quantizers.
104
104
  """
105
105
 
106
- for n, m in self.model.named_children():
106
+ for n, m in self.model.named_modules():
107
107
  if isinstance(m, PytorchActivationQuantizationHolder):
108
108
  assert isinstance(m.activation_holder_quantizer, pytorch_quantizers.BasePyTorchInferableQuantizer)
109
109
  m.activation_holder_quantizer.enable_custom_impl()
@@ -92,7 +92,7 @@ if FOUND_TF:
92
92
 
93
93
  Logger.info("Please run your accuracy evaluation on the exported quantized model to verify it's accuracy.\n"
94
94
  "Checkout the FAQ and Troubleshooting pages for resolving common issues and improving the quantized model accuracy:\n"
95
- "FAQ: https://github.com/sony/model_optimization/tree/main/FAQ.md"
95
+ "FAQ: https://github.com/sony/model_optimization/tree/main/FAQ.md\n"
96
96
  "Quantization Troubleshooting: https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md")
97
97
  return exportable_model, user_info
98
98
  else:
@@ -84,7 +84,7 @@ if FOUND_TORCH:
84
84
 
85
85
  Logger.info("Please run your accuracy evaluation on the exported quantized model to verify it's accuracy.\n"
86
86
  "Checkout the FAQ and Troubleshooting pages for resolving common issues and improving the quantized model accuracy:\n"
87
- "FAQ: https://github.com/sony/model_optimization/tree/main/FAQ.md"
87
+ "FAQ: https://github.com/sony/model_optimization/tree/main/FAQ.md\n"
88
88
  "Quantization Troubleshooting: https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md")
89
89
 
90
90
  return exportable_model, user_info
@@ -23,12 +23,10 @@ from model_compression_toolkit.constants import TENSORFLOW, FOUND_TF
23
23
  from model_compression_toolkit.core.common.user_info import UserInformation
24
24
  from model_compression_toolkit.gptq.common.gptq_config import GradientPTQConfig
25
25
  from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import ResourceUtilization
26
- from model_compression_toolkit.core.common.framework_info import FrameworkInfo
27
26
  from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import MixedPrecisionQuantizationConfig
28
27
  from model_compression_toolkit.core import CoreConfig
29
28
  from model_compression_toolkit.core.runner import core_runner
30
29
  from model_compression_toolkit.gptq.runner import gptq_runner
31
- from model_compression_toolkit.core.exporter import export_model
32
30
  from model_compression_toolkit.core.analyzer import analyzer_model_quantization
33
31
  from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities
34
32
 
@@ -25,7 +25,6 @@ from model_compression_toolkit.core.common.mixed_precision.resource_utilization_
25
25
  from model_compression_toolkit.core.runner import core_runner
26
26
  from model_compression_toolkit.gptq.keras.quantization_facade import GPTQ_MOMENTUM
27
27
  from model_compression_toolkit.gptq.runner import gptq_runner
28
- from model_compression_toolkit.core.exporter import export_model
29
28
  from model_compression_toolkit.core.analyzer import analyzer_model_quantization
30
29
  from model_compression_toolkit.core import CoreConfig
31
30
  from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import \
@@ -24,7 +24,6 @@ from model_compression_toolkit.core.common.mixed_precision.resource_utilization_
24
24
  from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import \
25
25
  MixedPrecisionQuantizationConfig
26
26
  from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities
27
- from model_compression_toolkit.core.exporter import export_model
28
27
  from model_compression_toolkit.core.runner import core_runner
29
28
  from model_compression_toolkit.ptq.runner import ptq_runner
30
29
 
@@ -25,7 +25,6 @@ from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quant
25
25
  MixedPrecisionQuantizationConfig
26
26
  from model_compression_toolkit.core.runner import core_runner
27
27
  from model_compression_toolkit.ptq.runner import ptq_runner
28
- from model_compression_toolkit.core.exporter import export_model
29
28
  from model_compression_toolkit.core.analyzer import analyzer_model_quantization
30
29
 
31
30
 
@@ -1,90 +0,0 @@
1
- # Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- from typing import Tuple, Any
18
-
19
- from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
20
- from model_compression_toolkit.core.common import FrameworkInfo
21
- from model_compression_toolkit.core.common.graph.base_graph import Graph
22
- from model_compression_toolkit.core.common.model_builder_mode import ModelBuilderMode
23
- from model_compression_toolkit.core.common.quantization.quantize_graph_weights import quantize_graph_weights
24
-
25
- from model_compression_toolkit.core.common.substitutions.apply_substitutions import substitute
26
- from model_compression_toolkit.core.common.user_info import UserInformation
27
-
28
- from model_compression_toolkit.core.common.visualization.tensorboard_writer import TensorboardWriter
29
-
30
-
31
- def _quantize_model(tg: Graph,
32
- fw_info: FrameworkInfo,
33
- fw_impl: FrameworkImplementation,
34
- tb_w: TensorboardWriter) -> Tuple[Any, UserInformation]:
35
- """
36
- Quantize graph's weights, and build a quantized framework model from it.
37
-
38
- Args:
39
- tg: A prepared for quantization graph.
40
- fw_info: Information needed for quantization about the specific framework (e.g., kernel channels indices, groups of layers by how they should be quantized, etc.).
41
- fw_impl: FrameworkImplementation object with a specific framework methods implementation.
42
- tb_w: TensorBoardWriter object to log events.
43
-
44
- Returns:
45
- Quantized model in the input framework, and information the user may need in order to use the quantized model.
46
- """
47
-
48
- quantized_tg = quantize_graph_weights(tg)
49
- if tb_w is not None:
50
- tb_w.add_graph(quantized_tg, 'after_quantization')
51
- ######################################
52
- # Back2Framework
53
- ######################################
54
- # Before building a quantized model, first apply some substitutions.
55
- quantized_tg = substitute(quantized_tg,
56
- fw_impl.get_substitutions_pre_build())
57
-
58
- quantized_model, user_info = fw_impl.model_builder(quantized_tg,
59
- mode=ModelBuilderMode.QUANTIZED,
60
- fw_info=fw_info)
61
- return quantized_model, user_info
62
-
63
-
64
- def export_model(tg,
65
- fw_info,
66
- fw_impl,
67
- tb_w,
68
- bit_widths_config):
69
-
70
- """
71
- A function for quantizing the graph's weights and build a quantized framework model from it.
72
-
73
- Args:
74
- tg: A prepared for quantization graph.
75
- fw_info: Information needed for quantization about the specific framework (e.g., kernel channels indices, groups of layers by how they should be quantized, etc.).
76
- fw_impl: FrameworkImplementation object with a specific framework methods implementation.
77
- tb_w: TensorBoardWriter object to log events.
78
- bit_widths_config: mixed-precision bit configuration to be added to model user_info
79
-
80
- Returns:
81
- Quantized model in the input framework, and information the user may need in order to use the quantized model.
82
- """
83
- quantized_model, user_info = _quantize_model(tg,
84
- fw_info,
85
- fw_impl,
86
- tb_w)
87
- user_info.mixed_precision_cfg = bit_widths_config
88
-
89
- return quantized_model, user_info
90
-
@@ -1,61 +0,0 @@
1
- # Copyright 2021 Sony Semiconductor Israel, Inc. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- from tensorflow.keras.layers import ReLU
18
-
19
- from model_compression_toolkit.core import common
20
- from model_compression_toolkit.core.common import Graph, BaseNode
21
- from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher,NodeFrameworkAttrMatcher
22
- from model_compression_toolkit.core.keras.constants import RELU_MAX_VALUE
23
- from model_compression_toolkit.constants import THRESHOLD
24
- from model_compression_toolkit.logger import Logger
25
-
26
- MATCHER = NodeOperationMatcher(ReLU) & NodeFrameworkAttrMatcher(RELU_MAX_VALUE, None).logic_not()
27
-
28
-
29
- class RemoveReLUUpperBound(common.BaseSubstitution):
30
- """
31
- Remove ReLU upper bound if its activation threshold bounds it anyway at
32
- the same value.
33
- """
34
-
35
-
36
- def __init__(self):
37
- """
38
- Initialize a RemoveReLUUpperBound object.
39
- """
40
- super().__init__(matcher_instance=MATCHER)
41
-
42
- def substitute(self,
43
- graph: Graph,
44
- node: BaseNode) -> Graph:
45
- """
46
- Remove ReLU upper bound if its activation threshold bounds it anyway at
47
- the same value.
48
-
49
- Args:
50
- graph: Graph we apply the substitution on.
51
- node: Node to remove its bound.
52
-
53
- Returns:
54
- Graph after applying the substitution.
55
- """
56
- if node.final_activation_quantization_cfg and \
57
- node.final_activation_quantization_cfg.activation_quantization_params.get(THRESHOLD) == \
58
- node.framework_attr.get(RELU_MAX_VALUE):
59
- node.framework_attr[RELU_MAX_VALUE] = None
60
- Logger.info(f'Removing upper bound of {node.name}. Threshold and upper bound are equal.')
61
- return graph