mct-nightly 1.9.0.20230813.post401__tar.gz → 1.9.0.20230814.post352__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (433) hide show
  1. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/PKG-INFO +1 -1
  2. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/constants.py +2 -2
  4. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/kmeans_params.py +2 -2
  5. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +11 -11
  6. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantizers/kmeans_quantizer.py +4 -4
  7. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +9 -9
  8. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +4 -4
  9. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +10 -10
  10. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +9 -9
  11. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +3 -3
  12. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +6 -6
  13. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +1 -1
  14. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/setup.cfg +1 -1
  15. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/LICENSE.md +0 -0
  16. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/README.md +0 -0
  17. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/mct_nightly.egg-info/SOURCES.txt +0 -0
  18. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/mct_nightly.egg-info/dependency_links.txt +0 -0
  19. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/mct_nightly.egg-info/requires.txt +0 -0
  20. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/mct_nightly.egg-info/top_level.txt +0 -0
  21. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/__init__.py +0 -0
  22. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/__init__.py +0 -0
  23. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/analyzer.py +0 -0
  24. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/__init__.py +0 -0
  25. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  26. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  27. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  28. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  29. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  30. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  31. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  32. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  33. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  34. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/collectors/statistics_collector_generator.py +0 -0
  35. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/data_loader.py +0 -0
  36. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/defaultdict.py +0 -0
  37. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  38. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/framework_info.py +0 -0
  39. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  40. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  41. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  42. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  43. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  44. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  45. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  46. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  47. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  48. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  49. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  50. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  51. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  52. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  53. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  54. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  55. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  56. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  57. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  58. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  59. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  60. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  61. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  62. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  63. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  64. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  65. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  66. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  67. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  68. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  69. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/kpi_tools/__init__.py +0 -0
  70. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/kpi_tools/kpi.py +0 -0
  71. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/kpi_tools/kpi_aggregation_methods.py +0 -0
  72. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/kpi_tools/kpi_data.py +0 -0
  73. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/kpi_tools/kpi_functions_mapping.py +0 -0
  74. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/kpi_tools/kpi_methods.py +0 -0
  75. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  76. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  77. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  78. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  79. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  80. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  81. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  82. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  83. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  84. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/model_collector.py +0 -0
  85. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/model_validation.py +0 -0
  86. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  87. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  88. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  89. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  90. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  91. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  92. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  93. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  94. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  95. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  96. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  97. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_analyzer.py +0 -0
  98. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  99. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  100. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  101. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  102. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  103. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  104. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  105. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  106. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  107. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  108. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  109. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  110. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  111. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  112. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  113. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  114. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  115. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  116. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  117. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  118. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  119. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  120. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  121. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  122. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  123. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  124. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  125. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  126. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  127. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  128. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  129. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  130. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  131. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  132. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  133. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  134. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  135. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/user_info.py +0 -0
  136. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  137. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  138. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  139. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  140. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/exporter.py +0 -0
  141. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/__init__.py +0 -0
  142. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  143. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  144. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  145. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  146. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  147. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  148. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/back2framework/model_gradients.py +0 -0
  149. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  150. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/constants.py +0 -0
  151. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  152. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  153. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  154. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  155. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  156. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  157. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  158. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  159. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  160. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  161. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  162. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  163. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_relu_upper_bound.py +0 -0
  164. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  165. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  166. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  167. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  168. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  169. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  170. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  171. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  172. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  173. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  174. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/kpi_data_facade.py +0 -0
  175. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  176. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  177. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  178. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  179. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  180. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  181. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  182. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  183. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  184. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  185. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  186. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  187. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  188. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  189. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  190. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  191. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  192. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  193. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  194. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  195. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  196. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  197. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  198. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  199. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  200. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  201. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/back2framework/model_gradients.py +0 -0
  202. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  203. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  204. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  205. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  206. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  207. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  208. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  209. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  210. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  211. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  212. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  213. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  214. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  215. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  216. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  217. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/permute_call_method.py +0 -0
  218. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  219. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  220. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  221. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  222. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  223. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  224. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  225. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  226. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/kpi_data_facade.py +0 -0
  227. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  228. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  229. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  230. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  231. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  232. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  233. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  234. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  235. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  236. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  237. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  238. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  239. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  240. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  241. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/core/runner.py +0 -0
  242. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/__init__.py +0 -0
  243. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  244. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  245. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  246. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  247. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  248. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  249. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  250. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  251. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  252. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  253. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  254. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  255. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  256. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  257. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  258. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  259. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  260. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  261. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  262. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  263. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizers.py +0 -0
  264. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  265. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  266. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  267. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  268. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizers.py +0 -0
  269. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  270. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/__init__.py +0 -0
  271. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  272. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  273. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  274. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  275. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  276. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  277. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  278. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  279. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  280. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  281. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  282. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  283. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  284. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  285. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  286. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  287. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  288. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  289. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  290. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  291. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  292. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  293. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  294. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  295. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  296. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  297. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  298. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  299. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  300. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  301. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  302. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  303. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  304. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  305. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  306. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  307. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  308. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  309. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  310. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  311. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/gptq/runner.py +0 -0
  312. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/legacy/__init__.py +0 -0
  313. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/legacy/keras_quantization_facade.py +0 -0
  314. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/legacy/pytorch_quantization_facade.py +0 -0
  315. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/logger.py +0 -0
  316. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/ptq/__init__.py +0 -0
  317. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  318. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  319. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  320. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  321. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/ptq/runner.py +0 -0
  322. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/__init__.py +0 -0
  323. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/common/__init__.py +0 -0
  324. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  325. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  326. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  327. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  328. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  329. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  330. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  331. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  332. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  333. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  334. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  335. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  336. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  337. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +0 -0
  338. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  339. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py +0 -0
  340. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  341. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  342. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  343. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  344. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  345. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  346. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  347. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  348. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  349. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  350. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/quantization_format.py +0 -0
  351. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  352. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  353. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  354. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  355. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  356. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  357. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  358. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  359. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  360. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  361. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/__init__.py +0 -0
  362. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/latest/__init__.py +0 -0
  363. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/target_platform_capabilities.py +0 -0
  364. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v1/__init__.py +0 -0
  365. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v1/tp_model.py +0 -0
  366. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v1/tpc_keras.py +0 -0
  367. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v1/tpc_pytorch.py +0 -0
  368. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v2/__init__.py +0 -0
  369. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v2/tp_model.py +0 -0
  370. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v2/tpc_keras.py +0 -0
  371. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v2/tpc_pytorch.py +0 -0
  372. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3/__init__.py +0 -0
  373. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3/tp_model.py +0 -0
  374. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3/tpc_keras.py +0 -0
  375. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3/tpc_pytorch.py +0 -0
  376. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3_lut/__init__.py +0 -0
  377. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3_lut/tp_model.py +0 -0
  378. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3_lut/tpc_keras.py +0 -0
  379. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3_lut/tpc_pytorch.py +0 -0
  380. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4/__init__.py +0 -0
  381. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4/tp_model.py +0 -0
  382. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4/tpc_keras.py +0 -0
  383. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4/tpc_pytorch.py +0 -0
  384. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4_lut/__init__.py +0 -0
  385. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4_lut/tp_model.py +0 -0
  386. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4_lut/tpc_keras.py +0 -0
  387. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4_lut/tpc_pytorch.py +0 -0
  388. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v5/__init__.py +0 -0
  389. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v5/tp_model.py +0 -0
  390. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v5/tpc_keras.py +0 -0
  391. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v5/tpc_pytorch.py +0 -0
  392. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  393. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  394. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  395. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  396. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  397. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  398. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  399. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  400. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  401. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  402. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  403. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  404. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  405. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  406. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  407. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  408. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  409. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  410. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  411. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  412. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  413. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  414. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  415. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  416. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  417. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  418. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  419. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  420. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  421. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  422. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  423. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  424. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  425. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  426. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  427. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  428. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  429. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  430. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  431. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  432. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  433. {mct-nightly-1.9.0.20230813.post401 → mct-nightly-1.9.0.20230814.post352}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 1.9.0.20230813.post401
3
+ Version: 1.9.0.20230814.post352
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 1.9.0.20230813.post401
3
+ Version: 1.9.0.20230814.post352
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -27,13 +27,13 @@ WEIGHTS_SIGNED = True
27
27
  # Minimal threshold to use for quantization ranges:
28
28
  MIN_THRESHOLD = (2 ** -16)
29
29
  EPS = 1e-8
30
- MULTIPLIER_N_BITS = 8
30
+ LUT_VALUES_BITWIDTH = 8
31
31
 
32
32
  # Quantization attributes:
33
33
  OUTPUT_SCALE = 'output_scale'
34
34
  THRESHOLD = 'threshold'
35
35
  SIGNED = 'is_signed'
36
- CLUSTER_CENTERS = 'cluster_centers'
36
+ LUT_VALUES = 'lut_values'
37
37
  SCALE_PER_CHANNEL = 'scale_per_channel'
38
38
  RANGE_MIN = 'range_min'
39
39
  RANGE_MAX = 'range_max'
@@ -17,7 +17,7 @@ import numpy as np
17
17
  from sklearn.cluster import KMeans
18
18
 
19
19
  import model_compression_toolkit.core.common.quantization.quantization_config as qc
20
- from model_compression_toolkit.constants import CLUSTER_CENTERS, SCALE_PER_CHANNEL, MIN_THRESHOLD, EPS
20
+ from model_compression_toolkit.constants import LUT_VALUES, SCALE_PER_CHANNEL, MIN_THRESHOLD, EPS
21
21
 
22
22
 
23
23
  def kmeans_tensor(tensor_data: np.ndarray,
@@ -59,6 +59,6 @@ def kmeans_tensor(tensor_data: np.ndarray,
59
59
  tensor_for_kmeans = (tensor_data / (scales_per_channel + EPS))
60
60
  kmeans.fit(tensor_for_kmeans.reshape(-1, 1))
61
61
 
62
- return {CLUSTER_CENTERS: kmeans.cluster_centers_,
62
+ return {LUT_VALUES: kmeans.cluster_centers_,
63
63
  SCALE_PER_CHANNEL: scales_per_channel,
64
64
  }
@@ -17,8 +17,8 @@ import numpy as np
17
17
  from sklearn.cluster import KMeans
18
18
 
19
19
  import model_compression_toolkit.core.common.quantization.quantization_config as qc
20
- from model_compression_toolkit.constants import CLUSTER_CENTERS, MIN_THRESHOLD, SCALE_PER_CHANNEL, \
21
- MULTIPLIER_N_BITS, THRESHOLD
20
+ from model_compression_toolkit.constants import LUT_VALUES, MIN_THRESHOLD, SCALE_PER_CHANNEL, \
21
+ LUT_VALUES_BITWIDTH, THRESHOLD
22
22
  from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import \
23
23
  max_power_of_two, int_quantization_with_threshold
24
24
  from model_compression_toolkit.core.common.quantization.quantization_params_generation.symmetric_selection import \
@@ -41,7 +41,7 @@ def lut_kmeans_tensor(tensor_data: np.ndarray,
41
41
  """
42
42
  The quantizer first finds the closest max value per channel of tensor_data.
43
43
  Now, we divide tensor_data with the threshold vector per channel. In addition, we scale the result to the range
44
- [-2^(MULTIPLIER_N_BITS-1), 2^(MULTIPLIER_N_BITS-1)-1].
44
+ [-2^(LUT_VALUES_BITWIDTH-1), 2^(LUT_VALUES_BITWIDTH-1)-1].
45
45
  Next, we take the scaled tensor_data and perform k-means clustering with 2^nbit clusters.
46
46
  We return the rounded cluster centers, and threshold per channel. We use these to quantize the data.
47
47
  Args:
@@ -59,9 +59,9 @@ def lut_kmeans_tensor(tensor_data: np.ndarray,
59
59
  A dictionary containing the cluster assignments according to the k-means algorithm,
60
60
  the thresholds per channel and the multiplier num bits.
61
61
  """
62
- if n_bits >= MULTIPLIER_N_BITS:
62
+ if n_bits >= LUT_VALUES_BITWIDTH:
63
63
  Logger.critical(f'Look-Up-Table bit configuration has {n_bits} bits, but must be less than '
64
- f'{MULTIPLIER_N_BITS}') # pragma: no cover
64
+ f'{LUT_VALUES_BITWIDTH}') # pragma: no cover
65
65
  # TODO: need to set this externally
66
66
  if len(np.unique(tensor_data.flatten())) < 2 ** n_bits:
67
67
  n_clusters = len(np.unique(tensor_data.flatten()))
@@ -74,10 +74,10 @@ def lut_kmeans_tensor(tensor_data: np.ndarray,
74
74
  channel_axis, n_iter, min_threshold,
75
75
  qc.QuantizationErrorMethod.NOCLIPPING)[THRESHOLD]
76
76
 
77
- tensor_for_kmeans = int_quantization_with_threshold(tensor_data, thresholds_per_channel, MULTIPLIER_N_BITS)
77
+ tensor_for_kmeans = int_quantization_with_threshold(tensor_data, thresholds_per_channel, LUT_VALUES_BITWIDTH)
78
78
  kmeans.fit(tensor_for_kmeans.reshape(-1, 1))
79
79
 
80
- return {CLUSTER_CENTERS: np.round(kmeans.cluster_centers_),
80
+ return {LUT_VALUES: np.round(kmeans.cluster_centers_),
81
81
  SCALE_PER_CHANNEL: thresholds_per_channel}
82
82
 
83
83
 
@@ -115,9 +115,9 @@ def lut_kmeans_histogram(bins: np.ndarray,
115
115
  the threshold for pre-clustering quantization.
116
116
  """
117
117
 
118
- if n_bits >= MULTIPLIER_N_BITS:
118
+ if n_bits >= LUT_VALUES_BITWIDTH:
119
119
  Logger.critical(f'Look-Up-Table bit configuration has {n_bits} bits. It must be less then '
120
- f'{MULTIPLIER_N_BITS}') # pragma: no cover
120
+ f'{LUT_VALUES_BITWIDTH}') # pragma: no cover
121
121
 
122
122
  bins_with_values = np.abs(bins)[1:][counts > 0]
123
123
  if len(np.unique(bins_with_values.flatten())) < 2 ** n_bits:
@@ -130,8 +130,8 @@ def lut_kmeans_histogram(bins: np.ndarray,
130
130
  threshold = max_power_of_two(tensor_max, min_threshold)
131
131
 
132
132
  signed = np.any(bins[:-1][counts != 0] < 0) # Whether histogram contains negative values or not.
133
- tensor_for_kmeans = int_quantization_with_threshold(data=bins, threshold=threshold, n_bits=MULTIPLIER_N_BITS, signed=signed)
133
+ tensor_for_kmeans = int_quantization_with_threshold(data=bins, threshold=threshold, n_bits=LUT_VALUES_BITWIDTH, signed=signed)
134
134
  kmeans.fit(tensor_for_kmeans.reshape(-1, 1), sample_weight=np.insert(counts, 0, 0))
135
135
 
136
- return {CLUSTER_CENTERS: np.float32(np.round(kmeans.cluster_centers_)),
136
+ return {LUT_VALUES: np.float32(np.round(kmeans.cluster_centers_)),
137
137
  THRESHOLD: threshold}
@@ -16,7 +16,7 @@
16
16
  from sklearn.cluster import KMeans
17
17
  import numpy as np
18
18
 
19
- from model_compression_toolkit.constants import CLUSTER_CENTERS, MIN_THRESHOLD, SCALE_PER_CHANNEL
19
+ from model_compression_toolkit.constants import LUT_VALUES, MIN_THRESHOLD, SCALE_PER_CHANNEL
20
20
  from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import kmeans_assign_clusters
21
21
 
22
22
 
@@ -42,12 +42,12 @@ def kmeans_quantizer(tensor_data: np.ndarray,
42
42
  Quantized data.
43
43
  """
44
44
  eps = 1e-8
45
- cluster_centers = quantization_params[CLUSTER_CENTERS]
45
+ lut_values = quantization_params[LUT_VALUES]
46
46
  scales_per_channel = quantization_params[SCALE_PER_CHANNEL]
47
47
  tensor = (tensor_data / (scales_per_channel + eps))
48
48
  shape_before_kmeans = tensor.shape
49
- cluster_assignments = kmeans_assign_clusters(cluster_centers, tensor.reshape(-1, 1))
50
- quant_tensor = cluster_centers[cluster_assignments].reshape(shape_before_kmeans)
49
+ cluster_assignments = kmeans_assign_clusters(lut_values, tensor.reshape(-1, 1))
50
+ quant_tensor = lut_values[cluster_assignments].reshape(shape_before_kmeans)
51
51
  if per_channel:
52
52
  quant_tensor = (quant_tensor * scales_per_channel)
53
53
  return quant_tensor
@@ -15,8 +15,8 @@
15
15
 
16
16
  import numpy as np
17
17
 
18
- from model_compression_toolkit.constants import CLUSTER_CENTERS, SCALE_PER_CHANNEL, \
19
- MULTIPLIER_N_BITS
18
+ from model_compression_toolkit.constants import LUT_VALUES, SCALE_PER_CHANNEL, \
19
+ LUT_VALUES_BITWIDTH
20
20
  from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import kmeans_assign_clusters, \
21
21
  get_quantized_tensor, int_quantization_with_threshold
22
22
 
@@ -30,8 +30,8 @@ def lut_kmeans_quantizer(tensor_data: np.ndarray,
30
30
  """
31
31
  Quantize a tensor with given cluster centers and thresholds-per-channel vector.
32
32
  1. We divide tensor_data with the scale vector per channel.
33
- 2. We scale the result to the range [-2^(MULTIPLIER_N_BITS-1), 2^(MULTIPLIER_N_BITS-1)-1].
34
- 3. We assign cluster centers to every value, multiply by thresholds_per_channel and divide by 2^(MULTIPLIER_N_BITS-1).
33
+ 2. We scale the result to the range [-2^(LUT_VALUES_BITWIDTH-1), 2^(LUT_VALUES_BITWIDTH-1)-1].
34
+ 3. We assign cluster centers to every value, multiply by thresholds_per_channel and divide by 2^(LUT_VALUES_BITWIDTH-1).
35
35
  The result is the quantized tensor.
36
36
 
37
37
 
@@ -46,12 +46,12 @@ def lut_kmeans_quantizer(tensor_data: np.ndarray,
46
46
  Returns:
47
47
  Quantized data.
48
48
  """
49
- cluster_centers = quantization_params[CLUSTER_CENTERS]
49
+ lut_values = quantization_params[LUT_VALUES]
50
50
  thresholds_per_channel = quantization_params[SCALE_PER_CHANNEL]
51
- tensor = int_quantization_with_threshold(tensor_data, thresholds_per_channel, MULTIPLIER_N_BITS)
51
+ tensor = int_quantization_with_threshold(tensor_data, thresholds_per_channel, LUT_VALUES_BITWIDTH)
52
52
  shape_before_kmeans = tensor.shape
53
- cluster_assignments = kmeans_assign_clusters(cluster_centers, tensor.reshape(-1, 1))
54
- quant_tensor = get_quantized_tensor(cluster_centers[cluster_assignments].reshape(shape_before_kmeans),
53
+ cluster_assignments = kmeans_assign_clusters(lut_values, tensor.reshape(-1, 1))
54
+ quant_tensor = get_quantized_tensor(lut_values[cluster_assignments].reshape(shape_before_kmeans),
55
55
  thresholds_per_channel,
56
- MULTIPLIER_N_BITS)
56
+ LUT_VALUES_BITWIDTH)
57
57
  return quant_tensor
@@ -151,12 +151,12 @@ def uniform_quantize_tensor(tensor_data: np.ndarray,
151
151
  return q
152
152
 
153
153
 
154
- def kmeans_assign_clusters(cluster_centers: np.ndarray,
154
+ def kmeans_assign_clusters(lut_values: np.ndarray,
155
155
  query: np.ndarray) -> np.ndarray:
156
156
  """
157
157
  Assign each data value in query with its closest cluster center point.
158
158
  Args:
159
- cluster_centers: the cluster centers to assign the query values.
159
+ lut_values: the cluster centers to assign the query values.
160
160
  query: values for which to assign cluster centers.
161
161
 
162
162
  Returns: A tensor of indexes to the cluster centers that where assigned to each value in
@@ -164,9 +164,9 @@ def kmeans_assign_clusters(cluster_centers: np.ndarray,
164
164
 
165
165
  """
166
166
  d0 = query.shape[0]
167
- d1 = cluster_centers.shape[0]
167
+ d1 = lut_values.shape[0]
168
168
  query_ = query.repeat(d1).reshape(d0, d1)
169
- cluster_centers_ = cluster_centers.repeat(d0).reshape(d1, d0).transpose(1, 0)
169
+ cluster_centers_ = lut_values.repeat(d0).reshape(d1, d0).transpose(1, 0)
170
170
  return np.argmin(np.abs(query_ - cluster_centers_), axis=1)
171
171
 
172
172
 
@@ -5,8 +5,8 @@ import tensorflow as tf
5
5
  from keras.layers import Layer
6
6
  from tensorflow.python.util.object_identity import Reference as TFReference
7
7
 
8
- from model_compression_toolkit.constants import SIGNED, CLUSTER_CENTERS, EPS, \
9
- MULTIPLIER_N_BITS, THRESHOLD
8
+ from model_compression_toolkit.constants import SIGNED, LUT_VALUES, EPS, \
9
+ LUT_VALUES_BITWIDTH, THRESHOLD
10
10
 
11
11
 
12
12
  def activation_lut_kmean_quantizer(activation_n_bits: int,
@@ -29,14 +29,14 @@ def activation_lut_kmean_quantizer(activation_n_bits: int,
29
29
 
30
30
  class LUTFakeQuant(Layer):
31
31
  """
32
- A custom Keras layer for quantizing activation tensor with non-uniform quantization (using lookup table clustering).
32
+ A custom Keras layer for quantizing activation tensor with non-uniform quantization (using lookup table values).
33
33
  """
34
34
 
35
35
  def __init__(self, quantization_params: Dict[str, np.ndarray], **kwargs):
36
36
  super(LUTFakeQuant, self).__init__(**kwargs)
37
37
  self.quantization_params = quantization_params
38
38
  self.activation_is_signed = self.quantization_params.get(SIGNED)
39
- self.cluster_centers = self.quantization_params.get(CLUSTER_CENTERS)
39
+ self.lut_values = self.quantization_params.get(LUT_VALUES)
40
40
  self.threshold = self.quantization_params.get(THRESHOLD)
41
41
 
42
42
  def build(self, input_shape: Tuple[int]):
@@ -59,7 +59,7 @@ class LUTFakeQuant(Layer):
59
59
  Returns: KerasTensor after applying a non-uniform fake quantization.
60
60
 
61
61
  """
62
- if self.activation_is_signed is None or self.cluster_centers is None or self.threshold is None:
62
+ if self.activation_is_signed is None or self.lut_values is None or self.threshold is None:
63
63
  return None # pragma: no cover
64
64
 
65
65
  _quant_output = self.lut_kmeans_quantizer(input_data)
@@ -79,14 +79,14 @@ class LUTFakeQuant(Layer):
79
79
  Returns: Quantized tensor.
80
80
  """
81
81
 
82
- tensor = self.int_quantization_with_threshold(tensor_data, MULTIPLIER_N_BITS)
82
+ tensor = self.int_quantization_with_threshold(tensor_data, LUT_VALUES_BITWIDTH)
83
83
  tensor = tf.expand_dims(tensor, -1)
84
84
 
85
- expanded_cluster_centers = self.cluster_centers.reshape([*[1 for _ in range(len(tensor.shape)-1)], -1])
86
- cluster_assignments = tf.argmin(tf.abs(tensor - expanded_cluster_centers), axis=-1)
87
- centers = tf.gather(self.cluster_centers.flatten(), cluster_assignments)
85
+ expanded_lut_values = self.lut_values.reshape([*[1 for _ in range(len(tensor.shape)-1)], -1])
86
+ lut_values_assignments = tf.argmin(tf.abs(tensor - expanded_lut_values), axis=-1)
87
+ centers = tf.gather(self.lut_values.flatten(), lut_values_assignments)
88
88
 
89
- quant_tensor = (centers / (2 ** (MULTIPLIER_N_BITS - int(self.activation_is_signed)))) * self.threshold
89
+ quant_tensor = (centers / (2 ** (LUT_VALUES_BITWIDTH - int(self.activation_is_signed)))) * self.threshold
90
90
 
91
91
  return quant_tensor
92
92
 
@@ -3,7 +3,7 @@ from typing import Dict, Callable
3
3
  import torch
4
4
  import numpy as np
5
5
 
6
- from model_compression_toolkit.constants import SIGNED, CLUSTER_CENTERS, THRESHOLD, MULTIPLIER_N_BITS, EPS
6
+ from model_compression_toolkit.constants import SIGNED, LUT_VALUES, THRESHOLD, LUT_VALUES_BITWIDTH, EPS
7
7
  from model_compression_toolkit.core.pytorch.utils import to_torch_tensor
8
8
 
9
9
 
@@ -27,7 +27,7 @@ def activation_lut_kmean_quantizer(activation_n_bits: int,
27
27
 
28
28
  class PytorchLUTFakeQuant(torch.nn.Module):
29
29
  """
30
- A custom PyTorch layer for quantizing activation tensor with non-uniform quantization (using lookup table clustering).
30
+ A custom PyTorch layer for quantizing activation tensor with non-uniform quantization (using lookup table values).
31
31
  """
32
32
 
33
33
  def __init__(self,
@@ -43,7 +43,7 @@ class PytorchLUTFakeQuant(torch.nn.Module):
43
43
 
44
44
  self.quantization_params = quantization_params
45
45
  self.activation_is_signed = self.quantization_params.get(SIGNED)
46
- self.cluster_centers = to_torch_tensor(self.quantization_params.get(CLUSTER_CENTERS))
46
+ self.lut_values = to_torch_tensor(self.quantization_params.get(LUT_VALUES))
47
47
  self.threshold = self.quantization_params.get(THRESHOLD)
48
48
 
49
49
  def forward(self, x: torch.Tensor) -> torch.Tensor:
@@ -56,7 +56,7 @@ class PytorchLUTFakeQuant(torch.nn.Module):
56
56
  Returns:
57
57
  Quantized torch Tensor.
58
58
  """
59
- if self.activation_is_signed is None or self.cluster_centers is None or self.threshold is None:
59
+ if self.activation_is_signed is None or self.lut_values is None or self.threshold is None:
60
60
  return None # pragma: no cover
61
61
 
62
62
  _quant_output = self.lut_kmeans_quantizer(x)
@@ -76,14 +76,14 @@ class PytorchLUTFakeQuant(torch.nn.Module):
76
76
  Returns: Quantized tensor.
77
77
  """
78
78
 
79
- tensor = self.int_quantization_with_threshold(tensor_data, MULTIPLIER_N_BITS)
79
+ tensor = self.int_quantization_with_threshold(tensor_data, LUT_VALUES_BITWIDTH)
80
80
  tensor = tensor.unsqueeze(-1)
81
81
 
82
- expanded_cluster_centers = self.cluster_centers.reshape([*[1 for _ in range(len(tensor.shape) - 1)], -1])
83
- cluster_assignments = torch.argmin(torch.abs(tensor - expanded_cluster_centers), dim=-1)
84
- centers = self.cluster_centers.flatten()[cluster_assignments]
82
+ expanded_lut_values = self.lut_values.reshape([*[1 for _ in range(len(tensor.shape) - 1)], -1])
83
+ lut_values_assignments = torch.argmin(torch.abs(tensor - expanded_lut_values), dim=-1)
84
+ centers = self.lut_values.flatten()[lut_values_assignments]
85
85
 
86
- quant_tensor = (centers / (2 ** (MULTIPLIER_N_BITS - int(self.activation_is_signed)))) * self.threshold
86
+ quant_tensor = (centers / (2 ** (LUT_VALUES_BITWIDTH - int(self.activation_is_signed)))) * self.threshold
87
87
 
88
88
  return quant_tensor
89
89
 
@@ -15,7 +15,7 @@
15
15
  from typing import Dict, Any
16
16
 
17
17
  from model_compression_toolkit.core.common import BaseNode
18
- from model_compression_toolkit.constants import THRESHOLD, RANGE_MIN, RANGE_MAX, SIGNED, CLUSTER_CENTERS, SCALE_PER_CHANNEL
18
+ from model_compression_toolkit.constants import THRESHOLD, RANGE_MIN, RANGE_MAX, SIGNED, LUT_VALUES, SCALE_PER_CHANNEL
19
19
  from model_compression_toolkit.core.common.quantization.node_quantization_config import BaseNodeQuantizationConfig, \
20
20
  NodeWeightsQuantizationConfig, NodeActivationQuantizationConfig
21
21
 
@@ -66,7 +66,7 @@ def get_inferable_quantizer_kwargs(node_qc: BaseNodeQuantizationConfig,
66
66
  elif quantization_method in [QuantizationMethod.LUT_SYM_QUANTIZER, QuantizationMethod.LUT_POT_QUANTIZER]:
67
67
  return {qi_keras_consts.NUM_BITS: node_qc.weights_n_bits,
68
68
  qi_keras_consts.PER_CHANNEL: node_qc.weights_per_channel_threshold,
69
- qi_keras_consts.CLUSTER_CENTERS: list(node_qc.weights_quantization_params[CLUSTER_CENTERS].flatten()),
69
+ qi_keras_consts.LUT_VALUES: list(node_qc.weights_quantization_params[LUT_VALUES].flatten()),
70
70
  qi_keras_consts.THRESHOLD: list(node_qc.weights_quantization_params[SCALE_PER_CHANNEL].flatten()),
71
71
  qi_keras_consts.CHANNEL_AXIS: node_qc.weights_channels_axis,
72
72
  # TODO: how to pass multiplier nbits and eps for a specific node?
@@ -98,7 +98,7 @@ def get_inferable_quantizer_kwargs(node_qc: BaseNodeQuantizationConfig,
98
98
  elif quantization_method in [QuantizationMethod.LUT_POT_QUANTIZER]:
99
99
  return {qi_keras_consts.NUM_BITS: node_qc.activation_n_bits,
100
100
  qi_keras_consts.SIGNED: node_qc.activation_quantization_params[SIGNED],
101
- qi_keras_consts.CLUSTER_CENTERS: node_qc.activation_quantization_params[CLUSTER_CENTERS],
101
+ qi_keras_consts.LUT_VALUES: node_qc.activation_quantization_params[LUT_VALUES],
102
102
  qi_keras_consts.THRESHOLD: [node_qc.activation_quantization_params[THRESHOLD]]
103
103
  # TODO: how to pass multiplier nbits and eps for a specific node?
104
104
  }
@@ -17,7 +17,7 @@ from typing import Dict, Any
17
17
 
18
18
  from model_compression_toolkit.core.common import BaseNode
19
19
  from model_compression_toolkit.constants import THRESHOLD, SIGNED, RANGE_MIN, RANGE_MAX, \
20
- SCALE_PER_CHANNEL, CLUSTER_CENTERS
20
+ SCALE_PER_CHANNEL, LUT_VALUES
21
21
  from model_compression_toolkit.core.common.quantization.node_quantization_config import BaseNodeQuantizationConfig, \
22
22
  NodeWeightsQuantizationConfig, NodeActivationQuantizationConfig
23
23
  from model_compression_toolkit.logger import Logger
@@ -64,11 +64,11 @@ def get_weights_inferable_quantizer_kwargs(node_qc: NodeWeightsQuantizationConfi
64
64
 
65
65
  elif quantization_method in [QuantizationMethod.LUT_POT_QUANTIZER, QuantizationMethod.LUT_SYM_QUANTIZER]:
66
66
  return {qi_inferable_quantizers_constants.NUM_BITS: node_qc.weights_n_bits,
67
- qi_inferable_quantizers_constants.CLUSTER_CENTERS: node_qc.weights_quantization_params[CLUSTER_CENTERS].flatten(),
67
+ qi_inferable_quantizers_constants.LUT_VALUES: node_qc.weights_quantization_params[LUT_VALUES].flatten(),
68
68
  qi_inferable_quantizers_constants.THRESHOLD: node_qc.weights_quantization_params[SCALE_PER_CHANNEL].flatten(),
69
69
  qi_inferable_quantizers_constants.PER_CHANNEL: node_qc.weights_per_channel_threshold,
70
70
  qi_inferable_quantizers_constants.CHANNEL_AXIS: node_qc.weights_channels_axis}
71
- # TODO: Add MULTIPLIER_N_BITS & EPS to node quantization config
71
+ # TODO: Add LUT_VALUES_BITWIDTH & EPS to node quantization config
72
72
 
73
73
  else:
74
74
  Logger.critical(f'Not supported quantization method for weights inferable quantizers.') # pragma: no cover
@@ -106,12 +106,12 @@ def get_activation_inferable_quantizer_kwargs(node_qc: NodeActivationQuantizatio
106
106
 
107
107
  elif quantization_method in [QuantizationMethod.LUT_POT_QUANTIZER]:
108
108
  return {qi_inferable_quantizers_constants.NUM_BITS: node_qc.activation_n_bits,
109
- qi_inferable_quantizers_constants.CLUSTER_CENTERS: np.asarray(
110
- [node_qc.activation_quantization_params[CLUSTER_CENTERS]]),
109
+ qi_inferable_quantizers_constants.LUT_VALUES: np.asarray(
110
+ [node_qc.activation_quantization_params[LUT_VALUES]]),
111
111
  qi_inferable_quantizers_constants.THRESHOLD: np.asarray(
112
112
  [node_qc.activation_quantization_params[THRESHOLD]]),
113
113
  qi_inferable_quantizers_constants.SIGNED: node_qc.activation_quantization_params.get(SIGNED)}
114
- # TODO: Add MULTIPLIER_N_BITS & EPS to node quantization config
114
+ # TODO: Add LUT_VALUES_BITWIDTH & EPS to node quantization config
115
115
  else:
116
116
  Logger.critical(f'Not supported quantization method for inferable quantizers.') # pragma: no cover
117
117
 
@@ -63,7 +63,7 @@ class OpQuantizationConfig:
63
63
  self.quantization_preserving = quantization_preserving
64
64
  self.fixed_scale = fixed_scale
65
65
  self.fixed_zero_point = fixed_zero_point
66
- self.weights_multiplier_nbits = weights_multiplier_nbits
66
+ self.eights_lut_values_bitwidth = weights_multiplier_nbits
67
67
 
68
68
  def get_info(self):
69
69
  """
@@ -1,6 +1,6 @@
1
1
  [metadata]
2
2
  description-file = README.md
3
- version = 1.9.0.20230813-000401
3
+ version = 1.9.0.20230814-000352
4
4
 
5
5
  [egg_info]
6
6
  tag_build =