mcp-use 1.0.3__tar.gz → 1.1.4__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mcp-use might be problematic. Click here for more details.
- mcp_use-1.1.4/.github/ISSUE_TEMPLATE/bug_report.md +38 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/PKG-INFO +113 -12
- {mcp_use-1.0.3 → mcp_use-1.1.4}/README.md +112 -11
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/introduction.mdx +3 -0
- mcp_use-1.1.4/docs/logo/dark.svg +7 -0
- mcp_use-1.1.4/docs/logo/light.svg +7 -0
- mcp_use-1.1.4/docs/quickstart.mdx +234 -0
- mcp_use-1.1.4/examples/http_example.py +53 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/pyproject.toml +1 -1
- mcp_use-1.1.4/static/image.jpg +0 -0
- mcp_use-1.0.3/docs/logo/dark.svg +0 -12
- mcp_use-1.0.3/docs/logo/light.svg +0 -12
- mcp_use-1.0.3/docs/quickstart.mdx +0 -138
- mcp_use-1.0.3/static/image.jpg +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/.github/workflows/publish.yml +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/.github/workflows/tests.yml +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/.gitignore +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/.pre-commit-config.yaml +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/LICENSE +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/README.md +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/api-reference/introduction.mdx +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/development.mdx +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/docs.json +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/essentials/configuration.mdx +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/essentials/connection-types.mdx +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/essentials/llm-integration.mdx +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/favicon.svg +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/images/hero-dark.png +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/images/hero-light.png +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/docs/snippets/snippet-intro.mdx +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/examples/airbnb_mcp.json +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/examples/airbnb_use.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/examples/blender_use.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/examples/browser_mcp.json +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/examples/browser_use.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/examples/chat_example.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/examples/filesystem_use.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/examples/multi_server_example.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/__init__.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/agents/__init__.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/agents/base.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/agents/langchain_agent.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/agents/mcpagent.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/agents/prompts/default.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/client.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/config.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/connectors/__init__.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/connectors/base.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/connectors/http.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/connectors/stdio.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/connectors/websocket.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/logging.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/session.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/task_managers/__init__.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/task_managers/base.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/task_managers/sse.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/task_managers/stdio.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/mcp_use/task_managers/websocket.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/pytest.ini +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/tests/conftest.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/tests/unit/test_client.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/tests/unit/test_config.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/tests/unit/test_http_connector.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/tests/unit/test_logging.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/tests/unit/test_session.py +0 -0
- {mcp_use-1.0.3 → mcp_use-1.1.4}/tests/unit/test_stdio_connector.py +0 -0
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
---
|
|
2
|
+
name: Bug report
|
|
3
|
+
about: Create a report to help us improve
|
|
4
|
+
title: ''
|
|
5
|
+
labels: ''
|
|
6
|
+
assignees: ''
|
|
7
|
+
|
|
8
|
+
---
|
|
9
|
+
|
|
10
|
+
**Describe the bug**
|
|
11
|
+
A clear and concise description of what the bug is.
|
|
12
|
+
|
|
13
|
+
**To Reproduce**
|
|
14
|
+
Steps to reproduce the behavior:
|
|
15
|
+
1. Go to '...'
|
|
16
|
+
2. Click on '....'
|
|
17
|
+
3. Scroll down to '....'
|
|
18
|
+
4. See error
|
|
19
|
+
|
|
20
|
+
**Expected behavior**
|
|
21
|
+
A clear and concise description of what you expected to happen.
|
|
22
|
+
|
|
23
|
+
**Screenshots**
|
|
24
|
+
If applicable, add screenshots to help explain your problem.
|
|
25
|
+
|
|
26
|
+
**Desktop (please complete the following information):**
|
|
27
|
+
- OS: [e.g. iOS]
|
|
28
|
+
- Browser [e.g. chrome, safari]
|
|
29
|
+
- Version [e.g. 22]
|
|
30
|
+
|
|
31
|
+
**Smartphone (please complete the following information):**
|
|
32
|
+
- Device: [e.g. iPhone6]
|
|
33
|
+
- OS: [e.g. iOS8.1]
|
|
34
|
+
- Browser [e.g. stock browser, safari]
|
|
35
|
+
- Version [e.g. 22]
|
|
36
|
+
|
|
37
|
+
**Additional context**
|
|
38
|
+
Add any other context about the problem here.
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mcp-use
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.1.4
|
|
4
4
|
Summary: MCP Library for LLMs
|
|
5
5
|
Author-email: Pietro Zullo <pietro.zullo@gmail.com>
|
|
6
6
|
License: MIT
|
|
@@ -56,6 +56,19 @@ Description-Content-Type: text/markdown
|
|
|
56
56
|
|
|
57
57
|
💡 Let developers easily connect any LLM to tools like web browsing, file operations, and more.
|
|
58
58
|
|
|
59
|
+
# Features
|
|
60
|
+
|
|
61
|
+
## ✨ Key Features
|
|
62
|
+
|
|
63
|
+
| Feature | Description |
|
|
64
|
+
|---------|-------------|
|
|
65
|
+
| 🔄 **Ease of use** | Create your first MCP capable agent you need only 6 lines of code |
|
|
66
|
+
| 🤖 **LLM Flexibility** | Works with any langchain supported LLM that supports tool calling (OpenAI, Anthropic, Groq, LLama etc.) |
|
|
67
|
+
| 🌐 **HTTP Support** | Direct connection to MCP servers running on specific HTTP ports |
|
|
68
|
+
| 🧩 **Multi-Server Support** | Use multiple MCP servers simultaneously in a single agent |
|
|
69
|
+
| 🛡️ **Tool Restrictions** | Restrict potentially dangerous tools like file system or network access |
|
|
70
|
+
|
|
71
|
+
|
|
59
72
|
# Quick start
|
|
60
73
|
|
|
61
74
|
With pip:
|
|
@@ -72,7 +85,30 @@ cd mcp-use
|
|
|
72
85
|
pip install -e .
|
|
73
86
|
```
|
|
74
87
|
|
|
75
|
-
|
|
88
|
+
### Installing LangChain Providers
|
|
89
|
+
|
|
90
|
+
mcp_use works with various LLM providers through LangChain. You'll need to install the appropriate LangChain provider package for your chosen LLM. For example:
|
|
91
|
+
|
|
92
|
+
```bash
|
|
93
|
+
# For OpenAI
|
|
94
|
+
pip install langchain-openai
|
|
95
|
+
|
|
96
|
+
# For Anthropic
|
|
97
|
+
pip install langchain-anthropic
|
|
98
|
+
|
|
99
|
+
# For other providers, check the [LangChain chat models documentation](https://python.langchain.com/docs/integrations/chat/)
|
|
100
|
+
```
|
|
101
|
+
|
|
102
|
+
and add your API keys for the provider you want to use to your `.env` file.
|
|
103
|
+
|
|
104
|
+
```bash
|
|
105
|
+
OPENAI_API_KEY=
|
|
106
|
+
ANTHROPIC_API_KEY=
|
|
107
|
+
```
|
|
108
|
+
|
|
109
|
+
> **Important**: Only models with tool calling capabilities can be used with mcp_use. Make sure your chosen model supports function calling or tool use.
|
|
110
|
+
|
|
111
|
+
### Spin up your agent:
|
|
76
112
|
|
|
77
113
|
```python
|
|
78
114
|
import asyncio
|
|
@@ -85,8 +121,21 @@ async def main():
|
|
|
85
121
|
# Load environment variables
|
|
86
122
|
load_dotenv()
|
|
87
123
|
|
|
88
|
-
# Create
|
|
89
|
-
|
|
124
|
+
# Create configuration dictionary
|
|
125
|
+
config = {
|
|
126
|
+
"mcpServers": {
|
|
127
|
+
"playwright": {
|
|
128
|
+
"command": "npx",
|
|
129
|
+
"args": ["@playwright/mcp@latest"],
|
|
130
|
+
"env": {
|
|
131
|
+
"DISPLAY": ":1"
|
|
132
|
+
}
|
|
133
|
+
}
|
|
134
|
+
}
|
|
135
|
+
}
|
|
136
|
+
|
|
137
|
+
# Create MCPClient from configuration dictionary
|
|
138
|
+
client = MCPClient.from_dict(config)
|
|
90
139
|
|
|
91
140
|
# Create LLM
|
|
92
141
|
llm = ChatOpenAI(model="gpt-4o")
|
|
@@ -96,7 +145,7 @@ async def main():
|
|
|
96
145
|
|
|
97
146
|
# Run the query
|
|
98
147
|
result = await agent.run(
|
|
99
|
-
"Find the best restaurant in San Francisco
|
|
148
|
+
"Find the best restaurant in San Francisco",
|
|
100
149
|
)
|
|
101
150
|
print(f"\nResult: {result}")
|
|
102
151
|
|
|
@@ -104,6 +153,14 @@ if __name__ == "__main__":
|
|
|
104
153
|
asyncio.run(main())
|
|
105
154
|
```
|
|
106
155
|
|
|
156
|
+
You can also add the servers configuration from a config file like this:
|
|
157
|
+
|
|
158
|
+
```python
|
|
159
|
+
client = MCPClient.from_config_file(
|
|
160
|
+
os.path.join("browser_mcp.json")
|
|
161
|
+
)
|
|
162
|
+
```
|
|
163
|
+
|
|
107
164
|
Example configuration file (`browser_mcp.json`):
|
|
108
165
|
|
|
109
166
|
```json
|
|
@@ -120,15 +177,10 @@ Example configuration file (`browser_mcp.json`):
|
|
|
120
177
|
}
|
|
121
178
|
```
|
|
122
179
|
|
|
123
|
-
Add your API keys for the provider you want to use to your `.env` file.
|
|
124
|
-
|
|
125
|
-
```bash
|
|
126
|
-
OPENAI_API_KEY=
|
|
127
|
-
ANTHROPIC_API_KEY=
|
|
128
|
-
```
|
|
129
|
-
|
|
130
180
|
For other settings, models, and more, check out the documentation.
|
|
131
181
|
|
|
182
|
+
# Features
|
|
183
|
+
|
|
132
184
|
# Example Use Cases
|
|
133
185
|
|
|
134
186
|
## Web Browsing with Playwright
|
|
@@ -286,6 +338,55 @@ if __name__ == "__main__":
|
|
|
286
338
|
asyncio.run(main())
|
|
287
339
|
```
|
|
288
340
|
|
|
341
|
+
## HTTP Connection Example
|
|
342
|
+
|
|
343
|
+
MCP-Use now supports HTTP connections, allowing you to connect to MCP servers running on specific HTTP ports. This feature is particularly useful for integrating with web-based MCP servers.
|
|
344
|
+
|
|
345
|
+
Here's an example of how to use the HTTP connection feature:
|
|
346
|
+
|
|
347
|
+
```python
|
|
348
|
+
import asyncio
|
|
349
|
+
import os
|
|
350
|
+
from dotenv import load_dotenv
|
|
351
|
+
from langchain_openai import ChatOpenAI
|
|
352
|
+
from mcp_use import MCPAgent, MCPClient
|
|
353
|
+
|
|
354
|
+
async def main():
|
|
355
|
+
"""Run the example using a configuration file."""
|
|
356
|
+
# Load environment variables
|
|
357
|
+
load_dotenv()
|
|
358
|
+
|
|
359
|
+
config = {
|
|
360
|
+
"mcpServers": {
|
|
361
|
+
"http": {
|
|
362
|
+
"url": "http://localhost:8931/sse"
|
|
363
|
+
}
|
|
364
|
+
}
|
|
365
|
+
}
|
|
366
|
+
|
|
367
|
+
# Create MCPClient from config file
|
|
368
|
+
client = MCPClient.from_dict(config)
|
|
369
|
+
|
|
370
|
+
# Create LLM
|
|
371
|
+
llm = ChatOpenAI(model="gpt-4o")
|
|
372
|
+
|
|
373
|
+
# Create agent with the client
|
|
374
|
+
agent = MCPAgent(llm=llm, client=client, max_steps=30)
|
|
375
|
+
|
|
376
|
+
# Run the query
|
|
377
|
+
result = await agent.run(
|
|
378
|
+
"Find the best restaurant in San Francisco USING GOOGLE SEARCH",
|
|
379
|
+
max_steps=30,
|
|
380
|
+
)
|
|
381
|
+
print(f"\nResult: {result}")
|
|
382
|
+
|
|
383
|
+
if __name__ == "__main__":
|
|
384
|
+
# Run the appropriate example
|
|
385
|
+
asyncio.run(main())
|
|
386
|
+
```
|
|
387
|
+
|
|
388
|
+
This example demonstrates how to connect to an MCP server running on a specific HTTP port. Make sure to start your MCP server before running this example.
|
|
389
|
+
|
|
289
390
|
# Multi-Server Support
|
|
290
391
|
|
|
291
392
|
MCP-Use supports working with multiple MCP servers simultaneously, allowing you to combine tools from different servers in a single agent. This is useful for complex tasks that require multiple capabilities, such as web browsing combined with file operations or 3D modeling.
|
|
@@ -17,6 +17,19 @@
|
|
|
17
17
|
|
|
18
18
|
💡 Let developers easily connect any LLM to tools like web browsing, file operations, and more.
|
|
19
19
|
|
|
20
|
+
# Features
|
|
21
|
+
|
|
22
|
+
## ✨ Key Features
|
|
23
|
+
|
|
24
|
+
| Feature | Description |
|
|
25
|
+
|---------|-------------|
|
|
26
|
+
| 🔄 **Ease of use** | Create your first MCP capable agent you need only 6 lines of code |
|
|
27
|
+
| 🤖 **LLM Flexibility** | Works with any langchain supported LLM that supports tool calling (OpenAI, Anthropic, Groq, LLama etc.) |
|
|
28
|
+
| 🌐 **HTTP Support** | Direct connection to MCP servers running on specific HTTP ports |
|
|
29
|
+
| 🧩 **Multi-Server Support** | Use multiple MCP servers simultaneously in a single agent |
|
|
30
|
+
| 🛡️ **Tool Restrictions** | Restrict potentially dangerous tools like file system or network access |
|
|
31
|
+
|
|
32
|
+
|
|
20
33
|
# Quick start
|
|
21
34
|
|
|
22
35
|
With pip:
|
|
@@ -33,7 +46,30 @@ cd mcp-use
|
|
|
33
46
|
pip install -e .
|
|
34
47
|
```
|
|
35
48
|
|
|
36
|
-
|
|
49
|
+
### Installing LangChain Providers
|
|
50
|
+
|
|
51
|
+
mcp_use works with various LLM providers through LangChain. You'll need to install the appropriate LangChain provider package for your chosen LLM. For example:
|
|
52
|
+
|
|
53
|
+
```bash
|
|
54
|
+
# For OpenAI
|
|
55
|
+
pip install langchain-openai
|
|
56
|
+
|
|
57
|
+
# For Anthropic
|
|
58
|
+
pip install langchain-anthropic
|
|
59
|
+
|
|
60
|
+
# For other providers, check the [LangChain chat models documentation](https://python.langchain.com/docs/integrations/chat/)
|
|
61
|
+
```
|
|
62
|
+
|
|
63
|
+
and add your API keys for the provider you want to use to your `.env` file.
|
|
64
|
+
|
|
65
|
+
```bash
|
|
66
|
+
OPENAI_API_KEY=
|
|
67
|
+
ANTHROPIC_API_KEY=
|
|
68
|
+
```
|
|
69
|
+
|
|
70
|
+
> **Important**: Only models with tool calling capabilities can be used with mcp_use. Make sure your chosen model supports function calling or tool use.
|
|
71
|
+
|
|
72
|
+
### Spin up your agent:
|
|
37
73
|
|
|
38
74
|
```python
|
|
39
75
|
import asyncio
|
|
@@ -46,8 +82,21 @@ async def main():
|
|
|
46
82
|
# Load environment variables
|
|
47
83
|
load_dotenv()
|
|
48
84
|
|
|
49
|
-
# Create
|
|
50
|
-
|
|
85
|
+
# Create configuration dictionary
|
|
86
|
+
config = {
|
|
87
|
+
"mcpServers": {
|
|
88
|
+
"playwright": {
|
|
89
|
+
"command": "npx",
|
|
90
|
+
"args": ["@playwright/mcp@latest"],
|
|
91
|
+
"env": {
|
|
92
|
+
"DISPLAY": ":1"
|
|
93
|
+
}
|
|
94
|
+
}
|
|
95
|
+
}
|
|
96
|
+
}
|
|
97
|
+
|
|
98
|
+
# Create MCPClient from configuration dictionary
|
|
99
|
+
client = MCPClient.from_dict(config)
|
|
51
100
|
|
|
52
101
|
# Create LLM
|
|
53
102
|
llm = ChatOpenAI(model="gpt-4o")
|
|
@@ -57,7 +106,7 @@ async def main():
|
|
|
57
106
|
|
|
58
107
|
# Run the query
|
|
59
108
|
result = await agent.run(
|
|
60
|
-
"Find the best restaurant in San Francisco
|
|
109
|
+
"Find the best restaurant in San Francisco",
|
|
61
110
|
)
|
|
62
111
|
print(f"\nResult: {result}")
|
|
63
112
|
|
|
@@ -65,6 +114,14 @@ if __name__ == "__main__":
|
|
|
65
114
|
asyncio.run(main())
|
|
66
115
|
```
|
|
67
116
|
|
|
117
|
+
You can also add the servers configuration from a config file like this:
|
|
118
|
+
|
|
119
|
+
```python
|
|
120
|
+
client = MCPClient.from_config_file(
|
|
121
|
+
os.path.join("browser_mcp.json")
|
|
122
|
+
)
|
|
123
|
+
```
|
|
124
|
+
|
|
68
125
|
Example configuration file (`browser_mcp.json`):
|
|
69
126
|
|
|
70
127
|
```json
|
|
@@ -81,15 +138,10 @@ Example configuration file (`browser_mcp.json`):
|
|
|
81
138
|
}
|
|
82
139
|
```
|
|
83
140
|
|
|
84
|
-
Add your API keys for the provider you want to use to your `.env` file.
|
|
85
|
-
|
|
86
|
-
```bash
|
|
87
|
-
OPENAI_API_KEY=
|
|
88
|
-
ANTHROPIC_API_KEY=
|
|
89
|
-
```
|
|
90
|
-
|
|
91
141
|
For other settings, models, and more, check out the documentation.
|
|
92
142
|
|
|
143
|
+
# Features
|
|
144
|
+
|
|
93
145
|
# Example Use Cases
|
|
94
146
|
|
|
95
147
|
## Web Browsing with Playwright
|
|
@@ -247,6 +299,55 @@ if __name__ == "__main__":
|
|
|
247
299
|
asyncio.run(main())
|
|
248
300
|
```
|
|
249
301
|
|
|
302
|
+
## HTTP Connection Example
|
|
303
|
+
|
|
304
|
+
MCP-Use now supports HTTP connections, allowing you to connect to MCP servers running on specific HTTP ports. This feature is particularly useful for integrating with web-based MCP servers.
|
|
305
|
+
|
|
306
|
+
Here's an example of how to use the HTTP connection feature:
|
|
307
|
+
|
|
308
|
+
```python
|
|
309
|
+
import asyncio
|
|
310
|
+
import os
|
|
311
|
+
from dotenv import load_dotenv
|
|
312
|
+
from langchain_openai import ChatOpenAI
|
|
313
|
+
from mcp_use import MCPAgent, MCPClient
|
|
314
|
+
|
|
315
|
+
async def main():
|
|
316
|
+
"""Run the example using a configuration file."""
|
|
317
|
+
# Load environment variables
|
|
318
|
+
load_dotenv()
|
|
319
|
+
|
|
320
|
+
config = {
|
|
321
|
+
"mcpServers": {
|
|
322
|
+
"http": {
|
|
323
|
+
"url": "http://localhost:8931/sse"
|
|
324
|
+
}
|
|
325
|
+
}
|
|
326
|
+
}
|
|
327
|
+
|
|
328
|
+
# Create MCPClient from config file
|
|
329
|
+
client = MCPClient.from_dict(config)
|
|
330
|
+
|
|
331
|
+
# Create LLM
|
|
332
|
+
llm = ChatOpenAI(model="gpt-4o")
|
|
333
|
+
|
|
334
|
+
# Create agent with the client
|
|
335
|
+
agent = MCPAgent(llm=llm, client=client, max_steps=30)
|
|
336
|
+
|
|
337
|
+
# Run the query
|
|
338
|
+
result = await agent.run(
|
|
339
|
+
"Find the best restaurant in San Francisco USING GOOGLE SEARCH",
|
|
340
|
+
max_steps=30,
|
|
341
|
+
)
|
|
342
|
+
print(f"\nResult: {result}")
|
|
343
|
+
|
|
344
|
+
if __name__ == "__main__":
|
|
345
|
+
# Run the appropriate example
|
|
346
|
+
asyncio.run(main())
|
|
347
|
+
```
|
|
348
|
+
|
|
349
|
+
This example demonstrates how to connect to an MCP server running on a specific HTTP port. Make sure to start your MCP server before running this example.
|
|
350
|
+
|
|
250
351
|
# Multi-Server Support
|
|
251
352
|
|
|
252
353
|
MCP-Use supports working with multiple MCP servers simultaneously, allowing you to combine tools from different servers in a single agent. This is useful for complex tasks that require multiple capabilities, such as web browsing combined with file operations or 3D modeling.
|
|
@@ -25,6 +25,9 @@ mcp_use is an open source library that enables developers to connect any Languag
|
|
|
25
25
|
<Card title="Universal LLM Support" icon="robot" href="/essentials/llm-integration">
|
|
26
26
|
Compatible with any LangChain-supported LLM provider
|
|
27
27
|
</Card>
|
|
28
|
+
<Card title="HTTP Connection" icon="network" href="/quickstart">
|
|
29
|
+
Connect to MCP servers running on specific HTTP ports for web-based integrations
|
|
30
|
+
</Card>
|
|
28
31
|
</CardGroup>
|
|
29
32
|
|
|
30
33
|
## Getting Started
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
<svg width="303" height="303" viewBox="0 0 303 303" fill="none" xmlns="http://www.w3.org/2000/svg">
|
|
2
|
+
<path d="M106.066 106.066C86.5398 125.592 54.8816 125.592 35.3554 106.066V106.066C15.8291 86.5397 15.8291 54.8815 35.3554 35.3552V35.3552C54.8816 15.829 86.5398 15.829 106.066 35.3552V35.3552C125.592 54.8815 125.592 86.5397 106.066 106.066V106.066Z" fill="white"/>
|
|
3
|
+
<path d="M267.286 267.286C247.76 286.812 216.102 286.812 196.576 267.286V267.286C177.049 247.76 177.049 216.102 196.576 196.576V196.576C216.102 177.049 247.76 177.049 267.286 196.576V196.576C286.813 216.102 286.813 247.76 267.286 267.286V267.286Z" fill="white"/>
|
|
4
|
+
<path fill-rule="evenodd" clip-rule="evenodd" d="M181.957 230.04L211.425 259.508L260.922 210.011L232.851 181.94C204.215 181.726 175.645 170.695 153.796 148.846C131.947 126.997 120.915 98.4264 120.702 69.7903L92.631 41.7193L43.1335 91.2168L72.6014 120.685C100.313 121.56 127.765 132.573 148.917 153.725C170.069 174.877 181.082 202.328 181.957 230.04Z" fill="white"/>
|
|
5
|
+
<circle cx="70.3209" cy="232.321" r="50" fill="white"/>
|
|
6
|
+
<circle cx="232.321" cy="70.3209" r="50" fill="white"/>
|
|
7
|
+
</svg>
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
<svg width="303" height="303" viewBox="0 0 303 303" fill="none" xmlns="http://www.w3.org/2000/svg">
|
|
2
|
+
<path d="M106.066 106.066C86.5398 125.592 54.8816 125.592 35.3554 106.066V106.066C15.8291 86.5397 15.8291 54.8815 35.3554 35.3552V35.3552C54.8816 15.829 86.5398 15.829 106.066 35.3552V35.3552C125.592 54.8815 125.592 86.5397 106.066 106.066V106.066Z" fill="black"/>
|
|
3
|
+
<path d="M267.286 267.286C247.76 286.812 216.102 286.812 196.576 267.286V267.286C177.049 247.76 177.049 216.102 196.576 196.576V196.576C216.102 177.049 247.76 177.049 267.286 196.576V196.576C286.813 216.102 286.813 247.76 267.286 267.286V267.286Z" fill="black"/>
|
|
4
|
+
<path fill-rule="evenodd" clip-rule="evenodd" d="M181.957 230.04L211.425 259.508L260.922 210.011L232.851 181.94C204.215 181.726 175.645 170.695 153.796 148.846C131.947 126.997 120.915 98.4264 120.702 69.7903L92.631 41.7193L43.1335 91.2168L72.6014 120.685C100.313 121.56 127.765 132.573 148.917 153.725C170.069 174.877 181.082 202.328 181.957 230.04Z" fill="black"/>
|
|
5
|
+
<circle cx="70.3209" cy="232.321" r="50" fill="black"/>
|
|
6
|
+
<circle cx="232.321" cy="70.3209" r="50" fill="black"/>
|
|
7
|
+
</svg>
|
|
@@ -0,0 +1,234 @@
|
|
|
1
|
+
---
|
|
2
|
+
title: Quickstart
|
|
3
|
+
description: "Get started with mcp_use in minutes"
|
|
4
|
+
---
|
|
5
|
+
|
|
6
|
+
# Quickstart Guide
|
|
7
|
+
|
|
8
|
+
This guide will help you get started with mcp_use quickly. We'll cover installation, basic configuration, and running your first agent.
|
|
9
|
+
|
|
10
|
+
## Installation
|
|
11
|
+
|
|
12
|
+
You can install mcp_use using pip:
|
|
13
|
+
|
|
14
|
+
```bash
|
|
15
|
+
pip install mcp-use
|
|
16
|
+
```
|
|
17
|
+
|
|
18
|
+
Or install from source:
|
|
19
|
+
|
|
20
|
+
```bash
|
|
21
|
+
git clone https://github.com/pietrozullo/mcp-use.git
|
|
22
|
+
cd mcp-use
|
|
23
|
+
pip install -e .
|
|
24
|
+
```
|
|
25
|
+
|
|
26
|
+
## Installing LangChain Providers
|
|
27
|
+
|
|
28
|
+
mcp_use works with various LLM providers through LangChain. You'll need to install the appropriate LangChain provider package for your chosen LLM. For example:
|
|
29
|
+
|
|
30
|
+
```bash
|
|
31
|
+
# For OpenAI
|
|
32
|
+
pip install langchain-openai
|
|
33
|
+
|
|
34
|
+
# For Anthropic
|
|
35
|
+
pip install langchain-anthropic
|
|
36
|
+
|
|
37
|
+
# For other providers, check the [LangChain chat models documentation](https://python.langchain.com/docs/integrations/chat/)
|
|
38
|
+
```
|
|
39
|
+
|
|
40
|
+
> **Important**: Only models with tool calling capabilities can be used with mcp_use. Make sure your chosen model supports function calling or tool use.
|
|
41
|
+
|
|
42
|
+
## Environment Setup
|
|
43
|
+
|
|
44
|
+
Set up your environment variables in a `.env` file:
|
|
45
|
+
|
|
46
|
+
```bash
|
|
47
|
+
OPENAI_API_KEY=your_api_key_here
|
|
48
|
+
ANTHROPIC_API_KEY=your_api_key_here
|
|
49
|
+
```
|
|
50
|
+
|
|
51
|
+
## Your First Agent
|
|
52
|
+
|
|
53
|
+
Here's a simple example to get you started:
|
|
54
|
+
|
|
55
|
+
```python
|
|
56
|
+
import asyncio
|
|
57
|
+
import os
|
|
58
|
+
from dotenv import load_dotenv
|
|
59
|
+
from langchain_openai import ChatOpenAI
|
|
60
|
+
from mcp_use import MCPAgent, MCPClient
|
|
61
|
+
|
|
62
|
+
async def main():
|
|
63
|
+
# Load environment variables
|
|
64
|
+
load_dotenv()
|
|
65
|
+
|
|
66
|
+
# Create configuration dictionary
|
|
67
|
+
config = {
|
|
68
|
+
"mcpServers": {
|
|
69
|
+
"playwright": {
|
|
70
|
+
"command": "npx",
|
|
71
|
+
"args": ["@playwright/mcp@latest"],
|
|
72
|
+
"env": {
|
|
73
|
+
"DISPLAY": ":1"
|
|
74
|
+
}
|
|
75
|
+
}
|
|
76
|
+
}
|
|
77
|
+
}
|
|
78
|
+
|
|
79
|
+
# Create MCPClient from configuration dictionary
|
|
80
|
+
client = MCPClient.from_dict(config)
|
|
81
|
+
|
|
82
|
+
# Create LLM
|
|
83
|
+
llm = ChatOpenAI(model="gpt-4o")
|
|
84
|
+
|
|
85
|
+
# Create agent with the client
|
|
86
|
+
agent = MCPAgent(llm=llm, client=client, max_steps=30)
|
|
87
|
+
|
|
88
|
+
# Run the query
|
|
89
|
+
result = await agent.run(
|
|
90
|
+
"Find the best restaurant in San Francisco USING GOOGLE SEARCH",
|
|
91
|
+
)
|
|
92
|
+
print(f"\nResult: {result}")
|
|
93
|
+
|
|
94
|
+
if __name__ == "__main__":
|
|
95
|
+
asyncio.run(main())
|
|
96
|
+
```
|
|
97
|
+
|
|
98
|
+
## Configuration Options
|
|
99
|
+
|
|
100
|
+
You can also add the servers configuration from a config file:
|
|
101
|
+
|
|
102
|
+
```python
|
|
103
|
+
client = MCPClient.from_config_file(
|
|
104
|
+
os.path.join("browser_mcp.json")
|
|
105
|
+
)
|
|
106
|
+
```
|
|
107
|
+
|
|
108
|
+
Example configuration file (`browser_mcp.json`):
|
|
109
|
+
|
|
110
|
+
```json
|
|
111
|
+
{
|
|
112
|
+
"mcpServers": {
|
|
113
|
+
"playwright": {
|
|
114
|
+
"command": "npx",
|
|
115
|
+
"args": ["@playwright/mcp@latest"],
|
|
116
|
+
"env": {
|
|
117
|
+
"DISPLAY": ":1"
|
|
118
|
+
}
|
|
119
|
+
}
|
|
120
|
+
}
|
|
121
|
+
}
|
|
122
|
+
```
|
|
123
|
+
|
|
124
|
+
## Restricting Tool Access
|
|
125
|
+
|
|
126
|
+
You can control which tools are available to the agent:
|
|
127
|
+
|
|
128
|
+
```python
|
|
129
|
+
import asyncio
|
|
130
|
+
import os
|
|
131
|
+
from dotenv import load_dotenv
|
|
132
|
+
from langchain_openai import ChatOpenAI
|
|
133
|
+
from mcp_use import MCPAgent, MCPClient
|
|
134
|
+
|
|
135
|
+
async def main():
|
|
136
|
+
# Load environment variables
|
|
137
|
+
load_dotenv()
|
|
138
|
+
|
|
139
|
+
# Create configuration dictionary
|
|
140
|
+
config = {
|
|
141
|
+
"mcpServers": {
|
|
142
|
+
"playwright": {
|
|
143
|
+
"command": "npx",
|
|
144
|
+
"args": ["@playwright/mcp@latest"],
|
|
145
|
+
"env": {
|
|
146
|
+
"DISPLAY": ":1"
|
|
147
|
+
}
|
|
148
|
+
}
|
|
149
|
+
}
|
|
150
|
+
}
|
|
151
|
+
|
|
152
|
+
# Create MCPClient from configuration dictionary
|
|
153
|
+
client = MCPClient.from_dict(config)
|
|
154
|
+
|
|
155
|
+
# Create LLM
|
|
156
|
+
llm = ChatOpenAI(model="gpt-4o")
|
|
157
|
+
|
|
158
|
+
# Create agent with restricted tools
|
|
159
|
+
agent = MCPAgent(
|
|
160
|
+
llm=llm,
|
|
161
|
+
client=client,
|
|
162
|
+
max_steps=30,
|
|
163
|
+
disallowed_tools=["file_system", "network"] # Restrict potentially dangerous tools
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
# Run the query
|
|
167
|
+
result = await agent.run(
|
|
168
|
+
"Find the best restaurant in San Francisco USING GOOGLE SEARCH",
|
|
169
|
+
)
|
|
170
|
+
print(f"\nResult: {result}")
|
|
171
|
+
|
|
172
|
+
if __name__ == "__main__":
|
|
173
|
+
asyncio.run(main())
|
|
174
|
+
```
|
|
175
|
+
|
|
176
|
+
## Available MCP Servers
|
|
177
|
+
|
|
178
|
+
mcp_use supports any MCP server, allowing you to connect to a wide range of server implementations. For a comprehensive list of available servers, check out the [awesome-mcp-servers](https://github.com/punkpeye/awesome-mcp-servers) repository.
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
Each server requires its own configuration. Check the [Configuration Guide](/essentials/configuration) for details.
|
|
182
|
+
|
|
183
|
+
## HTTP Connection
|
|
184
|
+
|
|
185
|
+
mcp_use now supports HTTP connections, allowing you to connect to MCP servers running on specific HTTP ports. This feature is particularly useful for integrating with web-based MCP servers.
|
|
186
|
+
|
|
187
|
+
Here's a simple example to get you started with HTTP connections:
|
|
188
|
+
|
|
189
|
+
```python
|
|
190
|
+
import asyncio
|
|
191
|
+
import os
|
|
192
|
+
from dotenv import load_dotenv
|
|
193
|
+
from langchain_openai import ChatOpenAI
|
|
194
|
+
from mcp_use import MCPAgent, MCPClient
|
|
195
|
+
|
|
196
|
+
async def main():
|
|
197
|
+
# Load environment variables
|
|
198
|
+
load_dotenv()
|
|
199
|
+
|
|
200
|
+
# Create configuration dictionary
|
|
201
|
+
config = {
|
|
202
|
+
"mcpServers": {
|
|
203
|
+
"http": {
|
|
204
|
+
"url": "http://localhost:8931/sse"
|
|
205
|
+
}
|
|
206
|
+
}
|
|
207
|
+
}
|
|
208
|
+
|
|
209
|
+
# Create MCPClient from configuration dictionary
|
|
210
|
+
client = MCPClient.from_dict(config)
|
|
211
|
+
|
|
212
|
+
# Create LLM
|
|
213
|
+
llm = ChatOpenAI(model="gpt-4o")
|
|
214
|
+
|
|
215
|
+
# Create agent with the client
|
|
216
|
+
agent = MCPAgent(llm=llm, client=client, max_steps=30)
|
|
217
|
+
|
|
218
|
+
# Run the query
|
|
219
|
+
result = await agent.run(
|
|
220
|
+
"Find the best restaurant in San Francisco USING GOOGLE SEARCH",
|
|
221
|
+
)
|
|
222
|
+
print(f"\nResult: {result}")
|
|
223
|
+
|
|
224
|
+
if __name__ == "__main__":
|
|
225
|
+
asyncio.run(main())
|
|
226
|
+
```
|
|
227
|
+
|
|
228
|
+
This example demonstrates how to connect to an MCP server running on a specific HTTP port. Make sure to start your MCP server before running this example.
|
|
229
|
+
|
|
230
|
+
## Next Steps
|
|
231
|
+
|
|
232
|
+
- Learn about [Configuration Options](/essentials/configuration)
|
|
233
|
+
- Explore [Example Use Cases](/examples)
|
|
234
|
+
- Check out [Advanced Features](/essentials/advanced)
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
"""
|
|
2
|
+
HTTP Example for mcp_use.
|
|
3
|
+
|
|
4
|
+
This example demonstrates how to use the mcp_use library with MCPClient
|
|
5
|
+
to connect to an MCP server running on a specific HTTP port.
|
|
6
|
+
|
|
7
|
+
Before running this example, you need to start the Playwright MCP server
|
|
8
|
+
in another terminal with:
|
|
9
|
+
|
|
10
|
+
npx @playwright/mcp@latest --port 8931
|
|
11
|
+
|
|
12
|
+
This will start the server on port 8931. Resulting in the config you find below.
|
|
13
|
+
Of course you can run this with any server you want at any URL.
|
|
14
|
+
|
|
15
|
+
Special thanks to https://github.com/microsoft/playwright-mcp for the server.
|
|
16
|
+
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
import asyncio
|
|
20
|
+
|
|
21
|
+
from dotenv import load_dotenv
|
|
22
|
+
from langchain_openai import ChatOpenAI
|
|
23
|
+
|
|
24
|
+
from mcp_use import MCPAgent, MCPClient
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
async def main():
|
|
28
|
+
"""Run the example using a configuration file."""
|
|
29
|
+
# Load environment variables
|
|
30
|
+
load_dotenv()
|
|
31
|
+
|
|
32
|
+
config = {"mcpServers": {"http": {"url": "http://localhost:8931/sse"}}}
|
|
33
|
+
|
|
34
|
+
# Create MCPClient from config file
|
|
35
|
+
client = MCPClient.from_dict(config)
|
|
36
|
+
|
|
37
|
+
# Create LLM
|
|
38
|
+
llm = ChatOpenAI(model="gpt-4o")
|
|
39
|
+
|
|
40
|
+
# Create agent with the client
|
|
41
|
+
agent = MCPAgent(llm=llm, client=client, max_steps=30)
|
|
42
|
+
|
|
43
|
+
# Run the query
|
|
44
|
+
result = await agent.run(
|
|
45
|
+
"Find the best restaurant in San Francisco USING GOOGLE SEARCH",
|
|
46
|
+
max_steps=30,
|
|
47
|
+
)
|
|
48
|
+
print(f"\nResult: {result}")
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
if __name__ == "__main__":
|
|
52
|
+
# Run the appropriate example
|
|
53
|
+
asyncio.run(main())
|
|
Binary file
|
mcp_use-1.0.3/docs/logo/dark.svg
DELETED
|
@@ -1,12 +0,0 @@
|
|
|
1
|
-
<svg viewBox="0 0 200 60" xmlns="http://www.w3.org/2000/svg">
|
|
2
|
-
<style>
|
|
3
|
-
.logo-text {
|
|
4
|
-
font-family: 'Nunito', sans-serif;
|
|
5
|
-
font-size: 40px;
|
|
6
|
-
font-weight: 800;
|
|
7
|
-
fill: #ffffff;
|
|
8
|
-
}
|
|
9
|
-
</style>
|
|
10
|
-
<rect width="100%" height="100%" fill="none"/>
|
|
11
|
-
<text x="0" y="42" class="logo-text">mcp_use</text>
|
|
12
|
-
</svg>
|
|
@@ -1,12 +0,0 @@
|
|
|
1
|
-
<svg viewBox="0 0 200 60" xmlns="http://www.w3.org/2000/svg">
|
|
2
|
-
<style>
|
|
3
|
-
.logo-text {
|
|
4
|
-
font-family: 'Nunito', sans-serif;
|
|
5
|
-
font-size: 40px;
|
|
6
|
-
font-weight: 800;
|
|
7
|
-
fill: #000000;
|
|
8
|
-
}
|
|
9
|
-
</style>
|
|
10
|
-
<rect width="100%" height="100%" fill="none"/>
|
|
11
|
-
<text x="0" y="42" class="logo-text">mcp_use</text>
|
|
12
|
-
</svg>
|
|
@@ -1,138 +0,0 @@
|
|
|
1
|
-
---
|
|
2
|
-
title: Quickstart
|
|
3
|
-
description: "Get started with mcp_use in minutes"
|
|
4
|
-
---
|
|
5
|
-
|
|
6
|
-
# Quickstart Guide
|
|
7
|
-
|
|
8
|
-
This guide will help you get started with mcp_use quickly. We'll cover installation, basic configuration, and running your first agent.
|
|
9
|
-
|
|
10
|
-
## Installation
|
|
11
|
-
|
|
12
|
-
You can install mcp_use using pip:
|
|
13
|
-
|
|
14
|
-
```bash
|
|
15
|
-
pip install mcp-use
|
|
16
|
-
```
|
|
17
|
-
|
|
18
|
-
Or install from source:
|
|
19
|
-
|
|
20
|
-
```bash
|
|
21
|
-
git clone https://github.com/pietrozullo/mcp-use.git
|
|
22
|
-
cd mcp-use
|
|
23
|
-
pip install -e .
|
|
24
|
-
```
|
|
25
|
-
|
|
26
|
-
## Basic Setup
|
|
27
|
-
|
|
28
|
-
1. Create a configuration file (e.g., `browser_mcp.json`):
|
|
29
|
-
|
|
30
|
-
```json
|
|
31
|
-
{
|
|
32
|
-
"mcpServers": {
|
|
33
|
-
"playwright": {
|
|
34
|
-
"command": "npx",
|
|
35
|
-
"args": ["@playwright/mcp@latest"],
|
|
36
|
-
"env": {
|
|
37
|
-
"DISPLAY": ":1"
|
|
38
|
-
}
|
|
39
|
-
}
|
|
40
|
-
}
|
|
41
|
-
}
|
|
42
|
-
```
|
|
43
|
-
|
|
44
|
-
2. Set up your environment variables in a `.env` file:
|
|
45
|
-
|
|
46
|
-
```bash
|
|
47
|
-
OPENAI_API_KEY=your_api_key_here
|
|
48
|
-
ANTHROPIC_API_KEY=your_api_key_here
|
|
49
|
-
```
|
|
50
|
-
|
|
51
|
-
## Your First Agent
|
|
52
|
-
|
|
53
|
-
Here's a simple example to get you started:
|
|
54
|
-
|
|
55
|
-
```python
|
|
56
|
-
import asyncio
|
|
57
|
-
import os
|
|
58
|
-
from dotenv import load_dotenv
|
|
59
|
-
from langchain_openai import ChatOpenAI
|
|
60
|
-
from mcp_use import MCPAgent, MCPClient
|
|
61
|
-
|
|
62
|
-
async def main():
|
|
63
|
-
# Load environment variables
|
|
64
|
-
load_dotenv()
|
|
65
|
-
|
|
66
|
-
# Create MCPClient from config file
|
|
67
|
-
client = MCPClient.from_config_file("browser_mcp.json")
|
|
68
|
-
|
|
69
|
-
# Create LLM
|
|
70
|
-
llm = ChatOpenAI(model="gpt-4o")
|
|
71
|
-
|
|
72
|
-
# Create agent with the client
|
|
73
|
-
agent = MCPAgent(llm=llm, client=client, max_steps=30)
|
|
74
|
-
|
|
75
|
-
# Run the query
|
|
76
|
-
result = await agent.run(
|
|
77
|
-
"Find the best restaurant in San Francisco USING GOOGLE SEARCH",
|
|
78
|
-
)
|
|
79
|
-
print(f"\nResult: {result}")
|
|
80
|
-
|
|
81
|
-
if __name__ == "__main__":
|
|
82
|
-
asyncio.run(main())
|
|
83
|
-
```
|
|
84
|
-
|
|
85
|
-
## Restricting Tool Access
|
|
86
|
-
|
|
87
|
-
You can control which tools are available to the agent:
|
|
88
|
-
|
|
89
|
-
```python
|
|
90
|
-
import asyncio
|
|
91
|
-
import os
|
|
92
|
-
from dotenv import load_dotenv
|
|
93
|
-
from langchain_openai import ChatOpenAI
|
|
94
|
-
from mcp_use import MCPAgent, MCPClient
|
|
95
|
-
|
|
96
|
-
async def main():
|
|
97
|
-
# Load environment variables
|
|
98
|
-
load_dotenv()
|
|
99
|
-
|
|
100
|
-
# Create MCPClient from config file
|
|
101
|
-
client = MCPClient.from_config_file("browser_mcp.json")
|
|
102
|
-
|
|
103
|
-
# Create LLM
|
|
104
|
-
llm = ChatOpenAI(model="gpt-4o")
|
|
105
|
-
|
|
106
|
-
# Create agent with restricted tools
|
|
107
|
-
agent = MCPAgent(
|
|
108
|
-
llm=llm,
|
|
109
|
-
client=client,
|
|
110
|
-
max_steps=30,
|
|
111
|
-
disallowed_tools=["file_system", "network"] # Restrict potentially dangerous tools
|
|
112
|
-
)
|
|
113
|
-
|
|
114
|
-
# Run the query
|
|
115
|
-
result = await agent.run(
|
|
116
|
-
"Find the best restaurant in San Francisco USING GOOGLE SEARCH",
|
|
117
|
-
)
|
|
118
|
-
print(f"\nResult: {result}")
|
|
119
|
-
|
|
120
|
-
if __name__ == "__main__":
|
|
121
|
-
asyncio.run(main())
|
|
122
|
-
```
|
|
123
|
-
|
|
124
|
-
## Available MCP Servers
|
|
125
|
-
|
|
126
|
-
mcp_use supports various MCP servers:
|
|
127
|
-
|
|
128
|
-
- **Playwright**: For web browsing and automation
|
|
129
|
-
- **Airbnb**: For property search and booking
|
|
130
|
-
- **Blender**: For 3D modeling and animation
|
|
131
|
-
|
|
132
|
-
Each server requires its own configuration. Check the [Configuration Guide](/essentials/configuration) for details.
|
|
133
|
-
|
|
134
|
-
## Next Steps
|
|
135
|
-
|
|
136
|
-
- Learn about [Configuration Options](/essentials/configuration)
|
|
137
|
-
- Explore [Example Use Cases](/examples)
|
|
138
|
-
- Check out [Advanced Features](/essentials/advanced)
|
mcp_use-1.0.3/static/image.jpg
DELETED
|
Binary file
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|