mcp-sqlite-memory-bank 1.3.0__tar.gz → 1.4.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (24) hide show
  1. {mcp_sqlite_memory_bank-1.3.0/src/mcp_sqlite_memory_bank.egg-info → mcp_sqlite_memory_bank-1.4.1}/PKG-INFO +168 -4
  2. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/README.md +163 -3
  3. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/pyproject.toml +6 -2
  4. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/src/mcp_sqlite_memory_bank/database.py +247 -160
  5. mcp_sqlite_memory_bank-1.4.1/src/mcp_sqlite_memory_bank/prompts.py +252 -0
  6. mcp_sqlite_memory_bank-1.4.1/src/mcp_sqlite_memory_bank/resources.py +164 -0
  7. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/src/mcp_sqlite_memory_bank/semantic.py +107 -95
  8. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/src/mcp_sqlite_memory_bank/server.py +183 -33
  9. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/src/mcp_sqlite_memory_bank/types.py +6 -0
  10. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/src/mcp_sqlite_memory_bank/utils.py +5 -2
  11. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1/src/mcp_sqlite_memory_bank.egg-info}/PKG-INFO +168 -4
  12. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/src/mcp_sqlite_memory_bank.egg-info/SOURCES.txt +2 -0
  13. mcp_sqlite_memory_bank-1.4.1/src/mcp_sqlite_memory_bank.egg-info/requires.txt +11 -0
  14. mcp_sqlite_memory_bank-1.3.0/src/mcp_sqlite_memory_bank.egg-info/requires.txt +0 -7
  15. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/LICENSE +0 -0
  16. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/MANIFEST.in +0 -0
  17. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/setup.cfg +0 -0
  18. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/src/mcp_sqlite_memory_bank/__init__.py +0 -0
  19. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/src/mcp_sqlite_memory_bank/py.typed +0 -0
  20. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/src/mcp_sqlite_memory_bank.egg-info/dependency_links.txt +0 -0
  21. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/src/mcp_sqlite_memory_bank.egg-info/entry_points.txt +0 -0
  22. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/src/mcp_sqlite_memory_bank.egg-info/top_level.txt +0 -0
  23. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/tests/test_api.py +0 -0
  24. {mcp_sqlite_memory_bank-1.3.0 → mcp_sqlite_memory_bank-1.4.1}/tests/test_server.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mcp_sqlite_memory_bank
3
- Version: 1.3.0
3
+ Version: 1.4.1
4
4
  Summary: A dynamic, agent/LLM-friendly SQLite memory bank for MCP servers with semantic search capabilities.
5
5
  Author-email: Robert Meisner <robert@catchit.pl>
6
6
  License-Expression: MIT
@@ -16,6 +16,10 @@ Requires-Dist: fastapi>=0.100.0
16
16
  Requires-Dist: uvicorn>=0.22.0
17
17
  Requires-Dist: pydantic>=1.10.0
18
18
  Requires-Dist: fastmcp
19
+ Requires-Dist: sqlalchemy>=2.0.0
20
+ Requires-Dist: sentence-transformers>=2.2.0
21
+ Requires-Dist: torch>=1.9.0
22
+ Requires-Dist: numpy>=1.21.0
19
23
  Provides-Extra: test
20
24
  Requires-Dist: pytest; extra == "test"
21
25
  Dynamic: license-file
@@ -36,10 +40,14 @@ This project provides a robust, discoverable API for creating, exploring, and ma
36
40
  - Build and query knowledge graphs for semantic search and reasoning
37
41
  - Store, retrieve, and organize notes or structured data for LLM agents
38
42
  - Enable natural language workflows for database management and exploration
43
+ - Intelligent content discovery with semantic search capabilities
44
+ - Access memory content through standardized MCP Resources and Prompts
39
45
  - Integrate with FastMCP, Claude Desktop, and other agent platforms for seamless tool discovery
40
46
 
41
47
  **Why mcp_sqlite_memory_bank?**
42
- - Explicit, discoverable APIs for LLMs and agents
48
+ - **Full MCP Compliance:** Resources, Prompts, and 20+ organized tools
49
+ - **Semantic Search:** Natural language content discovery with AI-powered similarity matching
50
+ - **Explicit, discoverable APIs** for LLMs and agents with enhanced categorization
43
51
  - Safe, parameterized queries and schema management
44
52
  - Designed for extensibility and open source collaboration
45
53
 
@@ -104,18 +112,59 @@ Restart your IDE and try asking your AI assistant:
104
112
  - **Dynamic Table Management:** Create, list, describe, rename, and drop tables at runtime
105
113
  - **CRUD Operations:** Insert, read, update, and delete rows in any table
106
114
  - **Safe SQL:** Run parameterized SELECT queries with input validation
115
+ - **Semantic Search:** Natural language search using sentence-transformers for intelligent content discovery
116
+ - **MCP Resources:** Access memory content through standardized MCP resource URIs
117
+ - **MCP Prompts:** Built-in intelligent prompts for common memory analysis workflows
118
+ - **Tool Categorization:** Organized tool discovery with detailed usage examples for enhanced LLM integration
107
119
  - **Knowledge Graph Tools:** Built-in support for node/edge schemas and property graphs
108
120
  - **Agent/LLM Integration:** Explicit, tool-based APIs for easy discovery and automation
109
121
  - **Open Source:** MIT licensed, fully tested, and ready for community use
110
122
 
111
123
  ---
112
124
 
125
+ ## MCP Compliance & Enhanced Integration
126
+
127
+ SQLite Memory Bank v1.4.0+ provides full Model Context Protocol (MCP) compliance with advanced features for enhanced LLM and agent integration:
128
+
129
+ ### 🔧 MCP Tools (20 Available)
130
+ Organized into logical categories for easy discovery:
131
+ - **Schema Management** (6 tools): Table creation, modification, and inspection
132
+ - **Data Operations** (5 tools): CRUD operations with validation
133
+ - **Search & Discovery** (2 tools): Content search and exploration
134
+ - **Semantic Search** (5 tools): AI-powered natural language content discovery
135
+ - **Analytics** (2 tools): Memory bank insights and statistics
136
+
137
+ ### 📄 MCP Resources (5 Available)
138
+ Real-time access to memory content via standardized URIs:
139
+ - `memory://tables/list` - List of all available tables
140
+ - `memory://tables/{table_name}/schema` - Table schema information
141
+ - `memory://tables/{table_name}/data` - Table data content
142
+ - `memory://search/{query}` - Search results as resources
143
+ - `memory://analytics/overview` - Memory bank overview analytics
144
+
145
+ ### 💡 MCP Prompts (4 Available)
146
+ Intelligent prompts for common memory analysis workflows:
147
+ - `analyze-memory-content` - Analyze memory bank content and provide insights
148
+ - `search-and-summarize` - Search and create summary prompts
149
+ - `technical-decision-analysis` - Analyze technical decisions from memory
150
+ - `memory-bank-context` - Provide memory bank context for AI conversations
151
+
152
+ ### 🎯 Enhanced Discoverability
153
+ - **Tool Categorization:** `list_tool_categories()` for organized tool discovery
154
+ - **Usage Examples:** `get_tools_by_category()` with detailed examples for each tool
155
+ - **Semantic Search:** Natural language queries for intelligent content discovery
156
+ - **LLM-Friendly APIs:** Explicit, descriptive tool names and comprehensive documentation
157
+
158
+ ---
159
+
113
160
 
114
161
  ## Tools & API Reference
115
162
 
116
163
  All tools are designed for explicit, discoverable use by LLMs, agents, and developers. Each function is available as a direct Python import and as an MCP tool.
117
164
 
118
- ### Table Management Tools
165
+ **🔍 Tool Discovery:** Use `list_tool_categories()` to see all organized tool categories, or `get_tools_by_category(category)` for detailed information about specific tool groups with usage examples.
166
+
167
+ ### Schema Management Tools (6 tools)
119
168
 
120
169
  | Tool | Description | Required Parameters | Optional Parameters |
121
170
  |------|-------------|---------------------|---------------------|
@@ -126,7 +175,7 @@ All tools are designed for explicit, discoverable use by LLMs, agents, and devel
126
175
  | `describe_table` | Get schema details | `table_name` (str) | None |
127
176
  | `list_all_columns` | List all columns for all tables | None | None |
128
177
 
129
- ### Data Management Tools
178
+ ### Data Operations Tools (5 tools)
130
179
 
131
180
  | Tool | Description | Required Parameters | Optional Parameters |
132
181
  |------|-------------|---------------------|---------------------|
@@ -136,6 +185,30 @@ All tools are designed for explicit, discoverable use by LLMs, agents, and devel
136
185
  | `delete_rows` | Delete rows from table | `table_name` (str), `where` (dict) | None |
137
186
  | `run_select_query` | Run safe SELECT query | `table_name` (str) | `columns` (list[str]), `where` (dict), `limit` (int) |
138
187
 
188
+ ### Search & Discovery Tools (2 tools)
189
+
190
+ | Tool | Description | Required Parameters | Optional Parameters |
191
+ |------|-------------|---------------------|---------------------|
192
+ | `search_content` | Full-text search across table content | `query` (str) | `tables` (list[str]), `limit` (int) |
193
+ | `explore_tables` | Explore and discover table structures | None | `pattern` (str), `include_row_counts` (bool) |
194
+
195
+ ### Semantic Search Tools (5 tools)
196
+
197
+ | Tool | Description | Required Parameters | Optional Parameters |
198
+ |------|-------------|---------------------|---------------------|
199
+ | `add_embeddings` | Generate vector embeddings for semantic search | `table_name` (str), `text_columns` (list[str]) | `embedding_column` (str), `model_name` (str) |
200
+ | `semantic_search` | Natural language search using vector similarity | `query` (str) | `tables` (list[str]), `similarity_threshold` (float), `limit` (int) |
201
+ | `find_related` | Find content related to specific row by similarity | `table_name` (str), `row_id` (int) | `similarity_threshold` (float), `limit` (int) |
202
+ | `smart_search` | Hybrid keyword + semantic search | `query` (str) | `tables` (list[str]), `semantic_weight` (float), `text_weight` (float) |
203
+ | `embedding_stats` | Get statistics about semantic search readiness | `table_name` (str) | `embedding_column` (str) |
204
+
205
+ ### Tool Discovery & Organization (2 tools)
206
+
207
+ | Tool | Description | Required Parameters | Optional Parameters |
208
+ |------|-------------|---------------------|---------------------|
209
+ | `list_tool_categories` | List all available tool categories | None | None |
210
+ | `get_tools_by_category` | Get detailed tool information by category | `category` (str) | None |
211
+
139
212
  Each tool validates inputs and returns consistent response formats with success/error indicators and appropriate data payloads.
140
213
 
141
214
  ---
@@ -464,6 +537,97 @@ For a complete agent memory implementation example, see [examples/agent_memory_e
464
537
 
465
538
  ---
466
539
 
540
+ ## MCP Resources and Prompts Usage
541
+
542
+ ### Using MCP Resources
543
+
544
+ MCP Resources provide real-time access to memory content through standardized URIs:
545
+
546
+ ```python
547
+ # Access resource via MCP client
548
+ resource_uri = "memory://tables/list"
549
+ tables_resource = await client.read_resource(resource_uri)
550
+
551
+ # Get table schema
552
+ schema_uri = "memory://tables/user_preferences/schema"
553
+ schema_resource = await client.read_resource(schema_uri)
554
+
555
+ # Access table data
556
+ data_uri = "memory://tables/user_preferences/data"
557
+ data_resource = await client.read_resource(data_uri)
558
+
559
+ # Search as resource
560
+ search_uri = "memory://search/user preferences coding style"
561
+ search_resource = await client.read_resource(search_uri)
562
+
563
+ # Analytics overview
564
+ analytics_uri = "memory://analytics/overview"
565
+ analytics_resource = await client.read_resource(analytics_uri)
566
+ ```
567
+
568
+ ### Using MCP Prompts
569
+
570
+ MCP Prompts provide intelligent analysis workflows:
571
+
572
+ ```python
573
+ # Analyze memory content
574
+ analysis_prompt = await client.get_prompt("analyze-memory-content", {
575
+ "focus_area": "technical_decisions"
576
+ })
577
+
578
+ # Search and summarize
579
+ summary_prompt = await client.get_prompt("search-and-summarize", {
580
+ "query": "database performance optimization",
581
+ "max_results": 10
582
+ })
583
+
584
+ # Technical decision analysis
585
+ decision_analysis = await client.get_prompt("technical-decision-analysis", {
586
+ "decision_category": "architecture"
587
+ })
588
+
589
+ # Get memory context for conversations
590
+ context_prompt = await client.get_prompt("memory-bank-context", {
591
+ "conversation_topic": "API design patterns"
592
+ })
593
+ ```
594
+
595
+ ### Semantic Search Examples
596
+
597
+ ```python
598
+ # Enable semantic search on existing table
599
+ add_embeddings("technical_decisions", ["decision_name", "rationale"])
600
+
601
+ # Natural language search
602
+ results = semantic_search("machine learning algorithms",
603
+ similarity_threshold=0.4,
604
+ limit=5)
605
+
606
+ # Find related content
607
+ related = find_related("technical_decisions",
608
+ row_id=123,
609
+ similarity_threshold=0.5)
610
+
611
+ # Hybrid search (keyword + semantic)
612
+ hybrid_results = smart_search("API design patterns",
613
+ semantic_weight=0.7,
614
+ text_weight=0.3)
615
+ ```
616
+
617
+ ### Tool Organization Discovery
618
+
619
+ ```python
620
+ # Discover tool categories
621
+ categories = list_tool_categories()
622
+ # Returns: {"schema_management": 6, "data_operations": 5, ...}
623
+
624
+ # Get detailed tool information
625
+ schema_tools = get_tools_by_category("schema_management")
626
+ # Returns detailed info with usage examples for each tool
627
+ ```
628
+
629
+ ---
630
+
467
631
  ## Troubleshooting
468
632
 
469
633
  ### Common MCP Connection Issues
@@ -14,10 +14,14 @@ This project provides a robust, discoverable API for creating, exploring, and ma
14
14
  - Build and query knowledge graphs for semantic search and reasoning
15
15
  - Store, retrieve, and organize notes or structured data for LLM agents
16
16
  - Enable natural language workflows for database management and exploration
17
+ - Intelligent content discovery with semantic search capabilities
18
+ - Access memory content through standardized MCP Resources and Prompts
17
19
  - Integrate with FastMCP, Claude Desktop, and other agent platforms for seamless tool discovery
18
20
 
19
21
  **Why mcp_sqlite_memory_bank?**
20
- - Explicit, discoverable APIs for LLMs and agents
22
+ - **Full MCP Compliance:** Resources, Prompts, and 20+ organized tools
23
+ - **Semantic Search:** Natural language content discovery with AI-powered similarity matching
24
+ - **Explicit, discoverable APIs** for LLMs and agents with enhanced categorization
21
25
  - Safe, parameterized queries and schema management
22
26
  - Designed for extensibility and open source collaboration
23
27
 
@@ -82,18 +86,59 @@ Restart your IDE and try asking your AI assistant:
82
86
  - **Dynamic Table Management:** Create, list, describe, rename, and drop tables at runtime
83
87
  - **CRUD Operations:** Insert, read, update, and delete rows in any table
84
88
  - **Safe SQL:** Run parameterized SELECT queries with input validation
89
+ - **Semantic Search:** Natural language search using sentence-transformers for intelligent content discovery
90
+ - **MCP Resources:** Access memory content through standardized MCP resource URIs
91
+ - **MCP Prompts:** Built-in intelligent prompts for common memory analysis workflows
92
+ - **Tool Categorization:** Organized tool discovery with detailed usage examples for enhanced LLM integration
85
93
  - **Knowledge Graph Tools:** Built-in support for node/edge schemas and property graphs
86
94
  - **Agent/LLM Integration:** Explicit, tool-based APIs for easy discovery and automation
87
95
  - **Open Source:** MIT licensed, fully tested, and ready for community use
88
96
 
89
97
  ---
90
98
 
99
+ ## MCP Compliance & Enhanced Integration
100
+
101
+ SQLite Memory Bank v1.4.0+ provides full Model Context Protocol (MCP) compliance with advanced features for enhanced LLM and agent integration:
102
+
103
+ ### 🔧 MCP Tools (20 Available)
104
+ Organized into logical categories for easy discovery:
105
+ - **Schema Management** (6 tools): Table creation, modification, and inspection
106
+ - **Data Operations** (5 tools): CRUD operations with validation
107
+ - **Search & Discovery** (2 tools): Content search and exploration
108
+ - **Semantic Search** (5 tools): AI-powered natural language content discovery
109
+ - **Analytics** (2 tools): Memory bank insights and statistics
110
+
111
+ ### 📄 MCP Resources (5 Available)
112
+ Real-time access to memory content via standardized URIs:
113
+ - `memory://tables/list` - List of all available tables
114
+ - `memory://tables/{table_name}/schema` - Table schema information
115
+ - `memory://tables/{table_name}/data` - Table data content
116
+ - `memory://search/{query}` - Search results as resources
117
+ - `memory://analytics/overview` - Memory bank overview analytics
118
+
119
+ ### 💡 MCP Prompts (4 Available)
120
+ Intelligent prompts for common memory analysis workflows:
121
+ - `analyze-memory-content` - Analyze memory bank content and provide insights
122
+ - `search-and-summarize` - Search and create summary prompts
123
+ - `technical-decision-analysis` - Analyze technical decisions from memory
124
+ - `memory-bank-context` - Provide memory bank context for AI conversations
125
+
126
+ ### 🎯 Enhanced Discoverability
127
+ - **Tool Categorization:** `list_tool_categories()` for organized tool discovery
128
+ - **Usage Examples:** `get_tools_by_category()` with detailed examples for each tool
129
+ - **Semantic Search:** Natural language queries for intelligent content discovery
130
+ - **LLM-Friendly APIs:** Explicit, descriptive tool names and comprehensive documentation
131
+
132
+ ---
133
+
91
134
 
92
135
  ## Tools & API Reference
93
136
 
94
137
  All tools are designed for explicit, discoverable use by LLMs, agents, and developers. Each function is available as a direct Python import and as an MCP tool.
95
138
 
96
- ### Table Management Tools
139
+ **🔍 Tool Discovery:** Use `list_tool_categories()` to see all organized tool categories, or `get_tools_by_category(category)` for detailed information about specific tool groups with usage examples.
140
+
141
+ ### Schema Management Tools (6 tools)
97
142
 
98
143
  | Tool | Description | Required Parameters | Optional Parameters |
99
144
  |------|-------------|---------------------|---------------------|
@@ -104,7 +149,7 @@ All tools are designed for explicit, discoverable use by LLMs, agents, and devel
104
149
  | `describe_table` | Get schema details | `table_name` (str) | None |
105
150
  | `list_all_columns` | List all columns for all tables | None | None |
106
151
 
107
- ### Data Management Tools
152
+ ### Data Operations Tools (5 tools)
108
153
 
109
154
  | Tool | Description | Required Parameters | Optional Parameters |
110
155
  |------|-------------|---------------------|---------------------|
@@ -114,6 +159,30 @@ All tools are designed for explicit, discoverable use by LLMs, agents, and devel
114
159
  | `delete_rows` | Delete rows from table | `table_name` (str), `where` (dict) | None |
115
160
  | `run_select_query` | Run safe SELECT query | `table_name` (str) | `columns` (list[str]), `where` (dict), `limit` (int) |
116
161
 
162
+ ### Search & Discovery Tools (2 tools)
163
+
164
+ | Tool | Description | Required Parameters | Optional Parameters |
165
+ |------|-------------|---------------------|---------------------|
166
+ | `search_content` | Full-text search across table content | `query` (str) | `tables` (list[str]), `limit` (int) |
167
+ | `explore_tables` | Explore and discover table structures | None | `pattern` (str), `include_row_counts` (bool) |
168
+
169
+ ### Semantic Search Tools (5 tools)
170
+
171
+ | Tool | Description | Required Parameters | Optional Parameters |
172
+ |------|-------------|---------------------|---------------------|
173
+ | `add_embeddings` | Generate vector embeddings for semantic search | `table_name` (str), `text_columns` (list[str]) | `embedding_column` (str), `model_name` (str) |
174
+ | `semantic_search` | Natural language search using vector similarity | `query` (str) | `tables` (list[str]), `similarity_threshold` (float), `limit` (int) |
175
+ | `find_related` | Find content related to specific row by similarity | `table_name` (str), `row_id` (int) | `similarity_threshold` (float), `limit` (int) |
176
+ | `smart_search` | Hybrid keyword + semantic search | `query` (str) | `tables` (list[str]), `semantic_weight` (float), `text_weight` (float) |
177
+ | `embedding_stats` | Get statistics about semantic search readiness | `table_name` (str) | `embedding_column` (str) |
178
+
179
+ ### Tool Discovery & Organization (2 tools)
180
+
181
+ | Tool | Description | Required Parameters | Optional Parameters |
182
+ |------|-------------|---------------------|---------------------|
183
+ | `list_tool_categories` | List all available tool categories | None | None |
184
+ | `get_tools_by_category` | Get detailed tool information by category | `category` (str) | None |
185
+
117
186
  Each tool validates inputs and returns consistent response formats with success/error indicators and appropriate data payloads.
118
187
 
119
188
  ---
@@ -442,6 +511,97 @@ For a complete agent memory implementation example, see [examples/agent_memory_e
442
511
 
443
512
  ---
444
513
 
514
+ ## MCP Resources and Prompts Usage
515
+
516
+ ### Using MCP Resources
517
+
518
+ MCP Resources provide real-time access to memory content through standardized URIs:
519
+
520
+ ```python
521
+ # Access resource via MCP client
522
+ resource_uri = "memory://tables/list"
523
+ tables_resource = await client.read_resource(resource_uri)
524
+
525
+ # Get table schema
526
+ schema_uri = "memory://tables/user_preferences/schema"
527
+ schema_resource = await client.read_resource(schema_uri)
528
+
529
+ # Access table data
530
+ data_uri = "memory://tables/user_preferences/data"
531
+ data_resource = await client.read_resource(data_uri)
532
+
533
+ # Search as resource
534
+ search_uri = "memory://search/user preferences coding style"
535
+ search_resource = await client.read_resource(search_uri)
536
+
537
+ # Analytics overview
538
+ analytics_uri = "memory://analytics/overview"
539
+ analytics_resource = await client.read_resource(analytics_uri)
540
+ ```
541
+
542
+ ### Using MCP Prompts
543
+
544
+ MCP Prompts provide intelligent analysis workflows:
545
+
546
+ ```python
547
+ # Analyze memory content
548
+ analysis_prompt = await client.get_prompt("analyze-memory-content", {
549
+ "focus_area": "technical_decisions"
550
+ })
551
+
552
+ # Search and summarize
553
+ summary_prompt = await client.get_prompt("search-and-summarize", {
554
+ "query": "database performance optimization",
555
+ "max_results": 10
556
+ })
557
+
558
+ # Technical decision analysis
559
+ decision_analysis = await client.get_prompt("technical-decision-analysis", {
560
+ "decision_category": "architecture"
561
+ })
562
+
563
+ # Get memory context for conversations
564
+ context_prompt = await client.get_prompt("memory-bank-context", {
565
+ "conversation_topic": "API design patterns"
566
+ })
567
+ ```
568
+
569
+ ### Semantic Search Examples
570
+
571
+ ```python
572
+ # Enable semantic search on existing table
573
+ add_embeddings("technical_decisions", ["decision_name", "rationale"])
574
+
575
+ # Natural language search
576
+ results = semantic_search("machine learning algorithms",
577
+ similarity_threshold=0.4,
578
+ limit=5)
579
+
580
+ # Find related content
581
+ related = find_related("technical_decisions",
582
+ row_id=123,
583
+ similarity_threshold=0.5)
584
+
585
+ # Hybrid search (keyword + semantic)
586
+ hybrid_results = smart_search("API design patterns",
587
+ semantic_weight=0.7,
588
+ text_weight=0.3)
589
+ ```
590
+
591
+ ### Tool Organization Discovery
592
+
593
+ ```python
594
+ # Discover tool categories
595
+ categories = list_tool_categories()
596
+ # Returns: {"schema_management": 6, "data_operations": 5, ...}
597
+
598
+ # Get detailed tool information
599
+ schema_tools = get_tools_by_category("schema_management")
600
+ # Returns detailed info with usage examples for each tool
601
+ ```
602
+
603
+ ---
604
+
445
605
  ## Troubleshooting
446
606
 
447
607
  ### Common MCP Connection Issues
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "mcp_sqlite_memory_bank"
7
- version = "1.3.0"
7
+ version = "1.4.1"
8
8
  description = "A dynamic, agent/LLM-friendly SQLite memory bank for MCP servers with semantic search capabilities."
9
9
  authors = [
10
10
  { name="Robert Meisner", email="robert@catchit.pl" }
@@ -21,7 +21,11 @@ dependencies = [
21
21
  "fastapi>=0.100.0",
22
22
  "uvicorn>=0.22.0",
23
23
  "pydantic>=1.10.0",
24
- "fastmcp"
24
+ "fastmcp",
25
+ "sqlalchemy>=2.0.0",
26
+ "sentence-transformers>=2.2.0",
27
+ "torch>=1.9.0",
28
+ "numpy>=1.21.0"
25
29
  ]
26
30
 
27
31
  [project.scripts]