mcp-automl 0.1.2__tar.gz → 0.1.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,66 @@
1
+ # Git
2
+ .git
3
+ .gitignore
4
+ .gitattributes
5
+
6
+ # Python
7
+ __pycache__
8
+ *.py[cod]
9
+ *$py.class
10
+ *.so
11
+ .Python
12
+ build/
13
+ develop-eggs/
14
+ dist/
15
+ downloads/
16
+ eggs/
17
+ .eggs/
18
+ lib/
19
+ lib64/
20
+ parts/
21
+ sdist/
22
+ var/
23
+ wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+
28
+ # Virtual environments
29
+ .venv
30
+ venv/
31
+ ENV/
32
+ env/
33
+
34
+ # Testing
35
+ .pytest_cache/
36
+ .coverage
37
+ htmlcov/
38
+ .tox/
39
+ .hypothesis/
40
+
41
+ # IDE
42
+ .vscode/
43
+ .idea/
44
+ *.swp
45
+ *.swo
46
+ *~
47
+
48
+ # Project specific
49
+ logs.log
50
+ *.log
51
+ .python-version
52
+ uv.lock
53
+
54
+ # CI/CD
55
+ .github/
56
+ .dockerignore
57
+
58
+ # Documentation
59
+ *.md
60
+ !README.md
61
+
62
+ # MacOS
63
+ .DS_Store
64
+
65
+ # User data
66
+ experiments/
@@ -0,0 +1,62 @@
1
+ name: Build and Publish Docker Image
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ push:
6
+ tags:
7
+ - 'v*' # Trigger on version tags like v0.1.0, v1.2.3, etc.
8
+ release:
9
+ types: [published]
10
+
11
+ jobs:
12
+ docker:
13
+ name: Build and Push Docker Image
14
+ runs-on: ubuntu-latest
15
+ permissions:
16
+ contents: read
17
+ packages: write
18
+
19
+ steps:
20
+ - name: Checkout code
21
+ uses: actions/checkout@v4
22
+
23
+ - name: Set up Docker Buildx
24
+ uses: docker/setup-buildx-action@v3
25
+
26
+ - name: Log in to Docker Hub
27
+ uses: docker/login-action@v3
28
+ with:
29
+ username: ${{ secrets.DOCKERHUB_USERNAME }}
30
+ password: ${{ secrets.DOCKERHUB_TOKEN }}
31
+
32
+ - name: Extract metadata (tags, labels)
33
+ id: meta
34
+ uses: docker/metadata-action@v5
35
+ with:
36
+ images: idea7766/mcp-automl
37
+ tags: |
38
+ type=semver,pattern={{version}}
39
+ type=semver,pattern={{major}}.{{minor}}
40
+ type=semver,pattern={{major}}
41
+ type=raw,value=latest,enable={{is_default_branch}}
42
+
43
+ - name: Build and push Docker image
44
+ uses: docker/build-push-action@v5
45
+ with:
46
+ context: .
47
+ file: ./Dockerfile
48
+ platforms: linux/amd64,linux/arm64
49
+ push: true
50
+ tags: ${{ steps.meta.outputs.tags }}
51
+ labels: ${{ steps.meta.outputs.labels }}
52
+ cache-from: type=registry,ref=idea7766/mcp-automl:buildcache
53
+ cache-to: type=registry,ref=idea7766/mcp-automl:buildcache,mode=max
54
+
55
+ - name: Update Docker Hub description
56
+ uses: peter-evans/dockerhub-description@v4
57
+ with:
58
+ username: ${{ secrets.DOCKERHUB_USERNAME }}
59
+ password: ${{ secrets.DOCKERHUB_TOKEN }}
60
+ repository: idea7766/mcp-automl
61
+ short-description: "MCP server for end-to-end machine learning with AutoML"
62
+ readme-filepath: ./README.md
@@ -88,3 +88,11 @@ jobs:
88
88
 
89
89
  - name: Publish distributions to PyPI
90
90
  run: uv publish
91
+
92
+ - name: Trigger Docker Build
93
+ env:
94
+ GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
95
+ NEW_VERSION: ${{ inputs.version }}
96
+ run: |
97
+ gh workflow run docker-publish.yml \
98
+ --ref "v$NEW_VERSION"
@@ -0,0 +1,37 @@
1
+ # Multi-stage build for smaller final image
2
+ FROM python:3.11-slim as builder
3
+
4
+ # Install uv
5
+ COPY --from=ghcr.io/astral-sh/uv:latest /uv /usr/local/bin/uv
6
+
7
+ # Set working directory
8
+ WORKDIR /app
9
+
10
+ # Copy project files
11
+ COPY pyproject.toml README.md ./
12
+ COPY src/mcp_automl ./src/mcp_automl
13
+
14
+ # Install dependencies and build
15
+ RUN uv pip install --system --no-cache .
16
+
17
+ # Final stage
18
+ FROM python:3.11-slim
19
+
20
+ # Install system dependencies for LightGBM (includes OpenMP)
21
+ RUN apt-get update && \
22
+ apt-get install -y --no-install-recommends \
23
+ libgomp1 \
24
+ && rm -rf /var/lib/apt/lists/*
25
+
26
+ # Copy installed packages from builder
27
+ COPY --from=builder /usr/local/lib/python3.11/site-packages /usr/local/lib/python3.11/site-packages
28
+ COPY --from=builder /usr/local/bin /usr/local/bin
29
+
30
+ # Create directory for experiments
31
+ RUN mkdir -p /root/.mcp-automl/experiments
32
+
33
+ # Set working directory
34
+ WORKDIR /workspace
35
+
36
+ # Run the MCP server
37
+ ENTRYPOINT ["mcp-automl"]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mcp-automl
3
- Version: 0.1.2
3
+ Version: 0.1.4
4
4
  Summary: MCP server for end-to-end machine learning
5
5
  Author-email: ke <idea7766@gmail.com>
6
6
  License-File: LICENSE
@@ -39,12 +39,26 @@ Add to your MCP client configuration (e.g., Claude Desktop, Gemini CLI, Cursor,
39
39
  "mcpServers": {
40
40
  "mcp-automl": {
41
41
  "command": "uvx",
42
- "args": ["--from", "git+https://github.com/idea7766/mcp-automl", "mcp-automl"]
42
+ "args": ["--python", "3.11", "mcp-automl"]
43
43
  }
44
44
  }
45
45
  }
46
46
  ```
47
47
 
48
+ **Or using Docker:**
49
+
50
+ ```json
51
+ {
52
+ "mcpServers": {
53
+ "mcp-automl": {
54
+ "command": "docker",
55
+ "args": ["run", "-i", "--rm", "-v", "${PWD}:/workspace", "-v", "${HOME}/.mcp-automl:/root/.mcp-automl", "idea7766/mcp-automl:latest"]
56
+ }
57
+ }
58
+ }
59
+ ```
60
+
61
+
48
62
  ### Available Tools
49
63
 
50
64
  | Tool | Description |
@@ -67,16 +81,18 @@ MCP AutoML includes an **data science workflow skill** that guides AI agents thr
67
81
 
68
82
  ### Installing the Skill
69
83
 
70
- Copy the skill directory to your agent's skill folder:
84
+ **For Gemini CLI:**
71
85
 
72
86
  ```bash
73
- # For Gemini Code Assist
74
- cp -r skill/data-science-workflow ~/.gemini/skills/
87
+ gemini skills install https://github.com/idea7766/mcp-automl --path skill/data-science-workflow
88
+ ```
75
89
 
76
- # For Claude Code
77
- cp -r skill/data-science-workflow ~/.claude/skills/
90
+ **For Claude Code:**
78
91
 
79
- # For other agents, copy to their respective skill directories
92
+ ```bash
93
+ # Clone the repo and copy the skill
94
+ git clone https://github.com/idea7766/mcp-automl.git
95
+ cp -r mcp-automl/skill/data-science-workflow ~/.claude/skills/
80
96
  ```
81
97
 
82
98
  The skill file is located at `skill/data-science-workflow/SKILL.md`.
@@ -84,6 +100,17 @@ The skill file is located at `skill/data-science-workflow/SKILL.md`.
84
100
  ## Configuration
85
101
 
86
102
  Models and experiments are saved to `~/.mcp-automl/experiments/` by default.
103
+ ## Troubleshooting
104
+
105
+ ### macOS: LightGBM OpenMP Error
106
+
107
+ If you encounter an error like `Library not loaded: @rpath/libomp.dylib`, you need to install OpenMP:
108
+
109
+ ```bash
110
+ brew install libomp
111
+ ```
112
+
113
+ This is a system-level dependency required by LightGBM on macOS. Linux and Windows users typically don't need this step.
87
114
 
88
115
  ## Dependencies
89
116
 
@@ -23,12 +23,26 @@ Add to your MCP client configuration (e.g., Claude Desktop, Gemini CLI, Cursor,
23
23
  "mcpServers": {
24
24
  "mcp-automl": {
25
25
  "command": "uvx",
26
- "args": ["--from", "git+https://github.com/idea7766/mcp-automl", "mcp-automl"]
26
+ "args": ["--python", "3.11", "mcp-automl"]
27
27
  }
28
28
  }
29
29
  }
30
30
  ```
31
31
 
32
+ **Or using Docker:**
33
+
34
+ ```json
35
+ {
36
+ "mcpServers": {
37
+ "mcp-automl": {
38
+ "command": "docker",
39
+ "args": ["run", "-i", "--rm", "-v", "${PWD}:/workspace", "-v", "${HOME}/.mcp-automl:/root/.mcp-automl", "idea7766/mcp-automl:latest"]
40
+ }
41
+ }
42
+ }
43
+ ```
44
+
45
+
32
46
  ### Available Tools
33
47
 
34
48
  | Tool | Description |
@@ -51,16 +65,18 @@ MCP AutoML includes an **data science workflow skill** that guides AI agents thr
51
65
 
52
66
  ### Installing the Skill
53
67
 
54
- Copy the skill directory to your agent's skill folder:
68
+ **For Gemini CLI:**
55
69
 
56
70
  ```bash
57
- # For Gemini Code Assist
58
- cp -r skill/data-science-workflow ~/.gemini/skills/
71
+ gemini skills install https://github.com/idea7766/mcp-automl --path skill/data-science-workflow
72
+ ```
59
73
 
60
- # For Claude Code
61
- cp -r skill/data-science-workflow ~/.claude/skills/
74
+ **For Claude Code:**
62
75
 
63
- # For other agents, copy to their respective skill directories
76
+ ```bash
77
+ # Clone the repo and copy the skill
78
+ git clone https://github.com/idea7766/mcp-automl.git
79
+ cp -r mcp-automl/skill/data-science-workflow ~/.claude/skills/
64
80
  ```
65
81
 
66
82
  The skill file is located at `skill/data-science-workflow/SKILL.md`.
@@ -68,6 +84,17 @@ The skill file is located at `skill/data-science-workflow/SKILL.md`.
68
84
  ## Configuration
69
85
 
70
86
  Models and experiments are saved to `~/.mcp-automl/experiments/` by default.
87
+ ## Troubleshooting
88
+
89
+ ### macOS: LightGBM OpenMP Error
90
+
91
+ If you encounter an error like `Library not loaded: @rpath/libomp.dylib`, you need to install OpenMP:
92
+
93
+ ```bash
94
+ brew install libomp
95
+ ```
96
+
97
+ This is a system-level dependency required by LightGBM on macOS. Linux and Windows users typically don't need this step.
71
98
 
72
99
  ## Dependencies
73
100
 
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "mcp-automl"
3
- version = "0.1.2"
3
+ version = "0.1.4"
4
4
  description = "MCP server for end-to-end machine learning"
5
5
  readme = "README.md"
6
6
  requires-python = ">=3.10,<3.12"
File without changes
File without changes
File without changes
File without changes