mcal-ai-autogen 0.2.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mcal_ai_autogen-0.2.0/LICENSE +21 -0
- mcal_ai_autogen-0.2.0/PKG-INFO +246 -0
- mcal_ai_autogen-0.2.0/README.md +213 -0
- mcal_ai_autogen-0.2.0/pyproject.toml +63 -0
- mcal_ai_autogen-0.2.0/setup.cfg +4 -0
- mcal_ai_autogen-0.2.0/src/mcal_ai_autogen.egg-info/PKG-INFO +246 -0
- mcal_ai_autogen-0.2.0/src/mcal_ai_autogen.egg-info/SOURCES.txt +12 -0
- mcal_ai_autogen-0.2.0/src/mcal_ai_autogen.egg-info/dependency_links.txt +1 -0
- mcal_ai_autogen-0.2.0/src/mcal_ai_autogen.egg-info/requires.txt +13 -0
- mcal_ai_autogen-0.2.0/src/mcal_ai_autogen.egg-info/top_level.txt +1 -0
- mcal_ai_autogen-0.2.0/src/mcal_autogen/__init__.py +10 -0
- mcal_ai_autogen-0.2.0/src/mcal_autogen/_compat.py +67 -0
- mcal_ai_autogen-0.2.0/src/mcal_autogen/memory.py +493 -0
- mcal_ai_autogen-0.2.0/tests/test_memory.py +760 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 Shiva
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,246 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: mcal-ai-autogen
|
|
3
|
+
Version: 0.2.0
|
|
4
|
+
Summary: Microsoft AutoGen integration for MCAL - Goal-aware memory for multi-agent systems
|
|
5
|
+
Author: MCAL Team
|
|
6
|
+
License: MIT
|
|
7
|
+
Project-URL: Homepage, https://github.com/Shivakoreddi/mcal-ai
|
|
8
|
+
Project-URL: Documentation, https://github.com/Shivakoreddi/mcal-ai/tree/main/packages/mcal-autogen
|
|
9
|
+
Project-URL: Repository, https://github.com/Shivakoreddi/mcal-ai
|
|
10
|
+
Keywords: mcal,autogen,memory,llm,agents,goal-aware,multi-agent
|
|
11
|
+
Classifier: Development Status :: 4 - Beta
|
|
12
|
+
Classifier: Intended Audience :: Developers
|
|
13
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
18
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
19
|
+
Requires-Python: >=3.10
|
|
20
|
+
Description-Content-Type: text/markdown
|
|
21
|
+
License-File: LICENSE
|
|
22
|
+
Requires-Dist: mcal-ai>=0.1.0
|
|
23
|
+
Provides-Extra: autogen
|
|
24
|
+
Requires-Dist: autogen-core>=0.4.0; extra == "autogen"
|
|
25
|
+
Requires-Dist: autogen-agentchat>=0.4.0; extra == "autogen"
|
|
26
|
+
Provides-Extra: dev
|
|
27
|
+
Requires-Dist: pytest>=7.0; extra == "dev"
|
|
28
|
+
Requires-Dist: pytest-asyncio>=0.21.0; extra == "dev"
|
|
29
|
+
Requires-Dist: pytest-cov>=4.0; extra == "dev"
|
|
30
|
+
Provides-Extra: all
|
|
31
|
+
Requires-Dist: mcal-autogen[autogen,dev]; extra == "all"
|
|
32
|
+
Dynamic: license-file
|
|
33
|
+
|
|
34
|
+
# mcal-autogen
|
|
35
|
+
|
|
36
|
+
Microsoft AutoGen integration for MCAL (Multi-turn Conversation Abstraction Layer), bringing goal-aware memory to AutoGen agents.
|
|
37
|
+
|
|
38
|
+
## Installation
|
|
39
|
+
|
|
40
|
+
```bash
|
|
41
|
+
pip install mcal-autogen
|
|
42
|
+
|
|
43
|
+
# With AutoGen dependencies
|
|
44
|
+
pip install mcal-autogen[autogen]
|
|
45
|
+
```
|
|
46
|
+
|
|
47
|
+
## Quick Start
|
|
48
|
+
|
|
49
|
+
```python
|
|
50
|
+
from autogen_agentchat.agents import AssistantAgent
|
|
51
|
+
from autogen_ext.models.openai import OpenAIChatCompletionClient
|
|
52
|
+
from mcal import MCAL
|
|
53
|
+
from mcal_autogen import MCALMemory
|
|
54
|
+
|
|
55
|
+
# Initialize MCAL with your project goal
|
|
56
|
+
mcal = MCAL(goal="Help users build data pipelines")
|
|
57
|
+
|
|
58
|
+
# Create MCAL-backed memory
|
|
59
|
+
memory = MCALMemory(mcal, user_id="user_123")
|
|
60
|
+
|
|
61
|
+
# Create an agent with MCAL memory
|
|
62
|
+
model_client = OpenAIChatCompletionClient(model="gpt-4")
|
|
63
|
+
agent = AssistantAgent(
|
|
64
|
+
name="data_engineer",
|
|
65
|
+
model_client=model_client,
|
|
66
|
+
memory=[memory],
|
|
67
|
+
system_message="You are a helpful data engineering assistant.",
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
# Use the agent - MCAL automatically tracks context and decisions
|
|
71
|
+
result = await agent.run(task="How should I set up my ETL pipeline?")
|
|
72
|
+
```
|
|
73
|
+
|
|
74
|
+
## Features
|
|
75
|
+
|
|
76
|
+
### Goal-Aware Memory
|
|
77
|
+
|
|
78
|
+
MCAL's unique value is understanding your project's goals and maintaining context across conversations:
|
|
79
|
+
|
|
80
|
+
```python
|
|
81
|
+
# Initialize with a clear goal
|
|
82
|
+
mcal = MCAL(goal="Build a real-time fraud detection system")
|
|
83
|
+
memory = MCALMemory(mcal)
|
|
84
|
+
|
|
85
|
+
# Add relevant context
|
|
86
|
+
from autogen_core.memory import MemoryContent
|
|
87
|
+
await memory.add(MemoryContent(
|
|
88
|
+
content="We decided to use Kafka for streaming",
|
|
89
|
+
mime_type="text/plain",
|
|
90
|
+
metadata={"category": "architecture", "decision": True}
|
|
91
|
+
))
|
|
92
|
+
|
|
93
|
+
# Query returns goal-relevant results
|
|
94
|
+
results = await memory.query("What messaging system should I use?")
|
|
95
|
+
# Returns Kafka decision with goal-relevance scoring
|
|
96
|
+
```
|
|
97
|
+
|
|
98
|
+
### Decision Tracking
|
|
99
|
+
|
|
100
|
+
Track architectural and project decisions automatically:
|
|
101
|
+
|
|
102
|
+
```python
|
|
103
|
+
memory = MCALMemory(
|
|
104
|
+
mcal,
|
|
105
|
+
enable_goal_tracking=True, # Extract goals from content
|
|
106
|
+
include_decisions=True, # Include decisions in search
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
# Decisions are automatically tracked
|
|
110
|
+
await memory.add(MemoryContent(
|
|
111
|
+
content="After evaluating options, we chose PostgreSQL for its JSON support",
|
|
112
|
+
mime_type="text/plain"
|
|
113
|
+
))
|
|
114
|
+
|
|
115
|
+
# Query finds relevant decisions
|
|
116
|
+
results = await memory.query("database selection")
|
|
117
|
+
```
|
|
118
|
+
|
|
119
|
+
### User Isolation
|
|
120
|
+
|
|
121
|
+
Support multi-tenant scenarios with user isolation:
|
|
122
|
+
|
|
123
|
+
```python
|
|
124
|
+
# Create separate memories for different users
|
|
125
|
+
user1_memory = MCALMemory(mcal, user_id="alice")
|
|
126
|
+
user2_memory = MCALMemory(mcal, user_id="bob")
|
|
127
|
+
|
|
128
|
+
# Each user has isolated memory
|
|
129
|
+
await user1_memory.add(MemoryContent(content="Alice prefers Python"))
|
|
130
|
+
await user2_memory.add(MemoryContent(content="Bob prefers Rust"))
|
|
131
|
+
|
|
132
|
+
# Queries only return user-specific results
|
|
133
|
+
results = await user1_memory.query("language preference")
|
|
134
|
+
# Only returns Alice's preference
|
|
135
|
+
```
|
|
136
|
+
|
|
137
|
+
### TTL Support
|
|
138
|
+
|
|
139
|
+
Configure time-to-live for memory entries:
|
|
140
|
+
|
|
141
|
+
```python
|
|
142
|
+
memory = MCALMemory(mcal, default_ttl_minutes=60) # 1 hour default
|
|
143
|
+
|
|
144
|
+
# Or per-entry TTL via metadata
|
|
145
|
+
await memory.add(MemoryContent(
|
|
146
|
+
content="Temporary context",
|
|
147
|
+
mime_type="text/plain",
|
|
148
|
+
metadata={"ttl_minutes": 15} # 15 minute TTL
|
|
149
|
+
))
|
|
150
|
+
```
|
|
151
|
+
|
|
152
|
+
## Integration with AutoGen Features
|
|
153
|
+
|
|
154
|
+
### With AssistantAgent
|
|
155
|
+
|
|
156
|
+
```python
|
|
157
|
+
from autogen_agentchat.agents import AssistantAgent
|
|
158
|
+
|
|
159
|
+
agent = AssistantAgent(
|
|
160
|
+
name="assistant",
|
|
161
|
+
model_client=model_client,
|
|
162
|
+
memory=[memory], # MCAL memory integrates seamlessly
|
|
163
|
+
)
|
|
164
|
+
```
|
|
165
|
+
|
|
166
|
+
### With Teams
|
|
167
|
+
|
|
168
|
+
```python
|
|
169
|
+
from autogen_agentchat.teams import RoundRobinGroupChat
|
|
170
|
+
|
|
171
|
+
# Share MCAL memory across team members
|
|
172
|
+
shared_memory = MCALMemory(mcal, user_id="team_alpha")
|
|
173
|
+
|
|
174
|
+
coder = AssistantAgent("coder", model_client=model_client, memory=[shared_memory])
|
|
175
|
+
reviewer = AssistantAgent("reviewer", model_client=model_client, memory=[shared_memory])
|
|
176
|
+
|
|
177
|
+
team = RoundRobinGroupChat([coder, reviewer])
|
|
178
|
+
```
|
|
179
|
+
|
|
180
|
+
### Context Window Management
|
|
181
|
+
|
|
182
|
+
MCAL automatically manages context relevance:
|
|
183
|
+
|
|
184
|
+
```python
|
|
185
|
+
memory = MCALMemory(
|
|
186
|
+
mcal,
|
|
187
|
+
max_results=10, # Limit results per query
|
|
188
|
+
score_threshold=0.5, # Minimum relevance score
|
|
189
|
+
)
|
|
190
|
+
|
|
191
|
+
# update_context adds relevant memories to the agent's context
|
|
192
|
+
result = await memory.update_context(model_context)
|
|
193
|
+
```
|
|
194
|
+
|
|
195
|
+
## API Reference
|
|
196
|
+
|
|
197
|
+
### MCALMemory
|
|
198
|
+
|
|
199
|
+
```python
|
|
200
|
+
class MCALMemory(Memory):
|
|
201
|
+
def __init__(
|
|
202
|
+
self,
|
|
203
|
+
mcal: MCAL,
|
|
204
|
+
user_id: str = "default",
|
|
205
|
+
name: str = "mcal_memory",
|
|
206
|
+
max_results: int = 10,
|
|
207
|
+
score_threshold: float = 0.0,
|
|
208
|
+
default_ttl_minutes: Optional[float] = None,
|
|
209
|
+
enable_goal_tracking: bool = True,
|
|
210
|
+
include_decisions: bool = True,
|
|
211
|
+
):
|
|
212
|
+
"""
|
|
213
|
+
Initialize MCAL-backed memory for AutoGen.
|
|
214
|
+
|
|
215
|
+
Args:
|
|
216
|
+
mcal: Initialized MCAL instance
|
|
217
|
+
user_id: User identifier for memory isolation
|
|
218
|
+
name: Memory instance name
|
|
219
|
+
max_results: Maximum results to return from queries
|
|
220
|
+
score_threshold: Minimum relevance score (0-1)
|
|
221
|
+
default_ttl_minutes: Default TTL in minutes
|
|
222
|
+
enable_goal_tracking: Extract goals from content
|
|
223
|
+
include_decisions: Include decisions in search results
|
|
224
|
+
"""
|
|
225
|
+
```
|
|
226
|
+
|
|
227
|
+
### Key Methods
|
|
228
|
+
|
|
229
|
+
| Method | Description |
|
|
230
|
+
|--------|-------------|
|
|
231
|
+
| `add(content)` | Add content to memory |
|
|
232
|
+
| `query(query)` | Search for relevant memories |
|
|
233
|
+
| `update_context(model_context)` | Update agent context with memories |
|
|
234
|
+
| `clear()` | Clear all memory entries |
|
|
235
|
+
| `close()` | Cleanup resources |
|
|
236
|
+
|
|
237
|
+
## Requirements
|
|
238
|
+
|
|
239
|
+
- Python >= 3.10
|
|
240
|
+
- mcal >= 0.1.0
|
|
241
|
+
- autogen-core >= 0.4.0 (optional)
|
|
242
|
+
- autogen-agentchat >= 0.4.0 (optional)
|
|
243
|
+
|
|
244
|
+
## License
|
|
245
|
+
|
|
246
|
+
MIT License
|
|
@@ -0,0 +1,213 @@
|
|
|
1
|
+
# mcal-autogen
|
|
2
|
+
|
|
3
|
+
Microsoft AutoGen integration for MCAL (Multi-turn Conversation Abstraction Layer), bringing goal-aware memory to AutoGen agents.
|
|
4
|
+
|
|
5
|
+
## Installation
|
|
6
|
+
|
|
7
|
+
```bash
|
|
8
|
+
pip install mcal-autogen
|
|
9
|
+
|
|
10
|
+
# With AutoGen dependencies
|
|
11
|
+
pip install mcal-autogen[autogen]
|
|
12
|
+
```
|
|
13
|
+
|
|
14
|
+
## Quick Start
|
|
15
|
+
|
|
16
|
+
```python
|
|
17
|
+
from autogen_agentchat.agents import AssistantAgent
|
|
18
|
+
from autogen_ext.models.openai import OpenAIChatCompletionClient
|
|
19
|
+
from mcal import MCAL
|
|
20
|
+
from mcal_autogen import MCALMemory
|
|
21
|
+
|
|
22
|
+
# Initialize MCAL with your project goal
|
|
23
|
+
mcal = MCAL(goal="Help users build data pipelines")
|
|
24
|
+
|
|
25
|
+
# Create MCAL-backed memory
|
|
26
|
+
memory = MCALMemory(mcal, user_id="user_123")
|
|
27
|
+
|
|
28
|
+
# Create an agent with MCAL memory
|
|
29
|
+
model_client = OpenAIChatCompletionClient(model="gpt-4")
|
|
30
|
+
agent = AssistantAgent(
|
|
31
|
+
name="data_engineer",
|
|
32
|
+
model_client=model_client,
|
|
33
|
+
memory=[memory],
|
|
34
|
+
system_message="You are a helpful data engineering assistant.",
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
# Use the agent - MCAL automatically tracks context and decisions
|
|
38
|
+
result = await agent.run(task="How should I set up my ETL pipeline?")
|
|
39
|
+
```
|
|
40
|
+
|
|
41
|
+
## Features
|
|
42
|
+
|
|
43
|
+
### Goal-Aware Memory
|
|
44
|
+
|
|
45
|
+
MCAL's unique value is understanding your project's goals and maintaining context across conversations:
|
|
46
|
+
|
|
47
|
+
```python
|
|
48
|
+
# Initialize with a clear goal
|
|
49
|
+
mcal = MCAL(goal="Build a real-time fraud detection system")
|
|
50
|
+
memory = MCALMemory(mcal)
|
|
51
|
+
|
|
52
|
+
# Add relevant context
|
|
53
|
+
from autogen_core.memory import MemoryContent
|
|
54
|
+
await memory.add(MemoryContent(
|
|
55
|
+
content="We decided to use Kafka for streaming",
|
|
56
|
+
mime_type="text/plain",
|
|
57
|
+
metadata={"category": "architecture", "decision": True}
|
|
58
|
+
))
|
|
59
|
+
|
|
60
|
+
# Query returns goal-relevant results
|
|
61
|
+
results = await memory.query("What messaging system should I use?")
|
|
62
|
+
# Returns Kafka decision with goal-relevance scoring
|
|
63
|
+
```
|
|
64
|
+
|
|
65
|
+
### Decision Tracking
|
|
66
|
+
|
|
67
|
+
Track architectural and project decisions automatically:
|
|
68
|
+
|
|
69
|
+
```python
|
|
70
|
+
memory = MCALMemory(
|
|
71
|
+
mcal,
|
|
72
|
+
enable_goal_tracking=True, # Extract goals from content
|
|
73
|
+
include_decisions=True, # Include decisions in search
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
# Decisions are automatically tracked
|
|
77
|
+
await memory.add(MemoryContent(
|
|
78
|
+
content="After evaluating options, we chose PostgreSQL for its JSON support",
|
|
79
|
+
mime_type="text/plain"
|
|
80
|
+
))
|
|
81
|
+
|
|
82
|
+
# Query finds relevant decisions
|
|
83
|
+
results = await memory.query("database selection")
|
|
84
|
+
```
|
|
85
|
+
|
|
86
|
+
### User Isolation
|
|
87
|
+
|
|
88
|
+
Support multi-tenant scenarios with user isolation:
|
|
89
|
+
|
|
90
|
+
```python
|
|
91
|
+
# Create separate memories for different users
|
|
92
|
+
user1_memory = MCALMemory(mcal, user_id="alice")
|
|
93
|
+
user2_memory = MCALMemory(mcal, user_id="bob")
|
|
94
|
+
|
|
95
|
+
# Each user has isolated memory
|
|
96
|
+
await user1_memory.add(MemoryContent(content="Alice prefers Python"))
|
|
97
|
+
await user2_memory.add(MemoryContent(content="Bob prefers Rust"))
|
|
98
|
+
|
|
99
|
+
# Queries only return user-specific results
|
|
100
|
+
results = await user1_memory.query("language preference")
|
|
101
|
+
# Only returns Alice's preference
|
|
102
|
+
```
|
|
103
|
+
|
|
104
|
+
### TTL Support
|
|
105
|
+
|
|
106
|
+
Configure time-to-live for memory entries:
|
|
107
|
+
|
|
108
|
+
```python
|
|
109
|
+
memory = MCALMemory(mcal, default_ttl_minutes=60) # 1 hour default
|
|
110
|
+
|
|
111
|
+
# Or per-entry TTL via metadata
|
|
112
|
+
await memory.add(MemoryContent(
|
|
113
|
+
content="Temporary context",
|
|
114
|
+
mime_type="text/plain",
|
|
115
|
+
metadata={"ttl_minutes": 15} # 15 minute TTL
|
|
116
|
+
))
|
|
117
|
+
```
|
|
118
|
+
|
|
119
|
+
## Integration with AutoGen Features
|
|
120
|
+
|
|
121
|
+
### With AssistantAgent
|
|
122
|
+
|
|
123
|
+
```python
|
|
124
|
+
from autogen_agentchat.agents import AssistantAgent
|
|
125
|
+
|
|
126
|
+
agent = AssistantAgent(
|
|
127
|
+
name="assistant",
|
|
128
|
+
model_client=model_client,
|
|
129
|
+
memory=[memory], # MCAL memory integrates seamlessly
|
|
130
|
+
)
|
|
131
|
+
```
|
|
132
|
+
|
|
133
|
+
### With Teams
|
|
134
|
+
|
|
135
|
+
```python
|
|
136
|
+
from autogen_agentchat.teams import RoundRobinGroupChat
|
|
137
|
+
|
|
138
|
+
# Share MCAL memory across team members
|
|
139
|
+
shared_memory = MCALMemory(mcal, user_id="team_alpha")
|
|
140
|
+
|
|
141
|
+
coder = AssistantAgent("coder", model_client=model_client, memory=[shared_memory])
|
|
142
|
+
reviewer = AssistantAgent("reviewer", model_client=model_client, memory=[shared_memory])
|
|
143
|
+
|
|
144
|
+
team = RoundRobinGroupChat([coder, reviewer])
|
|
145
|
+
```
|
|
146
|
+
|
|
147
|
+
### Context Window Management
|
|
148
|
+
|
|
149
|
+
MCAL automatically manages context relevance:
|
|
150
|
+
|
|
151
|
+
```python
|
|
152
|
+
memory = MCALMemory(
|
|
153
|
+
mcal,
|
|
154
|
+
max_results=10, # Limit results per query
|
|
155
|
+
score_threshold=0.5, # Minimum relevance score
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
# update_context adds relevant memories to the agent's context
|
|
159
|
+
result = await memory.update_context(model_context)
|
|
160
|
+
```
|
|
161
|
+
|
|
162
|
+
## API Reference
|
|
163
|
+
|
|
164
|
+
### MCALMemory
|
|
165
|
+
|
|
166
|
+
```python
|
|
167
|
+
class MCALMemory(Memory):
|
|
168
|
+
def __init__(
|
|
169
|
+
self,
|
|
170
|
+
mcal: MCAL,
|
|
171
|
+
user_id: str = "default",
|
|
172
|
+
name: str = "mcal_memory",
|
|
173
|
+
max_results: int = 10,
|
|
174
|
+
score_threshold: float = 0.0,
|
|
175
|
+
default_ttl_minutes: Optional[float] = None,
|
|
176
|
+
enable_goal_tracking: bool = True,
|
|
177
|
+
include_decisions: bool = True,
|
|
178
|
+
):
|
|
179
|
+
"""
|
|
180
|
+
Initialize MCAL-backed memory for AutoGen.
|
|
181
|
+
|
|
182
|
+
Args:
|
|
183
|
+
mcal: Initialized MCAL instance
|
|
184
|
+
user_id: User identifier for memory isolation
|
|
185
|
+
name: Memory instance name
|
|
186
|
+
max_results: Maximum results to return from queries
|
|
187
|
+
score_threshold: Minimum relevance score (0-1)
|
|
188
|
+
default_ttl_minutes: Default TTL in minutes
|
|
189
|
+
enable_goal_tracking: Extract goals from content
|
|
190
|
+
include_decisions: Include decisions in search results
|
|
191
|
+
"""
|
|
192
|
+
```
|
|
193
|
+
|
|
194
|
+
### Key Methods
|
|
195
|
+
|
|
196
|
+
| Method | Description |
|
|
197
|
+
|--------|-------------|
|
|
198
|
+
| `add(content)` | Add content to memory |
|
|
199
|
+
| `query(query)` | Search for relevant memories |
|
|
200
|
+
| `update_context(model_context)` | Update agent context with memories |
|
|
201
|
+
| `clear()` | Clear all memory entries |
|
|
202
|
+
| `close()` | Cleanup resources |
|
|
203
|
+
|
|
204
|
+
## Requirements
|
|
205
|
+
|
|
206
|
+
- Python >= 3.10
|
|
207
|
+
- mcal >= 0.1.0
|
|
208
|
+
- autogen-core >= 0.4.0 (optional)
|
|
209
|
+
- autogen-agentchat >= 0.4.0 (optional)
|
|
210
|
+
|
|
211
|
+
## License
|
|
212
|
+
|
|
213
|
+
MIT License
|
|
@@ -0,0 +1,63 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["setuptools>=61.0", "wheel"]
|
|
3
|
+
build-backend = "setuptools.build_meta"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "mcal-ai-autogen"
|
|
7
|
+
version = "0.2.0"
|
|
8
|
+
description = "Microsoft AutoGen integration for MCAL - Goal-aware memory for multi-agent systems"
|
|
9
|
+
readme = "README.md"
|
|
10
|
+
license = {text = "MIT"}
|
|
11
|
+
requires-python = ">=3.10"
|
|
12
|
+
authors = [
|
|
13
|
+
{name = "MCAL Team"}
|
|
14
|
+
]
|
|
15
|
+
keywords = [
|
|
16
|
+
"mcal",
|
|
17
|
+
"autogen",
|
|
18
|
+
"memory",
|
|
19
|
+
"llm",
|
|
20
|
+
"agents",
|
|
21
|
+
"goal-aware",
|
|
22
|
+
"multi-agent"
|
|
23
|
+
]
|
|
24
|
+
classifiers = [
|
|
25
|
+
"Development Status :: 4 - Beta",
|
|
26
|
+
"Intended Audience :: Developers",
|
|
27
|
+
"License :: OSI Approved :: MIT License",
|
|
28
|
+
"Programming Language :: Python :: 3",
|
|
29
|
+
"Programming Language :: Python :: 3.10",
|
|
30
|
+
"Programming Language :: Python :: 3.11",
|
|
31
|
+
"Programming Language :: Python :: 3.12",
|
|
32
|
+
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
|
33
|
+
]
|
|
34
|
+
|
|
35
|
+
dependencies = [
|
|
36
|
+
"mcal-ai>=0.1.0",
|
|
37
|
+
]
|
|
38
|
+
|
|
39
|
+
[project.optional-dependencies]
|
|
40
|
+
autogen = [
|
|
41
|
+
"autogen-core>=0.4.0",
|
|
42
|
+
"autogen-agentchat>=0.4.0",
|
|
43
|
+
]
|
|
44
|
+
dev = [
|
|
45
|
+
"pytest>=7.0",
|
|
46
|
+
"pytest-asyncio>=0.21.0",
|
|
47
|
+
"pytest-cov>=4.0",
|
|
48
|
+
]
|
|
49
|
+
all = [
|
|
50
|
+
"mcal-autogen[autogen,dev]",
|
|
51
|
+
]
|
|
52
|
+
|
|
53
|
+
[project.urls]
|
|
54
|
+
Homepage = "https://github.com/Shivakoreddi/mcal-ai"
|
|
55
|
+
Documentation = "https://github.com/Shivakoreddi/mcal-ai/tree/main/packages/mcal-autogen"
|
|
56
|
+
Repository = "https://github.com/Shivakoreddi/mcal-ai"
|
|
57
|
+
|
|
58
|
+
[tool.setuptools.packages.find]
|
|
59
|
+
where = ["src"]
|
|
60
|
+
|
|
61
|
+
[tool.pytest.ini_options]
|
|
62
|
+
asyncio_mode = "auto"
|
|
63
|
+
testpaths = ["tests"]
|