mcDETECT 1.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mcDETECT might be problematic. Click here for more details.

mcDETECT-1.0.0/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Chenyang Yuan
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,13 @@
1
+ Metadata-Version: 2.1
2
+ Name: mcDETECT
3
+ Version: 1.0.0
4
+ Summary: mcDETECT: Decoding 3D Spatial Synaptic Transcriptomes with Subcellular-Resolution Spatial Transcriptomics
5
+ Home-page: https://github.com/chen-yang-yuan/mcDETECT
6
+ Author: Chenyang Yuan
7
+ Author-email: chenyang.yuan@emory.edu
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ Requires-Python: >=3.6
12
+ Description-Content-Type: text/markdown
13
+ License-File: LICENSE
File without changes
@@ -0,0 +1 @@
1
+ from .model import mcDETECT
@@ -0,0 +1,351 @@
1
+ import anndata
2
+ import math
3
+ import miniball
4
+ import numpy as np
5
+ import pandas as pd
6
+ import scanpy as sc
7
+ from rtree import index
8
+ from scipy.spatial import cKDTree
9
+ from scipy.stats import poisson
10
+ from shapely.geometry import Point
11
+ from sklearn.cluster import DBSCAN
12
+
13
+
14
+ def closest(lst, K):
15
+ return lst[min(range(len(lst)), key = lambda i: abs(lst[i] - K))]
16
+
17
+
18
+ def make_tree(d1 = None, d2 = None, d3 = None):
19
+ active_dimensions = [dimension for dimension in [d1, d2, d3] if dimension is not None]
20
+ if len(active_dimensions) == 1:
21
+ points = np.c_[active_dimensions[0].ravel()]
22
+ elif len(active_dimensions) == 2:
23
+ points = np.c_[active_dimensions[0].ravel(), active_dimensions[1].ravel()]
24
+ elif len(active_dimensions) == 3:
25
+ points = np.c_[active_dimensions[0].ravel(), active_dimensions[1].ravel(), active_dimensions[2].ravel()]
26
+ return cKDTree(points)
27
+
28
+
29
+ def make_rtree(spheres):
30
+ p = index.Property()
31
+ idx = index.Index(properties = p)
32
+ for i, sphere in enumerate(spheres.itertuples()):
33
+ center = Point(sphere.sphere_x, sphere.sphere_y)
34
+ bounds = (center.x - sphere.sphere_r,
35
+ center.y - sphere.sphere_r,
36
+ center.x + sphere.sphere_r,
37
+ center.y + sphere.sphere_r)
38
+ idx.insert(i, bounds)
39
+ return idx
40
+
41
+
42
+ class mcDETECT:
43
+
44
+
45
+ def __init__(self, type, transcripts, syn_genes, nc_genes = None, eps = 1.5, minspl = None, grid_len = 1.0, cutoff_prob = 0.95, alpha = 5.0, low_bound = 3,
46
+ size_thr = 4.0, in_nucleus_thr = (0.5, 0.5), l = 1.0, rho = 0.2, s = 1.0, nc_top = 20, nc_thr = 0.1):
47
+
48
+ self.type = type # string, iST platform, now support MERSCOPE, Xenium, and CosMx
49
+ self.transcripts = transcripts # dataframe, transcripts file
50
+ self.syn_genes = syn_genes # list, string, all synaptic markers
51
+ self.nc_genes = nc_genes # list, string, all negative controls
52
+ self.eps = eps # numeric, searching radius epsilon
53
+ self.minspl = minspl # integer, manually select min_samples, i.e., no automatic parameter selection
54
+ self.grid_len = grid_len # numeric, length of grids for computing the tissue area
55
+ self.cutoff_prob = cutoff_prob # numeric, cutoff probability in parameter selection for min_samples
56
+ self.alpha = alpha # numeric, scaling factor in parameter selection for min_samples
57
+ self.low_bound = low_bound # integer, lower bound in parameter selection for min_samples
58
+ self.size_thr = size_thr # numeric, threshold for maximum radius of an aggregation
59
+ self.in_nucleus_thr = in_nucleus_thr # 2-d tuple, threshold for low- and high-in-nucleus ratio
60
+ self.l = l # numeric, scaling factor for seaching overlapped spheres
61
+ self.rho = rho # numeric, threshold for determining overlaps
62
+ self.s = s # numeric, scaling factor for merging overlapped spheres
63
+ self.nc_top = nc_top # integer, number of negative controls retained for filtering
64
+ self.nc_thr = nc_thr # numeric, threshold for negative control filtering
65
+
66
+
67
+ # [INNER] construct grids, input for tissue_area()
68
+ def construct_grid(self, grid_len = None):
69
+ if grid_len is None:
70
+ grid_len = self.grid_len
71
+ x_min, x_max = np.min(self.transcripts['global_x']), np.max(self.transcripts['global_x'])
72
+ y_min, y_max = np.min(self.transcripts['global_y']), np.max(self.transcripts['global_y'])
73
+ x_min = np.floor(x_min / grid_len) * grid_len
74
+ x_max = np.ceil(x_max / grid_len) * grid_len
75
+ y_min = np.floor(y_min / grid_len) * grid_len
76
+ y_max = np.ceil(y_max / grid_len) * grid_len
77
+ x_bins = np.arange(x_min, x_max + grid_len, grid_len)
78
+ y_bins = np.arange(y_min, y_max + grid_len, grid_len)
79
+ return x_bins, y_bins
80
+
81
+
82
+ # [INNER] calculate tissue area, input for poisson_select()
83
+ def tissue_area(self):
84
+ x_bins, y_bins = self.construct_grid(grid_len = None)
85
+ hist, _, _ = np.histogram2d(self.transcripts['global_x'], self.transcripts['global_y'], bins = [x_bins, y_bins])
86
+ area = np.count_nonzero(hist) * (self.grid_len ** 2)
87
+ return area
88
+
89
+
90
+ # [INNER] calculate optimal min_samples, input for dbscan()
91
+ def poisson_select(self, gene_name):
92
+ num_trans = np.sum(self.transcripts['target'] == gene_name)
93
+ bg_density = num_trans / self.tissue_area()
94
+ cutoff_density = poisson.ppf(self.cutoff_prob, mu = self.alpha * bg_density * (np.pi * self.eps ** 2))
95
+ optimal_m = int(max(cutoff_density, self.low_bound))
96
+ return optimal_m
97
+
98
+
99
+ # [INTERMEDIATE] dictionary, low- and high-in-nucleus spheres for each synaptic marker
100
+ def dbscan(self, target_names = None, write_csv = False, write_path = './'):
101
+
102
+ if self.type != 'Xenium':
103
+ z_grid = list(np.unique(self.transcripts['global_z']))
104
+ z_grid.sort()
105
+
106
+ if target_names is None:
107
+ target_names = self.syn_genes
108
+ transcripts = self.transcripts[self.transcripts['target'].isin(target_names)]
109
+
110
+ num_individual, data_low, data_high = [], {}, {}
111
+
112
+ for j in target_names:
113
+
114
+ # split transcripts
115
+ target = transcripts[transcripts['target'] == j]
116
+ others = transcripts[transcripts['target'] != j]
117
+ tree = make_tree(d1 = np.array(others['global_x']), d2 = np.array(others['global_y']), d3 = np.array(others['global_z']))
118
+
119
+ # 3D DBSCAN
120
+ if self.minspl is None:
121
+ min_spl = self.poisson_select(j)
122
+ else:
123
+ min_spl = self.minspl
124
+ X = np.array(target[['global_x', 'global_y', 'global_z']])
125
+ db = DBSCAN(eps = self.eps, min_samples = min_spl, algorithm = 'kd_tree').fit(X)
126
+ labels = db.labels_
127
+ n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
128
+
129
+ # iterate over all aggregations
130
+ sphere_x, sphere_y, sphere_z, layer_z, sphere_r, sphere_size, sphere_comp, sphere_score = [], [], [], [], [], [], [], []
131
+
132
+ for k in range(n_clusters):
133
+
134
+ # find minimum enclosing spheres
135
+ temp = target[labels == k]
136
+ temp_in_nucleus = np.sum(temp['overlaps_nucleus'])
137
+ temp_size = temp.shape[0]
138
+ temp = temp[['global_x', 'global_y', 'global_z']]
139
+ temp = temp.drop_duplicates()
140
+ center, r2 = miniball.get_bounding_ball(np.array(temp), epsilon=1e-8)
141
+ if self.type != 'Xenium':
142
+ closest_z = closest(z_grid, center[2])
143
+ else:
144
+ closest_z = center[2]
145
+
146
+ # calculate size, composition, and in-nucleus score
147
+ other_idx = tree.query_ball_point([center[0], center[1], center[2]], np.sqrt(r2))
148
+ other_trans = others.iloc[other_idx]
149
+ other_in_nucleus = np.sum(other_trans['overlaps_nucleus'])
150
+ other_size = other_trans.shape[0]
151
+ other_comp = len(np.unique(other_trans['target']))
152
+ total_size = temp_size + other_size
153
+ total_comp = 1 + other_comp
154
+ local_score = (temp_in_nucleus + other_in_nucleus) / total_size
155
+
156
+ # record coordinate, radius, size, composition, and in-nucleus score
157
+ sphere_x.append(center[0])
158
+ sphere_y.append(center[1])
159
+ sphere_z.append(center[2])
160
+ layer_z.append(closest_z)
161
+ sphere_r.append(np.sqrt(r2))
162
+ sphere_size.append(total_size)
163
+ sphere_comp.append(total_comp)
164
+ sphere_score.append(local_score)
165
+
166
+ # basic features for all spheres from each synaptic marker
167
+ sphere = pd.DataFrame(list(zip(sphere_x, sphere_y, sphere_z, layer_z, sphere_r, sphere_size, sphere_comp, sphere_score)),
168
+ columns = ['sphere_x', 'sphere_y', 'sphere_z', 'layer_z', 'sphere_r', 'size', 'comp', 'in_nucleus'])
169
+ sphere['gene'] = [j] * sphere.shape[0]
170
+
171
+ # split low- and high-in-nucleus spheres
172
+ sphere_low = sphere[(sphere['sphere_r'] < self.size_thr) & (sphere['in_nucleus'] < self.in_nucleus_thr[0])]
173
+ sphere_high = sphere[(sphere['sphere_r'] < self.size_thr) & (sphere['in_nucleus'] > self.in_nucleus_thr[1])]
174
+
175
+ if write_csv:
176
+ sphere_low.to_csv(write_path + j + ' sphere.csv', index=0)
177
+ sphere_high.to_csv(write_path + j + ' sphere_high.csv', index=0)
178
+
179
+ num_individual.append(sphere_low.shape[0])
180
+ data_low[target_names.index(j)] = sphere_low
181
+ data_high[target_names.index(j)] = sphere_high
182
+ print("{} out of {} genes processed!".format(target_names.index(j) + 1, len(target_names)))
183
+
184
+ return np.sum(num_individual), data_low, data_high
185
+
186
+
187
+ # [INNER] merge points from two overlapped spheres, input for remove_overlaps()
188
+ def find_points(self, sphere_a, sphere_b):
189
+ transcripts = self.transcripts[self.transcripts['target'].isin(self.syn_genes)]
190
+ tree_temp = make_tree(d1 = np.array(transcripts['global_x']), d2 = np.array(transcripts['global_y']), d3 = np.array(transcripts['global_z']))
191
+ idx_a = tree_temp.query_ball_point([sphere_a['sphere_x'], sphere_a['sphere_y'], sphere_a['sphere_z']], sphere_a['sphere_r'])
192
+ points_a = transcripts.iloc[idx_a]
193
+ points_a = points_a[points_a['target'] == sphere_a['gene']]
194
+ idx_b = tree_temp.query_ball_point([sphere_b['sphere_x'], sphere_b['sphere_y'], sphere_b['sphere_z']], sphere_b['sphere_r'])
195
+ points_b = transcripts.iloc[idx_b]
196
+ points_b = points_b[points_b['target'] == sphere_b['gene']]
197
+ points = pd.concat([points_a, points_b])
198
+ points = points[['global_x', 'global_y', 'global_z']]
199
+ return points
200
+
201
+
202
+ def remove_overlaps(self, set_a, set_b):
203
+
204
+ set_a = set_a.copy()
205
+ set_b = set_b.copy()
206
+
207
+ # find possible overlaps on 2D by r-tree
208
+ idx_b = make_rtree(set_b)
209
+ for i, sphere_a in set_a.iterrows():
210
+ center_a_3D = (sphere_a.sphere_x, sphere_a.sphere_y, sphere_a.sphere_z)
211
+ bounds_a = (sphere_a.sphere_x - sphere_a.sphere_r,
212
+ sphere_a.sphere_y - sphere_a.sphere_r,
213
+ sphere_a.sphere_x + sphere_a.sphere_r,
214
+ sphere_a.sphere_y + sphere_a.sphere_r)
215
+ possible_overlaps = idx_b.intersection(bounds_a)
216
+
217
+ # search 3D overlaps within possible overlaps
218
+ for j in possible_overlaps:
219
+ if j in set_b.index:
220
+ sphere_b = set_b.loc[j]
221
+ center_b_3D = (sphere_b.sphere_x, sphere_b.sphere_y, sphere_b.sphere_z)
222
+ dist = math.dist(center_a_3D, center_b_3D)
223
+ radius_sum = sphere_a.sphere_r + sphere_b.sphere_r
224
+ radius_diff = sphere_a.sphere_r - sphere_b.sphere_r
225
+
226
+ # relative positions (0: internal & intersect, 1: internal, 2: intersect)
227
+ c0 = (dist < self.l * radius_sum)
228
+ c1 = (dist <= self.l * np.abs(radius_diff))
229
+ c1_1 = (radius_diff > 0)
230
+ c2_1 = (dist < self.rho * self.l * radius_sum)
231
+
232
+ # operations on dataframes
233
+ if c0:
234
+ if c1 and c1_1: # keep A and remove B
235
+ set_b.drop(index = j, inplace = True)
236
+ elif c1 and not c1_1: # replace A with B and remove B
237
+ set_a.loc[i] = set_b.loc[j]
238
+ set_b.drop(index = j, inplace = True)
239
+ elif not c1 and c2_1: # replace A with new sphere and remove B
240
+ points_union = np.array(self.find_points(sphere_a, sphere_b))
241
+ new_center, new_radius = miniball.get_bounding_ball(points_union, epsilon=1e-8)
242
+ set_a.loc[i, 'sphere_x'] = new_center[0]
243
+ set_a.loc[i, 'sphere_y'] = new_center[1]
244
+ set_a.loc[i, 'sphere_z'] = new_center[2]
245
+ set_a.loc[i, 'sphere_r'] = self.s * new_radius
246
+ set_b.drop(index = j, inplace = True)
247
+
248
+ set_a = set_a.reset_index(drop = True)
249
+ set_b = set_b.reset_index(drop = True)
250
+ return set_a, set_b
251
+
252
+
253
+ # [INNER] merge spheres from different synaptic markers, input for detect()
254
+ def merge_sphere(self, sphere_dict):
255
+ sphere = sphere_dict[0].copy()
256
+ for j in range(1, len(self.syn_genes)):
257
+ target_sphere = sphere_dict[j]
258
+ sphere, target_sphere_new = self.remove_overlaps(sphere, target_sphere)
259
+ sphere = pd.concat([sphere, target_sphere_new])
260
+ sphere = sphere.reset_index(drop = True)
261
+ return sphere
262
+
263
+
264
+ # [INNER] negative control filtering, input for detect()
265
+ def nc_filter(self, sphere_low, sphere_high):
266
+
267
+ # negative control gene profiling
268
+ adata_low = self.profile(sphere_low, self.nc_genes)
269
+ adata_high = self.profile(sphere_high, self.nc_genes)
270
+ adata = anndata.concat([adata_low, adata_high], axis = 0, merge = "same")
271
+ adata.var['genes'] = adata.var.index
272
+ adata.obs_keys = list(np.arange(adata.shape[0]))
273
+ adata.obs['type'] = ['low'] * adata_low.shape[0] + ['high'] * adata_high.shape[0]
274
+ adata.obs['type'] = pd.Categorical(adata.obs['type'], categories = ["low", "high"], ordered = True)
275
+
276
+ # DE analysis of negative control genes
277
+ sc.tl.rank_genes_groups(adata, 'type', method = 't-test')
278
+ names = adata.uns['rank_genes_groups']['names']
279
+ names = pd.DataFrame(names)
280
+ logfc = adata.uns['rank_genes_groups']['logfoldchanges']
281
+ logfc = pd.DataFrame(logfc)
282
+ pvals = adata.uns['rank_genes_groups']['pvals']
283
+ pvals = pd.DataFrame(pvals)
284
+
285
+ # select top upregulated negative control genes
286
+ df = pd.DataFrame({'names': names["high"], 'logfc': logfc["high"], 'pvals': pvals["high"]})
287
+ df = df[df['logfc'] >= 0]
288
+ df = df.sort_values(by = ['pvals'], ascending = True)
289
+ nc_genes_final = list(df['names'].head(self.nc_top))
290
+
291
+ # negative control filtering
292
+ nc_transcripts_final = self.transcripts[self.transcripts['target'].isin(nc_genes_final)]
293
+ tree = make_tree(d1 = np.array(nc_transcripts_final['global_x']), d2 = np.array(nc_transcripts_final['global_y']), d3 = np.array(nc_transcripts_final['global_z']))
294
+ pass_idx = [0] * sphere_low.shape[0]
295
+ for i in range(sphere_low.shape[0]):
296
+ temp = sphere_low.iloc[i]
297
+ nc_idx = tree.query_ball_point([temp['sphere_x'], temp['sphere_y'], temp['sphere_z']], temp['sphere_r'])
298
+ if len(nc_idx) == 0:
299
+ pass_idx[i] = 1
300
+ elif len(nc_idx) / temp['size'] < self.nc_thr:
301
+ pass_idx[i] = 2
302
+ sphere = sphere_low[np.array(pass_idx) != 0]
303
+ sphere = sphere.reset_index(drop = True)
304
+ return sphere
305
+
306
+
307
+ # [MAIN] dataframe, metadata of identified synapses
308
+ def detect(self):
309
+
310
+ _, data_low, data_high = self.dbscan()
311
+
312
+ print("Merging spheres...")
313
+ sphere_low, sphere_high = self.merge_sphere(data_low), self.merge_sphere(data_high)
314
+
315
+ if self.nc_genes is None:
316
+ return sphere_low
317
+ else:
318
+ print("Negative control filtering...")
319
+ return self.nc_filter(sphere_low, sphere_high)
320
+
321
+
322
+ # [MAIN] anndata, spatial transcriptome profile of identified synapses
323
+ def profile(self, synapse, genes = None, print_itr = False):
324
+
325
+ if genes is None:
326
+ genes = list(np.unique(self.transcripts['target']))
327
+ transcripts = self.transcripts
328
+ else:
329
+ transcripts = self.transcripts[self.transcripts['target'].isin(genes)]
330
+ tree = make_tree(d1 = np.array(transcripts['global_x']), d2 = np.array(transcripts['global_y']), d3 = np.array(transcripts['global_z']))
331
+
332
+ # construct gene count matrix
333
+ X = np.zeros((len(genes), synapse.shape[0]))
334
+ for i in range(synapse.shape[0]):
335
+ temp = synapse.iloc[i]
336
+ target_idx = tree.query_ball_point([temp['sphere_x'], temp['sphere_y'], temp['layer_z']], temp['sphere_r'])
337
+ target_trans = transcripts.iloc[target_idx]
338
+ target_gene = list(target_trans['target'])
339
+ for j in np.unique(target_gene):
340
+ X[genes.index(j), i] = target_gene.count(j)
341
+ if (print_itr) & (i % 5000 == 0):
342
+ print('{} out of {} synapses profiled!'.format(i, synapse.shape[0]))
343
+
344
+ # construct spatial transcriptome profile
345
+ adata = anndata.AnnData(X = np.transpose(X), obs = synapse)
346
+ adata.obs['synapse_id'] = ['syn_{}'.format(i) for i in range(synapse.shape[0])]
347
+ adata.obs.rename(columns = {'sphere_x': 'global_x', 'sphere_y': 'global_y', 'sphere_z': 'global_z'}, inplace = True)
348
+ adata.var['genes'] = genes
349
+ adata.var_names = genes
350
+ adata.var_keys = genes
351
+ return adata
@@ -0,0 +1,13 @@
1
+ Metadata-Version: 2.1
2
+ Name: mcDETECT
3
+ Version: 1.0.0
4
+ Summary: mcDETECT: Decoding 3D Spatial Synaptic Transcriptomes with Subcellular-Resolution Spatial Transcriptomics
5
+ Home-page: https://github.com/chen-yang-yuan/mcDETECT
6
+ Author: Chenyang Yuan
7
+ Author-email: chenyang.yuan@emory.edu
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ Requires-Python: >=3.6
12
+ Description-Content-Type: text/markdown
13
+ License-File: LICENSE
@@ -0,0 +1,11 @@
1
+ LICENSE
2
+ README.md
3
+ pyproject.toml
4
+ setup.py
5
+ mcDETECT/__init__.py
6
+ mcDETECT/model.py
7
+ mcDETECT.egg-info/PKG-INFO
8
+ mcDETECT.egg-info/SOURCES.txt
9
+ mcDETECT.egg-info/dependency_links.txt
10
+ mcDETECT.egg-info/requires.txt
11
+ mcDETECT.egg-info/top_level.txt
@@ -0,0 +1,9 @@
1
+ anndata
2
+ miniball
3
+ numpy
4
+ pandas
5
+ rtree
6
+ scanpy
7
+ scipy
8
+ shapely
9
+ sklearn
@@ -0,0 +1 @@
1
+ mcDETECT
@@ -0,0 +1,3 @@
1
+ [build-system]
2
+ requires = ["setuptools", "wheel"]
3
+ build-backend = "setuptools.build_meta"
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
@@ -0,0 +1,20 @@
1
+ from setuptools import setup, find_packages
2
+
3
+ setup(
4
+ name = "mcDETECT",
5
+ version = "1.0.0",
6
+ packages = find_packages(),
7
+ install_requires = ["anndata", "miniball", "numpy", "pandas", "rtree", "scanpy", "scipy", "shapely", "sklearn"],
8
+ author = "Chenyang Yuan",
9
+ author_email = "chenyang.yuan@emory.edu",
10
+ description = "mcDETECT: Decoding 3D Spatial Synaptic Transcriptomes with Subcellular-Resolution Spatial Transcriptomics",
11
+ long_description = open("README.md").read(),
12
+ long_description_content_type = "text/markdown",
13
+ url = "https://github.com/chen-yang-yuan/mcDETECT",
14
+ classifiers = [
15
+ "Programming Language :: Python :: 3",
16
+ "License :: OSI Approved :: MIT License",
17
+ "Operating System :: OS Independent",
18
+ ],
19
+ python_requires = ">=3.6",
20
+ )