mbxai 1.4.0__tar.gz → 1.5.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. {mbxai-1.4.0 → mbxai-1.5.0}/PKG-INFO +1 -1
  2. {mbxai-1.4.0 → mbxai-1.5.0}/pyproject.toml +2 -2
  3. {mbxai-1.4.0 → mbxai-1.5.0}/setup.py +1 -1
  4. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/__init__.py +1 -1
  5. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/mcp/server.py +4 -7
  6. mbxai-1.5.0/src/mbxai/tools/types.py +220 -0
  7. mbxai-1.5.0/test_schema_conversion.py +204 -0
  8. mbxai-1.4.0/src/mbxai/tools/types.py +0 -147
  9. {mbxai-1.4.0 → mbxai-1.5.0}/.gitignore +0 -0
  10. {mbxai-1.4.0 → mbxai-1.5.0}/LICENSE +0 -0
  11. {mbxai-1.4.0 → mbxai-1.5.0}/README.md +0 -0
  12. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/core.py +0 -0
  13. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/examples/mcp/mcp_client_example.py +0 -0
  14. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/examples/mcp/mcp_server_example.py +0 -0
  15. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/examples/openrouter_example.py +0 -0
  16. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/examples/parse_example.py +0 -0
  17. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/examples/parse_tool_example.py +0 -0
  18. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/examples/request.json +0 -0
  19. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/examples/response.json +0 -0
  20. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/examples/send_request.py +0 -0
  21. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/examples/tool_client_example.py +0 -0
  22. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/mcp/__init__.py +0 -0
  23. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/mcp/client.py +0 -0
  24. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/mcp/example.py +0 -0
  25. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/openrouter/__init__.py +0 -0
  26. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/openrouter/client.py +0 -0
  27. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/openrouter/config.py +0 -0
  28. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/openrouter/models.py +0 -0
  29. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/openrouter/schema.py +0 -0
  30. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/tools/__init__.py +0 -0
  31. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/tools/client.py +0 -0
  32. {mbxai-1.4.0 → mbxai-1.5.0}/src/mbxai/tools/example.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mbxai
3
- Version: 1.4.0
3
+ Version: 1.5.0
4
4
  Summary: MBX AI SDK
5
5
  Project-URL: Homepage, https://www.mibexx.de
6
6
  Project-URL: Documentation, https://www.mibexx.de
@@ -4,7 +4,7 @@ build-backend = "hatchling.build"
4
4
 
5
5
  [project]
6
6
  name = "mbxai"
7
- version = "1.4.0"
7
+ version = "1.5.0"
8
8
  authors = [
9
9
  { name = "MBX AI" }
10
10
  ]
@@ -82,6 +82,6 @@ strict_equality = true
82
82
 
83
83
  [dependency-groups]
84
84
  dev = [
85
- "build>=1.4.0.post1",
85
+ "build>=1.5.0.post1",
86
86
  "twine>=6.1.0",
87
87
  ]
@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
2
2
 
3
3
  setup(
4
4
  name="mbxai",
5
- version="1.4.0",
5
+ version="1.5.0",
6
6
  author="MBX AI",
7
7
  description="MBX AI SDK",
8
8
  long_description=open("README.md").read(),
@@ -2,4 +2,4 @@
2
2
  MBX AI package.
3
3
  """
4
4
 
5
- __version__ = "1.4.0"
5
+ __version__ = "1.5.0"
@@ -31,7 +31,7 @@ class MCPServer:
31
31
  self.app = FastAPI(
32
32
  title=self.name,
33
33
  description=self.description,
34
- version="1.4.0",
34
+ version="1.5.0",
35
35
  )
36
36
 
37
37
  # Initialize MCP server
@@ -74,13 +74,10 @@ class MCPServer:
74
74
  tools = await self.mcp_server.list_tools()
75
75
  tool_metadata = tools[-1]
76
76
 
77
- # Convert FastMCP schema to our schema format
77
+ # Use the raw inputSchema from FastMCP - it will be processed later by convert_to_strict_schema
78
+ # when the tool is converted to OpenAI function format
78
79
  inputSchema = tool_metadata.inputSchema
79
- if isinstance(inputSchema, dict):
80
- if "$ref" in inputSchema:
81
- ref = inputSchema["$ref"].split("/")[-1]
82
- inputSchema = tool_metadata.inputSchema.get("$defs", {}).get(ref, {})
83
-
80
+
84
81
  # Create and store Tool instance
85
82
  self._tools[tool_metadata.name] = Tool(
86
83
  name=tool_metadata.name,
@@ -0,0 +1,220 @@
1
+ """
2
+ Type definitions for the tools package.
3
+ """
4
+
5
+ from typing import Any, Callable
6
+ from pydantic import BaseModel, Field
7
+ import logging
8
+ import json
9
+
10
+ logger = logging.getLogger(__name__)
11
+
12
+ def _resolve_ref(schema: dict[str, Any], ref: str, root_schema: dict[str, Any]) -> dict[str, Any]:
13
+ """Resolve a $ref to its actual schema definition.
14
+
15
+ Args:
16
+ schema: The current schema object
17
+ ref: The reference string (e.g., "#/$defs/MyType")
18
+ root_schema: The root schema containing $defs
19
+
20
+ Returns:
21
+ The resolved schema definition
22
+ """
23
+ if ref.startswith("#/"):
24
+ # Remove the "#/" prefix and split the path
25
+ path_parts = ref[2:].split("/")
26
+ current = root_schema
27
+
28
+ # Navigate through the path
29
+ for part in path_parts:
30
+ if isinstance(current, dict) and part in current:
31
+ current = current[part]
32
+ else:
33
+ logger.warning(f"Could not resolve $ref: {ref}")
34
+ return {"type": "object", "additionalProperties": False}
35
+
36
+ return current if isinstance(current, dict) else {"type": "object", "additionalProperties": False}
37
+ else:
38
+ logger.warning(f"Unsupported $ref format: {ref}")
39
+ return {"type": "object", "additionalProperties": False}
40
+
41
+ def _convert_property_to_strict(prop: dict[str, Any], root_schema: dict[str, Any]) -> dict[str, Any]:
42
+ """Convert a single property to strict format, recursively handling nested objects and arrays.
43
+
44
+ Args:
45
+ prop: The property definition to convert
46
+ root_schema: The root schema containing $defs
47
+
48
+ Returns:
49
+ A strict format property definition
50
+ """
51
+ # Handle $ref resolution
52
+ if "$ref" in prop:
53
+ resolved = _resolve_ref(prop, prop["$ref"], root_schema)
54
+ return _convert_property_to_strict(resolved, root_schema)
55
+
56
+ # Get the property type, defaulting to string
57
+ prop_type = prop.get("type", "string")
58
+
59
+ # Start with basic property structure
60
+ new_prop = {
61
+ "type": prop_type,
62
+ "description": prop.get("description", f"A {prop_type} parameter")
63
+ }
64
+
65
+ # Handle specific types
66
+ if prop_type == "object":
67
+ # Objects need additionalProperties: false and properties
68
+ new_prop["additionalProperties"] = False
69
+ new_prop["properties"] = {}
70
+ new_prop["required"] = []
71
+
72
+ # Process nested properties
73
+ if "properties" in prop:
74
+ for nested_name, nested_prop in prop["properties"].items():
75
+ new_prop["properties"][nested_name] = _convert_property_to_strict(nested_prop, root_schema)
76
+
77
+ # Copy required fields
78
+ if "required" in prop:
79
+ new_prop["required"] = prop["required"]
80
+
81
+ elif prop_type == "array":
82
+ # Arrays must have items definition
83
+ if "items" in prop:
84
+ new_prop["items"] = _convert_property_to_strict(prop["items"], root_schema)
85
+ else:
86
+ # Default items schema if missing
87
+ new_prop["items"] = {
88
+ "type": "string",
89
+ "description": "Array item"
90
+ }
91
+
92
+ elif prop_type in ["string", "number", "integer", "boolean"]:
93
+ # For primitive types, copy additional constraints
94
+ if "enum" in prop:
95
+ new_prop["enum"] = prop["enum"]
96
+ if "minimum" in prop:
97
+ new_prop["minimum"] = prop["minimum"]
98
+ if "maximum" in prop:
99
+ new_prop["maximum"] = prop["maximum"]
100
+ if "pattern" in prop:
101
+ new_prop["pattern"] = prop["pattern"]
102
+ if "format" in prop:
103
+ new_prop["format"] = prop["format"]
104
+
105
+ return new_prop
106
+
107
+ def convert_to_strict_schema(schema: dict[str, Any], strict: bool = True, keep_input_wrapper: bool = False) -> dict[str, Any]:
108
+ """Convert a schema to strict format required by OpenAI.
109
+
110
+ This function handles:
111
+ - Resolving all $ref and $defs to inline definitions
112
+ - Adding required 'items' property for arrays
113
+ - Ensuring all objects have 'additionalProperties: false'
114
+ - Recursively processing nested schemas
115
+
116
+ Args:
117
+ schema: The input schema to validate and convert
118
+ strict: Whether to enforce strict validation with additionalProperties: false
119
+ keep_input_wrapper: Whether to keep the input wrapper (for MCP tools)
120
+
121
+ Returns:
122
+ A schema in strict format with all references resolved
123
+ """
124
+ if not schema:
125
+ return {"type": "object", "properties": {}, "required": [], "additionalProperties": False}
126
+
127
+ # Create a new schema object to ensure we have all required fields
128
+ strict_schema = {
129
+ "type": "object",
130
+ "properties": {},
131
+ "required": [],
132
+ "additionalProperties": False # Always enforce additionalProperties: false for OpenRouter
133
+ }
134
+
135
+ # Store the root schema for $ref resolution
136
+ root_schema = schema
137
+
138
+ # Handle input wrapper
139
+ if "properties" in schema and "input" in schema["properties"]:
140
+ inputSchema = schema["properties"]["input"]
141
+
142
+ # If input has a $ref, resolve it
143
+ if "$ref" in inputSchema:
144
+ inputSchema = _resolve_ref(inputSchema, inputSchema["$ref"], root_schema)
145
+
146
+ if keep_input_wrapper:
147
+ # Create the input property schema
148
+ input_prop_schema = {
149
+ "type": "object",
150
+ "properties": {},
151
+ "required": [],
152
+ "additionalProperties": False # Always enforce additionalProperties: false for OpenRouter
153
+ }
154
+
155
+ # Process input properties
156
+ if "properties" in inputSchema:
157
+ for prop_name, prop in inputSchema["properties"].items():
158
+ input_prop_schema["properties"][prop_name] = _convert_property_to_strict(prop, root_schema)
159
+
160
+ # Copy over required fields for input schema
161
+ if "required" in inputSchema:
162
+ input_prop_schema["required"] = inputSchema["required"]
163
+
164
+ # Add the input property to the main schema
165
+ strict_schema["properties"]["input"] = input_prop_schema
166
+
167
+ # Copy over required fields for main schema
168
+ if "required" in schema:
169
+ strict_schema["required"] = schema["required"]
170
+ else:
171
+ # If not keeping input wrapper, use input schema directly
172
+ if "properties" in inputSchema:
173
+ for prop_name, prop in inputSchema["properties"].items():
174
+ strict_schema["properties"][prop_name] = _convert_property_to_strict(prop, root_schema)
175
+
176
+ # Copy over required fields
177
+ if "required" in inputSchema:
178
+ strict_schema["required"] = inputSchema["required"]
179
+ else:
180
+ # If no input wrapper, use the schema as is
181
+ if "properties" in schema:
182
+ for prop_name, prop in schema["properties"].items():
183
+ strict_schema["properties"][prop_name] = _convert_property_to_strict(prop, root_schema)
184
+
185
+ # Copy over required fields
186
+ if "required" in schema:
187
+ strict_schema["required"] = schema["required"]
188
+
189
+ return strict_schema
190
+
191
+ class ToolCall(BaseModel):
192
+ """A tool call from the model."""
193
+ id: str
194
+ name: str
195
+ arguments: dict[str, Any]
196
+
197
+ class Tool(BaseModel):
198
+ """A tool that can be used by the model."""
199
+ name: str
200
+ description: str
201
+ function: Callable[..., Any] | None = None # Make function optional
202
+ schema: dict[str, Any]
203
+
204
+ def to_openai_function(self) -> dict[str, Any]:
205
+ """Convert the tool to an OpenAI function definition."""
206
+ # Ensure schema is in strict format
207
+ strict_schema = convert_to_strict_schema(self.schema)
208
+
209
+ function_def = {
210
+ "type": "function",
211
+ "function": {
212
+ "name": self.name,
213
+ "description": self.description,
214
+ "parameters": strict_schema,
215
+ "strict": True
216
+ }
217
+ }
218
+
219
+ logger.debug(f"(types) Created function definition for {self.name}: {json.dumps(function_def, indent=2)}")
220
+ return function_def
@@ -0,0 +1,204 @@
1
+ """
2
+ Test for schema conversion with Pydantic models containing arrays.
3
+
4
+ This test demonstrates the fix for the "array schema missing items" error
5
+ when converting Pydantic models to OpenAI function schemas.
6
+ """
7
+
8
+ import json
9
+ from typing import Any
10
+ from pydantic import BaseModel, Field
11
+
12
+ from src.mbxai.tools.types import convert_to_strict_schema
13
+
14
+
15
+ class MetadataFilter(BaseModel):
16
+ """Model for a single metadata filter key-value pair.
17
+
18
+ Each filter represents one condition to apply to the search.
19
+ Common filter keys include:
20
+ - category: Content category (e.g., 'api', 'plugins', 'themes')
21
+ - version: Shopware version (e.g., '6.5', '6.6')
22
+ - title: Document title (partial match)
23
+ - optimized: Whether content was AI-optimized (true/false)
24
+ - source_url: Source URL (partial match)
25
+ - optimization_strategy: Strategy used ('enhance_readability', etc.)
26
+ - ai_generated_metadata: Whether metadata was AI-generated (true/false)
27
+ """
28
+
29
+ key: str = Field(description="The metadata field name to filter by")
30
+ value: Any = Field(description="The value to filter for")
31
+
32
+
33
+ class ShopwareKnowledgeSearchInput(BaseModel):
34
+ """Input model for Shopware knowledge search."""
35
+
36
+ query: str = Field(
37
+ description="The search query to find relevant Shopware knowledge and documentation"
38
+ )
39
+ max_results: int = Field(
40
+ description="Maximum number of search results to return (1-20)",
41
+ ge=1,
42
+ le=20
43
+ )
44
+ include_metadata: bool = Field(
45
+ description="Whether to include metadata in the search results"
46
+ )
47
+ metadata_filter: list[MetadataFilter] = Field(
48
+ description="List of metadata filters to apply to the search. Use empty list [] for no filtering, or specify key-value pairs like [{'key': 'category', 'value': 'api'}, {'key': 'version', 'value': '6.5'}]"
49
+ )
50
+
51
+
52
+ def test_schema_conversion():
53
+ """Test that Pydantic models are properly converted to OpenAI-compatible schemas."""
54
+
55
+ print("🧪 Testing Schema Conversion for Shopware Knowledge Search")
56
+ print("=" * 60)
57
+
58
+ # Generate the JSON schema from the Pydantic model
59
+ print("\n1. Generating Pydantic JSON Schema...")
60
+ pydantic_schema = ShopwareKnowledgeSearchInput.model_json_schema()
61
+
62
+ print("Original Pydantic Schema:")
63
+ print(json.dumps(pydantic_schema, indent=2))
64
+
65
+ # Test 1: Convert without input wrapper
66
+ print("\n2. Converting to OpenAI strict schema (no input wrapper)...")
67
+ strict_schema_no_wrapper = convert_to_strict_schema(
68
+ pydantic_schema,
69
+ strict=True,
70
+ keep_input_wrapper=False
71
+ )
72
+
73
+ print("Strict Schema (no wrapper):")
74
+ print(json.dumps(strict_schema_no_wrapper, indent=2))
75
+
76
+ # Test 2: Convert with input wrapper (MCP style)
77
+ print("\n3. Converting to OpenAI strict schema (with input wrapper)...")
78
+
79
+ # Create MCP-style schema with input wrapper
80
+ mcp_style_schema = {
81
+ "type": "object",
82
+ "properties": {
83
+ "input": pydantic_schema
84
+ },
85
+ "required": ["input"],
86
+ "additionalProperties": False
87
+ }
88
+
89
+ strict_schema_with_wrapper = convert_to_strict_schema(
90
+ mcp_style_schema,
91
+ strict=True,
92
+ keep_input_wrapper=True
93
+ )
94
+
95
+ print("Strict Schema (with input wrapper):")
96
+ print(json.dumps(strict_schema_with_wrapper, indent=2))
97
+
98
+ # Test 3: Create OpenAI function definition
99
+ print("\n4. Creating OpenAI Function Definition...")
100
+
101
+ function_def = {
102
+ "type": "function",
103
+ "function": {
104
+ "name": "search_shopware_knowledge",
105
+ "description": "Search Shopware knowledge base for relevant documentation and information",
106
+ "parameters": strict_schema_no_wrapper,
107
+ "strict": True
108
+ }
109
+ }
110
+
111
+ print("OpenAI Function Definition:")
112
+ print(json.dumps(function_def, indent=2))
113
+
114
+ # Validation checks
115
+ print("\n5. Validation Checks...")
116
+ print("✅ Checking that all arrays have 'items' property...")
117
+
118
+ def check_arrays_have_items(schema, path=""):
119
+ """Recursively check that all arrays have items property."""
120
+ issues = []
121
+
122
+ if isinstance(schema, dict):
123
+ if schema.get("type") == "array":
124
+ if "items" not in schema:
125
+ issues.append(f"Array at {path} missing 'items' property")
126
+ else:
127
+ print(f" ✓ Array at {path} has items: {schema['items'].get('type', 'unknown')}")
128
+ # Recursively check items
129
+ issues.extend(check_arrays_have_items(schema["items"], f"{path}.items"))
130
+
131
+ # Check properties
132
+ if "properties" in schema:
133
+ for prop_name, prop_schema in schema["properties"].items():
134
+ prop_path = f"{path}.{prop_name}" if path else prop_name
135
+ issues.extend(check_arrays_have_items(prop_schema, prop_path))
136
+
137
+ return issues
138
+
139
+ issues = check_arrays_have_items(strict_schema_no_wrapper)
140
+ if issues:
141
+ for issue in issues:
142
+ print(f" ❌ {issue}")
143
+ raise AssertionError(f"Schema validation failed: {issues}")
144
+ else:
145
+ print(" ✓ All arrays have proper 'items' definitions")
146
+
147
+ print("\n✅ Checking that no $ref or $defs exist...")
148
+ schema_str = json.dumps(strict_schema_no_wrapper)
149
+ if "$ref" in schema_str or "$defs" in schema_str:
150
+ raise AssertionError("Schema still contains $ref or $defs")
151
+ else:
152
+ print(" ✓ No $ref or $defs found - schema is fully inlined")
153
+
154
+ print("\n✅ Checking that all objects have additionalProperties: false...")
155
+ def check_additional_properties(schema, path=""):
156
+ """Recursively check that all objects have additionalProperties: false."""
157
+ issues = []
158
+
159
+ if isinstance(schema, dict):
160
+ if schema.get("type") == "object":
161
+ if schema.get("additionalProperties") is not False:
162
+ issues.append(f"Object at {path} missing 'additionalProperties: false'")
163
+ else:
164
+ print(f" ✓ Object at {path} has additionalProperties: false")
165
+
166
+ # Check nested schemas
167
+ for key, value in schema.items():
168
+ if key in ["properties", "items"] and isinstance(value, dict):
169
+ if key == "properties":
170
+ for prop_name, prop_schema in value.items():
171
+ prop_path = f"{path}.{prop_name}" if path else prop_name
172
+ issues.extend(check_additional_properties(prop_schema, prop_path))
173
+ else: # items
174
+ issues.extend(check_additional_properties(value, f"{path}.items"))
175
+
176
+ return issues
177
+
178
+ issues = check_additional_properties(strict_schema_no_wrapper)
179
+ if issues:
180
+ for issue in issues:
181
+ print(f" ❌ {issue}")
182
+ raise AssertionError(f"additionalProperties validation failed: {issues}")
183
+ else:
184
+ print(" ✓ All objects have additionalProperties: false")
185
+
186
+ print("\n🎉 All tests passed! Schema is OpenAI/OpenRouter compatible!")
187
+ print("\nKey improvements:")
188
+ print("- ✅ Arrays have proper 'items' definitions")
189
+ print("- ✅ No $ref or $defs (fully inlined)")
190
+ print("- ✅ All objects have additionalProperties: false")
191
+ print("- ✅ Constraints preserved (ge=1, le=20 for max_results)")
192
+ print("- ✅ Complex nested structures handled correctly")
193
+
194
+ return function_def
195
+
196
+
197
+ if __name__ == "__main__":
198
+ try:
199
+ function_def = test_schema_conversion()
200
+ print(f"\n✅ Test completed successfully!")
201
+ print(f"Function definition ready for OpenRouter API")
202
+ except Exception as e:
203
+ print(f"\n❌ Test failed: {e}")
204
+ raise
@@ -1,147 +0,0 @@
1
- """
2
- Type definitions for the tools package.
3
- """
4
-
5
- from typing import Any, Callable
6
- from pydantic import BaseModel, Field
7
- import logging
8
- import json
9
-
10
- logger = logging.getLogger(__name__)
11
-
12
- def convert_to_strict_schema(schema: dict[str, Any], strict: bool = True, keep_input_wrapper: bool = False) -> dict[str, Any]:
13
- """Convert a schema to strict format required by OpenAI.
14
-
15
- Args:
16
- schema: The input schema to validate and convert
17
- strict: Whether to enforce strict validation with additionalProperties: false
18
- keep_input_wrapper: Whether to keep the input wrapper (for MCP tools)
19
-
20
- Returns:
21
- A schema in strict format
22
- """
23
- if not schema:
24
- return {"type": "object", "properties": {}, "required": [], "additionalProperties": False}
25
-
26
- # Create a new schema object to ensure we have all required fields
27
- strict_schema = {
28
- "type": "object",
29
- "properties": {},
30
- "required": [],
31
- "additionalProperties": False # Always enforce additionalProperties: false for OpenRouter
32
- }
33
-
34
- # Handle input wrapper
35
- if "properties" in schema and "input" in schema["properties"]:
36
- inputSchema = schema["properties"]["input"]
37
-
38
- # If input has a $ref, resolve it
39
- if "$ref" in inputSchema:
40
- ref = inputSchema["$ref"].split("/")[-1]
41
- inputSchema = schema.get("$defs", {}).get(ref, {})
42
-
43
- if keep_input_wrapper:
44
- # Create the input property schema
45
- input_prop_schema = {
46
- "type": "object",
47
- "properties": {},
48
- "required": [],
49
- "additionalProperties": False # Always enforce additionalProperties: false for OpenRouter
50
- }
51
-
52
- # Copy over input properties
53
- if "properties" in inputSchema:
54
- for prop_name, prop in inputSchema["properties"].items():
55
- # Create a new property object with only allowed fields
56
- new_prop = {
57
- "type": prop.get("type", "string"),
58
- "description": prop.get("description", f"The {prop_name} parameter")
59
- }
60
-
61
- # If the property is an object, ensure it has additionalProperties: false
62
- if new_prop["type"] == "object":
63
- new_prop["additionalProperties"] = False
64
-
65
- input_prop_schema["properties"][prop_name] = new_prop
66
-
67
- # Copy over required fields for input schema
68
- if "required" in inputSchema:
69
- input_prop_schema["required"] = inputSchema["required"]
70
-
71
- # Add the input property to the main schema
72
- strict_schema["properties"]["input"] = input_prop_schema
73
-
74
- # Copy over required fields for main schema
75
- if "required" in schema:
76
- strict_schema["required"] = schema["required"]
77
- else:
78
- # If not keeping input wrapper, use input schema directly
79
- if "properties" in inputSchema:
80
- for prop_name, prop in inputSchema["properties"].items():
81
- # Create a new property object with only allowed fields
82
- new_prop = {
83
- "type": prop.get("type", "string"),
84
- "description": prop.get("description", f"The {prop_name} parameter")
85
- }
86
-
87
- # If the property is an object, ensure it has additionalProperties: false
88
- if new_prop["type"] == "object":
89
- new_prop["additionalProperties"] = False
90
-
91
- strict_schema["properties"][prop_name] = new_prop
92
-
93
- # Copy over required fields
94
- if "required" in inputSchema:
95
- strict_schema["required"] = inputSchema["required"]
96
- else:
97
- # If no input wrapper, use the schema as is
98
- if "properties" in schema:
99
- for prop_name, prop in schema["properties"].items():
100
- # Create a new property object with only allowed fields
101
- new_prop = {
102
- "type": prop.get("type", "string"),
103
- "description": prop.get("description", f"The {prop_name} parameter")
104
- }
105
-
106
- # If the property is an object, ensure it has additionalProperties: false
107
- if new_prop["type"] == "object":
108
- new_prop["additionalProperties"] = False
109
-
110
- strict_schema["properties"][prop_name] = new_prop
111
-
112
- # Copy over required fields
113
- if "required" in schema:
114
- strict_schema["required"] = schema["required"]
115
-
116
- return strict_schema
117
-
118
- class ToolCall(BaseModel):
119
- """A tool call from the model."""
120
- id: str
121
- name: str
122
- arguments: dict[str, Any]
123
-
124
- class Tool(BaseModel):
125
- """A tool that can be used by the model."""
126
- name: str
127
- description: str
128
- function: Callable[..., Any] | None = None # Make function optional
129
- schema: dict[str, Any]
130
-
131
- def to_openai_function(self) -> dict[str, Any]:
132
- """Convert the tool to an OpenAI function definition."""
133
- # Ensure schema is in strict format
134
- strict_schema = convert_to_strict_schema(self.schema)
135
-
136
- function_def = {
137
- "type": "function",
138
- "function": {
139
- "name": self.name,
140
- "description": self.description,
141
- "parameters": strict_schema,
142
- "strict": True
143
- }
144
- }
145
-
146
- logger.debug(f"(types) Created function definition for {self.name}: {json.dumps(function_def, indent=2)}")
147
- return function_def
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes