mb-rag 1.1.38__tar.gz → 1.1.39__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mb-rag might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mb_rag
3
- Version: 1.1.38
3
+ Version: 1.1.39
4
4
  Summary: RAG function file
5
5
  Author: ['Malav Bateriwala']
6
6
  Requires-Python: >=3.8
@@ -454,7 +454,8 @@ class embedding_generator:
454
454
 
455
455
  def load_retriever(self, embeddings_folder_path: str,
456
456
  search_type: List[str] = ["similarity_score_threshold"],
457
- search_params: List[Dict] = [{"k": 3, "score_threshold": 0.9}]):
457
+ search_params: List[Dict] = [{"k": 3, "score_threshold": 0.9}],
458
+ collection_name: str = 'test'):
458
459
  """
459
460
  Load retriever with search configuration.
460
461
 
@@ -462,6 +463,7 @@ class embedding_generator:
462
463
  embeddings_folder_path (str): Path to embeddings folder
463
464
  search_type (List[str]): List of search types
464
465
  search_params (List[Dict]): List of search parameters
466
+ collection_name (str): Name of the collection. Default: 'test'
465
467
 
466
468
  Returns:
467
469
  Union[Any, List[Any]]: Single retriever or list of retrievers
@@ -475,7 +477,7 @@ class embedding_generator:
475
477
  )
476
478
  ```
477
479
  """
478
- db = self.load_embeddings(embeddings_folder_path)
480
+ db = self.load_embeddings(embeddings_folder_path, collection_name)
479
481
  if db is not None:
480
482
  if self.vector_store_type == 'chroma':
481
483
  if len(search_type) != len(search_params):
@@ -511,7 +513,7 @@ class embedding_generator:
511
513
  chunk_overlap (int): Overlap between chunks
512
514
  """
513
515
  if self.vector_store_type == 'chroma':
514
- db = self.load_embeddings(embeddings_folder_path)
516
+ db = self.load_embeddings(embeddings_folder_path, collection_name)
515
517
  if db is not None:
516
518
  docs = self.tokenize(data, text_splitter_type, chunk_size, chunk_overlap)
517
519
  db.add_documents(docs)
@@ -1,5 +1,5 @@
1
1
  MAJOR_VERSION = 1
2
2
  MINOR_VERSION = 1
3
- PATCH_VERSION = 38
3
+ PATCH_VERSION = 39
4
4
  version = '{}.{}.{}'.format(MAJOR_VERSION, MINOR_VERSION, PATCH_VERSION)
5
5
  __all__ = ['MAJOR_VERSION', 'MINOR_VERSION', 'PATCH_VERSION', 'version']
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mb_rag
3
- Version: 1.1.38
3
+ Version: 1.1.39
4
4
  Summary: RAG function file
5
5
  Author: ['Malav Bateriwala']
6
6
  Requires-Python: >=3.8
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes