mb-rag 1.1.1__tar.gz → 1.1.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mb-rag might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mb_rag
3
- Version: 1.1.1
3
+ Version: 1.1.3
4
4
  Summary: RAG function file
5
5
  Author: ['Malav Bateriwala']
6
6
  Requires-Python: >=3.8
@@ -37,12 +37,12 @@ pip install mb_rag
37
37
  from mb_rag.chatbot.basic import ModelFactory, ConversationModel
38
38
 
39
39
  # 1. Simple Query with ModelFactory
40
- model = ModelFactory(model_type="openai", model_name="gpt-4")
40
+ model = ModelFactory(model_type="openai", model_name="gpt-4o")
41
41
  response = model.invoke_query("What is artificial intelligence?")
42
42
  print(response)
43
43
 
44
44
  # 2. Image Analysis
45
- model = ModelFactory(model_type="openai", model_name="gpt-4-vision-preview")
45
+ model = ModelFactory(model_type="openai", model_name="gpt-4o")
46
46
  response = model.invoke_query(
47
47
  "What's in these images?",
48
48
  images=["image1.jpg", "image2.jpg"]
@@ -51,7 +51,7 @@ print(response)
51
51
 
52
52
  # 3. Conversation with Context
53
53
  conversation = ConversationModel(
54
- model_name="gpt-4",
54
+ model_name="gpt-4o",
55
55
  model_type="openai"
56
56
  )
57
57
 
@@ -147,7 +147,7 @@ em_gen.add_data(
147
147
 
148
148
  # Web scraping and embedding
149
149
  db = em_gen.firecrawl_web(
150
- website="https://example.com",
150
+ website="https://github.com",
151
151
  mode="scrape",
152
152
  file_to_save='./web_embeddings'
153
153
  )
@@ -54,7 +54,7 @@ class ModelFactory:
54
54
  """
55
55
  Factory method to create any type of model
56
56
  Args:
57
- model_type (str): Type of model to create
57
+ model_type (str): Type of model to create. Default is OpenAI. Options are openai, anthropic, google, ollama
58
58
  model_name (str): Name of the model
59
59
  **kwargs: Additional arguments
60
60
  Returns:
@@ -120,8 +120,8 @@ class ModelFactory:
120
120
  Returns:
121
121
  ChatGoogleGenerativeAI: Chatbot model
122
122
  """
123
- if not check_package("google.generativeai"):
124
- raise ImportError("Google Generative AI package not found. Please install it using: pip install google-generativeai langchain-google-genai")
123
+ if not check_package("langchain_google_genai"):
124
+ raise ImportError("langchain_google_genai package not found. Please install it using: pip install google-generativeai langchain-google-genai")
125
125
 
126
126
  from langchain_google_genai import ChatGoogleGenerativeAI
127
127
  kwargs["model"] = model_name
@@ -1,5 +1,5 @@
1
1
  MAJOR_VERSION = 1
2
2
  MINOR_VERSION = 1
3
- PATCH_VERSION = 1
3
+ PATCH_VERSION = 3
4
4
  version = '{}.{}.{}'.format(MAJOR_VERSION, MINOR_VERSION, PATCH_VERSION)
5
5
  __all__ = ['MAJOR_VERSION', 'MINOR_VERSION', 'PATCH_VERSION', 'version']
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mb_rag
3
- Version: 1.1.1
3
+ Version: 1.1.3
4
4
  Summary: RAG function file
5
5
  Author: ['Malav Bateriwala']
6
6
  Requires-Python: >=3.8
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes