mb-rag 1.0.117__tar.gz → 1.0.124__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mb-rag might be problematic. Click here for more details.
- {mb_rag-1.0.117 → mb_rag-1.0.124}/PKG-INFO +1 -1
- mb_rag-1.0.124/mb_rag/chatbot/basic.py +395 -0
- mb_rag-1.0.124/mb_rag/chatbot/chains.py +206 -0
- mb_rag-1.0.124/mb_rag/utils/bounding_box.py +223 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag/utils/extra.py +1 -1
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag/version.py +1 -1
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag.egg-info/PKG-INFO +1 -1
- mb_rag-1.0.117/mb_rag/chatbot/basic.py +0 -361
- mb_rag-1.0.117/mb_rag/chatbot/chains.py +0 -245
- mb_rag-1.0.117/mb_rag/utils/bounding_box.py +0 -96
- {mb_rag-1.0.117 → mb_rag-1.0.124}/README.md +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag/__init__.py +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag/chatbot/__init__.py +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag/chatbot/prompts.py +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag/rag/__init__.py +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag/rag/embeddings.py +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag/utils/__init__.py +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag.egg-info/SOURCES.txt +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag.egg-info/dependency_links.txt +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag.egg-info/requires.txt +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/mb_rag.egg-info/top_level.txt +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/pyproject.toml +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/setup.cfg +0 -0
- {mb_rag-1.0.117 → mb_rag-1.0.124}/setup.py +0 -0
|
@@ -0,0 +1,395 @@
|
|
|
1
|
+
import os
|
|
2
|
+
from dotenv import load_dotenv
|
|
3
|
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
|
4
|
+
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
|
|
5
|
+
from IPython.display import display, HTML
|
|
6
|
+
from typing import Optional, List, Dict, Any, Union
|
|
7
|
+
from mb_rag.utils.extra import check_package
|
|
8
|
+
import base64
|
|
9
|
+
|
|
10
|
+
__all__ = [
|
|
11
|
+
'ChatbotBase',
|
|
12
|
+
'ModelFactory',
|
|
13
|
+
'ConversationModel',
|
|
14
|
+
'IPythonStreamHandler'
|
|
15
|
+
]
|
|
16
|
+
|
|
17
|
+
class ChatbotBase:
|
|
18
|
+
"""Base class for chatbot functionality"""
|
|
19
|
+
|
|
20
|
+
@staticmethod
|
|
21
|
+
def load_env(file_path: str) -> None:
|
|
22
|
+
"""
|
|
23
|
+
Load environment variables from a file
|
|
24
|
+
Args:
|
|
25
|
+
file_path (str): Path to the environment file
|
|
26
|
+
"""
|
|
27
|
+
load_dotenv(file_path)
|
|
28
|
+
|
|
29
|
+
@staticmethod
|
|
30
|
+
def add_os_key(name: str, key: str) -> None:
|
|
31
|
+
"""
|
|
32
|
+
Add an API key to the environment
|
|
33
|
+
Args:
|
|
34
|
+
name (str): Name of the API key
|
|
35
|
+
key (str): API key
|
|
36
|
+
"""
|
|
37
|
+
os.environ[name] = key
|
|
38
|
+
|
|
39
|
+
@staticmethod
|
|
40
|
+
def get_client():
|
|
41
|
+
"""
|
|
42
|
+
Returns a boto3 client for S3
|
|
43
|
+
"""
|
|
44
|
+
if not check_package("boto3"):
|
|
45
|
+
raise ImportError("Boto3 package not found. Please install it using: pip install boto3")
|
|
46
|
+
|
|
47
|
+
import boto3
|
|
48
|
+
return boto3.client('s3')
|
|
49
|
+
|
|
50
|
+
class ModelFactory:
|
|
51
|
+
"""Factory class for creating different types of chatbot models"""
|
|
52
|
+
|
|
53
|
+
def __init__(self, model_type: str = 'openai', model_name: str = "gpt-4o", **kwargs) -> Any:
|
|
54
|
+
"""
|
|
55
|
+
Factory method to create any type of model
|
|
56
|
+
Args:
|
|
57
|
+
model_type (str): Type of model to create
|
|
58
|
+
model_name (str): Name of the model
|
|
59
|
+
**kwargs: Additional arguments
|
|
60
|
+
Returns:
|
|
61
|
+
Any: Chatbot model
|
|
62
|
+
"""
|
|
63
|
+
creators = {
|
|
64
|
+
'openai': self.create_openai,
|
|
65
|
+
'anthropic': self.create_anthropic,
|
|
66
|
+
'google': self.create_google,
|
|
67
|
+
'ollama': self.create_ollama
|
|
68
|
+
}
|
|
69
|
+
|
|
70
|
+
model_data = creators.get(model_type)
|
|
71
|
+
if not model_data:
|
|
72
|
+
raise ValueError(f"Unsupported model type: {model_type}")
|
|
73
|
+
|
|
74
|
+
try:
|
|
75
|
+
self.model = model_data(model_name, **kwargs)
|
|
76
|
+
except Exception as e:
|
|
77
|
+
raise ValueError(f"Error creating {model_type} model: {str(e)}")
|
|
78
|
+
|
|
79
|
+
@classmethod
|
|
80
|
+
def create_openai(cls, model_name: str = "gpt-4o", **kwargs) -> Any:
|
|
81
|
+
"""
|
|
82
|
+
Create OpenAI chatbot model
|
|
83
|
+
Args:
|
|
84
|
+
model_name (str): Name of the model
|
|
85
|
+
**kwargs: Additional arguments
|
|
86
|
+
Returns:
|
|
87
|
+
ChatOpenAI: Chatbot model
|
|
88
|
+
"""
|
|
89
|
+
if not check_package("openai"):
|
|
90
|
+
raise ImportError("OpenAI package not found. Please install it using: pip install openai langchain-openai")
|
|
91
|
+
|
|
92
|
+
from langchain_openai import ChatOpenAI
|
|
93
|
+
kwargs["model_name"] = model_name
|
|
94
|
+
return ChatOpenAI(**kwargs)
|
|
95
|
+
|
|
96
|
+
@classmethod
|
|
97
|
+
def create_anthropic(cls, model_name: str = "claude-3-opus-20240229", **kwargs) -> Any:
|
|
98
|
+
"""
|
|
99
|
+
Create Anthropic chatbot model
|
|
100
|
+
Args:
|
|
101
|
+
model_name (str): Name of the model
|
|
102
|
+
**kwargs: Additional arguments
|
|
103
|
+
Returns:
|
|
104
|
+
ChatAnthropic: Chatbot model
|
|
105
|
+
"""
|
|
106
|
+
if not check_package("anthropic"):
|
|
107
|
+
raise ImportError("Anthropic package not found. Please install it using: pip install anthropic langchain-anthropic")
|
|
108
|
+
|
|
109
|
+
from langchain_anthropic import ChatAnthropic
|
|
110
|
+
kwargs["model_name"] = model_name
|
|
111
|
+
return ChatAnthropic(**kwargs)
|
|
112
|
+
|
|
113
|
+
@classmethod
|
|
114
|
+
def create_google(cls, model_name: str = "gemini-1.5-flash", **kwargs) -> Any:
|
|
115
|
+
"""
|
|
116
|
+
Create Google chatbot model
|
|
117
|
+
Args:
|
|
118
|
+
model_name (str): Name of the model
|
|
119
|
+
**kwargs: Additional arguments
|
|
120
|
+
Returns:
|
|
121
|
+
ChatGoogleGenerativeAI: Chatbot model
|
|
122
|
+
"""
|
|
123
|
+
if not check_package("google.generativeai"):
|
|
124
|
+
raise ImportError("Google Generative AI package not found. Please install it using: pip install google-generativeai langchain-google-genai")
|
|
125
|
+
|
|
126
|
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
127
|
+
kwargs["model"] = model_name
|
|
128
|
+
return ChatGoogleGenerativeAI(**kwargs)
|
|
129
|
+
|
|
130
|
+
@classmethod
|
|
131
|
+
def create_ollama(cls, model_name: str = "llama3", **kwargs) -> Any:
|
|
132
|
+
"""
|
|
133
|
+
Create Ollama chatbot model
|
|
134
|
+
Args:
|
|
135
|
+
model_name (str): Name of the model
|
|
136
|
+
**kwargs: Additional arguments
|
|
137
|
+
Returns:
|
|
138
|
+
Ollama: Chatbot model
|
|
139
|
+
"""
|
|
140
|
+
if not check_package("langchain_community"):
|
|
141
|
+
raise ImportError("Langchain Community package not found. Please install it using: pip install langchain-community")
|
|
142
|
+
|
|
143
|
+
from langchain_community.llms import Ollama
|
|
144
|
+
kwargs["model"] = model_name
|
|
145
|
+
return Ollama(**kwargs)
|
|
146
|
+
|
|
147
|
+
def invoke_query(self,query: str,get_content_only: bool = True,images: list = None,pydantic_model = None) -> str:
|
|
148
|
+
"""
|
|
149
|
+
Invoke the model
|
|
150
|
+
Args:
|
|
151
|
+
query (str): Query to send to the model
|
|
152
|
+
get_content_only (bool): Whether to return only content
|
|
153
|
+
images (list): List of images to send to the model
|
|
154
|
+
pydantic_model: Pydantic model for structured output
|
|
155
|
+
Returns:
|
|
156
|
+
str: Response from the model
|
|
157
|
+
"""
|
|
158
|
+
|
|
159
|
+
if pydantic_model is not None:
|
|
160
|
+
try:
|
|
161
|
+
self.model = self.model.with_structured_output(pydantic_model)
|
|
162
|
+
except Exception as e:
|
|
163
|
+
raise ValueError(f"Error with pydantic_model: {e}")
|
|
164
|
+
if images:
|
|
165
|
+
res = self._model_invoke_images(images=images,prompt=query,pydantic_model=pydantic_model)
|
|
166
|
+
else:
|
|
167
|
+
res = self.model.invoke(query)
|
|
168
|
+
if get_content_only:
|
|
169
|
+
try:
|
|
170
|
+
return res.content
|
|
171
|
+
except Exception:
|
|
172
|
+
return res
|
|
173
|
+
return res
|
|
174
|
+
|
|
175
|
+
def _image_to_base64(self,image):
|
|
176
|
+
with open(image, "rb") as f:
|
|
177
|
+
return base64.b64encode(f.read()).decode('utf-8')
|
|
178
|
+
|
|
179
|
+
def _model_invoke_images(self,images: list, prompt: str,pydantic_model = None):
|
|
180
|
+
"""
|
|
181
|
+
Function to invoke the model with images
|
|
182
|
+
Args:
|
|
183
|
+
model (ChatOpenAI): Chatbot model
|
|
184
|
+
images (list): List of images
|
|
185
|
+
prompt (str): Prompt
|
|
186
|
+
pydantic_model (PydanticModel): Pydantic model
|
|
187
|
+
Returns:
|
|
188
|
+
str: Output from the model
|
|
189
|
+
"""
|
|
190
|
+
base64_images = [self._image_to_base64(image) for image in images]
|
|
191
|
+
image_prompt_create = [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_images[i]}"}} for i in range(len(images))]
|
|
192
|
+
prompt_new = [{"type": "text", "text": prompt},
|
|
193
|
+
*image_prompt_create,]
|
|
194
|
+
if pydantic_model is not None:
|
|
195
|
+
try:
|
|
196
|
+
self.model = self.model.with_structured_output(pydantic_model)
|
|
197
|
+
except Exception as e:
|
|
198
|
+
print(f"Error with pydantic_model: {e}")
|
|
199
|
+
print("Continuing without structured output")
|
|
200
|
+
message= HumanMessage(content=prompt_new,)
|
|
201
|
+
response = self.model.invoke([message])
|
|
202
|
+
return response.content
|
|
203
|
+
|
|
204
|
+
|
|
205
|
+
class ConversationModel:
|
|
206
|
+
"""
|
|
207
|
+
A class to handle conversation with AI models
|
|
208
|
+
|
|
209
|
+
Attributes:
|
|
210
|
+
chatbot: The AI model for conversation
|
|
211
|
+
message_list (List): List of conversation messages
|
|
212
|
+
file_path (str): Path to save/load conversations. Can be local or S3
|
|
213
|
+
"""
|
|
214
|
+
|
|
215
|
+
def __init__(self,
|
|
216
|
+
model_name: str = "gpt-4o",
|
|
217
|
+
model_type: str = 'openai',
|
|
218
|
+
**kwargs) -> None:
|
|
219
|
+
"""Initialize conversation model"""
|
|
220
|
+
self.chatbot = ModelFactory(model_type, model_name, **kwargs)
|
|
221
|
+
|
|
222
|
+
def initialize_conversation(self,
|
|
223
|
+
question: Optional[str],
|
|
224
|
+
context: Optional[str] = None,
|
|
225
|
+
file_path: Optional[str]=None) -> None:
|
|
226
|
+
"""Initialize conversation state"""
|
|
227
|
+
if file_path:
|
|
228
|
+
self.file_path = file_path
|
|
229
|
+
self.load_conversation(file_path)
|
|
230
|
+
|
|
231
|
+
else:
|
|
232
|
+
if not question:
|
|
233
|
+
raise ValueError("Question is required.")
|
|
234
|
+
|
|
235
|
+
if context:
|
|
236
|
+
self.context = context
|
|
237
|
+
else:
|
|
238
|
+
self.context = "Answer question to the point and don't hallucinate."
|
|
239
|
+
self.message_list = [
|
|
240
|
+
SystemMessage(content=context),
|
|
241
|
+
HumanMessage(content=question)
|
|
242
|
+
]
|
|
243
|
+
|
|
244
|
+
res = self._ask_question(self.message_list)
|
|
245
|
+
print(res)
|
|
246
|
+
self.message_list.append(AIMessage(content=res))
|
|
247
|
+
|
|
248
|
+
def _ask_question(self,messages: List[Union[SystemMessage, HumanMessage, AIMessage]],
|
|
249
|
+
get_content_only: bool = True) -> str:
|
|
250
|
+
"""
|
|
251
|
+
Ask a question and get response
|
|
252
|
+
Args:
|
|
253
|
+
messages: List of messages
|
|
254
|
+
get_content_only: Whether to return only content
|
|
255
|
+
Returns:
|
|
256
|
+
str: Response from the model
|
|
257
|
+
"""
|
|
258
|
+
res = self.chatbot.invoke_query(messages)
|
|
259
|
+
if get_content_only:
|
|
260
|
+
try:
|
|
261
|
+
return res.content
|
|
262
|
+
except Exception:
|
|
263
|
+
return res
|
|
264
|
+
return res
|
|
265
|
+
|
|
266
|
+
def add_message(self, message: str) -> str:
|
|
267
|
+
"""
|
|
268
|
+
Add a message to the conversation
|
|
269
|
+
Args:
|
|
270
|
+
message (str): Message to add
|
|
271
|
+
Returns:
|
|
272
|
+
str: Response from the chatbot
|
|
273
|
+
"""
|
|
274
|
+
self.message_list.append(HumanMessage(content=message))
|
|
275
|
+
res = self._ask_question(self.message_list)
|
|
276
|
+
self.message_list.append(AIMessage(content=res))
|
|
277
|
+
return res
|
|
278
|
+
|
|
279
|
+
@property
|
|
280
|
+
def all_messages(self) -> List[Union[SystemMessage, HumanMessage, AIMessage]]:
|
|
281
|
+
"""Get all messages"""
|
|
282
|
+
return self.message_list
|
|
283
|
+
|
|
284
|
+
@property
|
|
285
|
+
def last_message(self) -> str:
|
|
286
|
+
"""Get the last message"""
|
|
287
|
+
return self.message_list[-1].content
|
|
288
|
+
|
|
289
|
+
@property
|
|
290
|
+
def all_messages_content(self) -> List[str]:
|
|
291
|
+
"""Get content of all messages"""
|
|
292
|
+
return [message.content for message in self.message_list]
|
|
293
|
+
|
|
294
|
+
def _is_s3_path(self, path: str) -> bool:
|
|
295
|
+
"""
|
|
296
|
+
Check if path is an S3 path
|
|
297
|
+
Args:
|
|
298
|
+
path (str): Path to check
|
|
299
|
+
Returns:
|
|
300
|
+
bool: True if S3 path
|
|
301
|
+
"""
|
|
302
|
+
return path.startswith("s3://")
|
|
303
|
+
|
|
304
|
+
def save_conversation(self, file_path: Optional[str] = None, **kwargs) -> bool:
|
|
305
|
+
"""
|
|
306
|
+
Save the conversation
|
|
307
|
+
Args:
|
|
308
|
+
file_path: Path to save the conversation
|
|
309
|
+
**kwargs: Additional arguments for S3
|
|
310
|
+
Returns:
|
|
311
|
+
bool: Success status
|
|
312
|
+
"""
|
|
313
|
+
if self._is_s3_path(file_path or self.file_path):
|
|
314
|
+
print("Saving conversation to S3.")
|
|
315
|
+
self.save_file_path = file_path
|
|
316
|
+
return self._save_to_s3(self.file_path,**kwargs)
|
|
317
|
+
return self._save_to_file(file_path or self.file_path)
|
|
318
|
+
|
|
319
|
+
def _save_to_s3(self,**kwargs) -> bool:
|
|
320
|
+
"""Save conversation to S3"""
|
|
321
|
+
try:
|
|
322
|
+
client = kwargs.get('client', self.client)
|
|
323
|
+
bucket = kwargs.get('bucket', self.bucket)
|
|
324
|
+
client.put_object(
|
|
325
|
+
Body=str(self.message_list),
|
|
326
|
+
Bucket=bucket,
|
|
327
|
+
Key=self.save_file_path
|
|
328
|
+
)
|
|
329
|
+
print(f"Conversation saved to s3_path: {self.s3_path}")
|
|
330
|
+
return True
|
|
331
|
+
except Exception as e:
|
|
332
|
+
raise ValueError(f"Error saving conversation to s3: {e}")
|
|
333
|
+
|
|
334
|
+
def _save_to_file(self, file_path: str) -> bool:
|
|
335
|
+
"""Save conversation to file"""
|
|
336
|
+
try:
|
|
337
|
+
with open(file_path, 'w') as f:
|
|
338
|
+
for message in self.message_list:
|
|
339
|
+
f.write(f"{message.content}\n")
|
|
340
|
+
print(f"Conversation saved to file: {file_path}")
|
|
341
|
+
return True
|
|
342
|
+
except Exception as e:
|
|
343
|
+
raise ValueError(f"Error saving conversation to file: {e}")
|
|
344
|
+
|
|
345
|
+
def load_conversation(self, file_path: Optional[str] = None, **kwargs) -> List[Any]:
|
|
346
|
+
"""
|
|
347
|
+
Load a conversation
|
|
348
|
+
Args:
|
|
349
|
+
file_path: Path to load from
|
|
350
|
+
**kwargs: Additional arguments for S3
|
|
351
|
+
Returns:
|
|
352
|
+
List: Loaded messages
|
|
353
|
+
"""
|
|
354
|
+
self.message_list = []
|
|
355
|
+
if self._is_s3_path(file_path or self.file_path):
|
|
356
|
+
print("Loading conversation from S3.")
|
|
357
|
+
self.file_path = file_path
|
|
358
|
+
return self._load_from_s3(**kwargs)
|
|
359
|
+
return self._load_from_file(file_path or self.file_path)
|
|
360
|
+
|
|
361
|
+
def _load_from_s3(self, **kwargs) -> List[Any]:
|
|
362
|
+
"""Load conversation from S3"""
|
|
363
|
+
try:
|
|
364
|
+
client = kwargs.get('client', self.client)
|
|
365
|
+
bucket = kwargs.get('bucket', self.bucket)
|
|
366
|
+
res = client.get_response(client, bucket, self.s3_path)
|
|
367
|
+
res_str = eval(res['Body'].read().decode('utf-8'))
|
|
368
|
+
self.message_list = [SystemMessage(content=res_str)]
|
|
369
|
+
print(f"Conversation loaded from s3_path: {self.file_path}")
|
|
370
|
+
return self.message_list
|
|
371
|
+
except Exception as e:
|
|
372
|
+
raise ValueError(f"Error loading conversation from s3: {e}")
|
|
373
|
+
|
|
374
|
+
def _load_from_file(self, file_path: str) -> List[Any]:
|
|
375
|
+
"""Load conversation from file"""
|
|
376
|
+
try:
|
|
377
|
+
with open(file_path, 'r') as f:
|
|
378
|
+
lines = f.readlines()
|
|
379
|
+
for line in lines:
|
|
380
|
+
self.message_list.append(SystemMessage(content=line))
|
|
381
|
+
print(f"Conversation loaded from file: {file_path}")
|
|
382
|
+
return self.message_list
|
|
383
|
+
except Exception as e:
|
|
384
|
+
raise ValueError(f"Error loading conversation from file: {e}")
|
|
385
|
+
|
|
386
|
+
class IPythonStreamHandler(StreamingStdOutCallbackHandler):
|
|
387
|
+
"""Handler for IPython display"""
|
|
388
|
+
|
|
389
|
+
def __init__(self):
|
|
390
|
+
self.output = ""
|
|
391
|
+
|
|
392
|
+
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
|
393
|
+
"""Handle new token"""
|
|
394
|
+
self.output += token
|
|
395
|
+
display(HTML(self.output), clear=True)
|
|
@@ -0,0 +1,206 @@
|
|
|
1
|
+
## file for chaining functions in chatbot
|
|
2
|
+
|
|
3
|
+
from typing import Optional, List, Dict, Any, Union
|
|
4
|
+
from dataclasses import dataclass
|
|
5
|
+
from langchain.schema.output_parser import StrOutputParser
|
|
6
|
+
from mb_rag.chatbot.prompts import invoke_prompt
|
|
7
|
+
from langchain.schema.runnable import RunnableLambda, RunnableSequence
|
|
8
|
+
from mb_rag.utils.extra import check_package
|
|
9
|
+
|
|
10
|
+
__all__ = ['Chain', 'ChainConfig']
|
|
11
|
+
|
|
12
|
+
def check_langchain_dependencies() -> None:
|
|
13
|
+
"""
|
|
14
|
+
Check if required LangChain packages are installed
|
|
15
|
+
Raises:
|
|
16
|
+
ImportError: If any required package is missing
|
|
17
|
+
"""
|
|
18
|
+
if not check_package("langchain"):
|
|
19
|
+
raise ImportError("LangChain package not found. Please install it using: pip install langchain")
|
|
20
|
+
if not check_package("langchain_core"):
|
|
21
|
+
raise ImportError("LangChain Core package not found. Please install it using: pip install langchain-core")
|
|
22
|
+
|
|
23
|
+
# Check dependencies before importing
|
|
24
|
+
check_langchain_dependencies()
|
|
25
|
+
|
|
26
|
+
@dataclass
|
|
27
|
+
class ChainConfig:
|
|
28
|
+
"""Configuration for chain operations"""
|
|
29
|
+
prompt: Optional[str] = None
|
|
30
|
+
prompt_template: Optional[str] = None
|
|
31
|
+
input_dict: Optional[Dict[str, Any]] = None
|
|
32
|
+
|
|
33
|
+
class Chain:
|
|
34
|
+
"""
|
|
35
|
+
Class to chain functions in chatbot with improved OOP design
|
|
36
|
+
"""
|
|
37
|
+
def __init__(self, model: Any, config: Optional[ChainConfig] = None, **kwargs):
|
|
38
|
+
"""
|
|
39
|
+
Initialize chain
|
|
40
|
+
Args:
|
|
41
|
+
model: The language model to use
|
|
42
|
+
config: Chain configuration
|
|
43
|
+
**kwargs: Additional arguments
|
|
44
|
+
"""
|
|
45
|
+
self.model = model
|
|
46
|
+
self._output_parser = StrOutputParser()
|
|
47
|
+
self._initialize_config(config, **kwargs)
|
|
48
|
+
|
|
49
|
+
@classmethod
|
|
50
|
+
def from_template(cls, model: Any, template: str, input_dict: Dict[str, Any], **kwargs) -> 'Chain':
|
|
51
|
+
"""
|
|
52
|
+
Create chain from template
|
|
53
|
+
Args:
|
|
54
|
+
model: The language model
|
|
55
|
+
template: Prompt template
|
|
56
|
+
input_dict: Input dictionary for template
|
|
57
|
+
**kwargs: Additional arguments
|
|
58
|
+
Returns:
|
|
59
|
+
Chain: New chain instance
|
|
60
|
+
"""
|
|
61
|
+
config = ChainConfig(
|
|
62
|
+
prompt_template=template,
|
|
63
|
+
input_dict=input_dict
|
|
64
|
+
)
|
|
65
|
+
return cls(model, config, **kwargs)
|
|
66
|
+
|
|
67
|
+
@classmethod
|
|
68
|
+
def from_prompt(cls, model: Any, prompt: str, **kwargs) -> 'Chain':
|
|
69
|
+
"""
|
|
70
|
+
Create chain from direct prompt
|
|
71
|
+
Args:
|
|
72
|
+
model: The language model
|
|
73
|
+
prompt: Direct prompt
|
|
74
|
+
**kwargs: Additional arguments
|
|
75
|
+
Returns:
|
|
76
|
+
Chain: New chain instance
|
|
77
|
+
"""
|
|
78
|
+
config = ChainConfig(prompt=prompt)
|
|
79
|
+
return cls(model, config, **kwargs)
|
|
80
|
+
|
|
81
|
+
def _initialize_config(self, config: Optional[ChainConfig], **kwargs) -> None:
|
|
82
|
+
"""Initialize chain configuration"""
|
|
83
|
+
if config:
|
|
84
|
+
self.input_dict = config.input_dict
|
|
85
|
+
if config.prompt_template:
|
|
86
|
+
self.prompt = invoke_prompt(config.prompt_template, self.input_dict)
|
|
87
|
+
else:
|
|
88
|
+
self.prompt = config.prompt
|
|
89
|
+
else:
|
|
90
|
+
self.input_dict = kwargs.get('input_dict')
|
|
91
|
+
if prompt_template := kwargs.get('prompt_template'):
|
|
92
|
+
self.prompt = invoke_prompt(prompt_template, self.input_dict)
|
|
93
|
+
else:
|
|
94
|
+
self.prompt = kwargs.get('prompt')
|
|
95
|
+
|
|
96
|
+
@property
|
|
97
|
+
def output_parser(self) -> StrOutputParser:
|
|
98
|
+
"""Get the output parser"""
|
|
99
|
+
return self._output_parser
|
|
100
|
+
|
|
101
|
+
@staticmethod
|
|
102
|
+
def _validate_chain_components(prompt: Any, middle_chain: Optional[List] = None) -> None:
|
|
103
|
+
"""
|
|
104
|
+
Validate chain components
|
|
105
|
+
Args:
|
|
106
|
+
prompt: The prompt to validate
|
|
107
|
+
middle_chain: Optional middle chain to validate
|
|
108
|
+
Raises:
|
|
109
|
+
ValueError: If validation fails
|
|
110
|
+
"""
|
|
111
|
+
if prompt is None:
|
|
112
|
+
raise ValueError("Prompt is not provided")
|
|
113
|
+
if middle_chain is not None and not isinstance(middle_chain, list):
|
|
114
|
+
raise ValueError("middle_chain should be a list")
|
|
115
|
+
|
|
116
|
+
def invoke(self) -> Any:
|
|
117
|
+
"""
|
|
118
|
+
Invoke the chain
|
|
119
|
+
Returns:
|
|
120
|
+
Any: Output from the chain
|
|
121
|
+
Raises:
|
|
122
|
+
Exception: If prompt is not provided
|
|
123
|
+
"""
|
|
124
|
+
self._validate_chain_components(self.prompt)
|
|
125
|
+
chain_output = self.prompt | self.model | self.output_parser
|
|
126
|
+
return chain_output
|
|
127
|
+
|
|
128
|
+
def chain_sequence_invoke(self,
|
|
129
|
+
middle_chain: Optional[List] = None,
|
|
130
|
+
final_chain: Optional[RunnableLambda] = None) -> Any:
|
|
131
|
+
"""
|
|
132
|
+
Chain invoke the sequence
|
|
133
|
+
Args:
|
|
134
|
+
middle_chain: List of functions/Prompts/RunnableLambda to chain
|
|
135
|
+
final_chain: Final chain to run
|
|
136
|
+
Returns:
|
|
137
|
+
Any: Output from the chain
|
|
138
|
+
"""
|
|
139
|
+
self._validate_chain_components(self.prompt, middle_chain)
|
|
140
|
+
|
|
141
|
+
final = final_chain if final_chain is not None else self.output_parser
|
|
142
|
+
|
|
143
|
+
if middle_chain:
|
|
144
|
+
func_chain = RunnableSequence(self.prompt, middle_chain, final)
|
|
145
|
+
return func_chain.invoke()
|
|
146
|
+
return None
|
|
147
|
+
|
|
148
|
+
def chain_parallel_invoke(self, parallel_chain: List) -> Any:
|
|
149
|
+
"""
|
|
150
|
+
Chain invoke in parallel
|
|
151
|
+
Args:
|
|
152
|
+
parallel_chain: List of chains to run in parallel
|
|
153
|
+
Returns:
|
|
154
|
+
Any: Output from the parallel chains
|
|
155
|
+
Raises:
|
|
156
|
+
ImportError: If LangChain is not installed
|
|
157
|
+
"""
|
|
158
|
+
if not check_package("langchain"):
|
|
159
|
+
raise ImportError("LangChain package not found. Please install it using: pip install langchain")
|
|
160
|
+
return parallel_chain.invoke()
|
|
161
|
+
|
|
162
|
+
def chain_branch_invoke(self, branch_chain: Dict) -> Any:
|
|
163
|
+
"""
|
|
164
|
+
Chain invoke with branching
|
|
165
|
+
Args:
|
|
166
|
+
branch_chain: Dictionary of branch chains
|
|
167
|
+
Returns:
|
|
168
|
+
Any: Output from the branch chain
|
|
169
|
+
Raises:
|
|
170
|
+
ImportError: If LangChain is not installed
|
|
171
|
+
"""
|
|
172
|
+
if not check_package("langchain"):
|
|
173
|
+
raise ImportError("LangChain package not found. Please install it using: pip install langchain")
|
|
174
|
+
return branch_chain.invoke()
|
|
175
|
+
|
|
176
|
+
@staticmethod
|
|
177
|
+
def create_parallel_chain(prompt_template: str, model: Any, branches: Dict[str, Any]) -> Any:
|
|
178
|
+
"""
|
|
179
|
+
Create a parallel chain
|
|
180
|
+
Args:
|
|
181
|
+
prompt_template: Template for the prompt
|
|
182
|
+
model: The language model
|
|
183
|
+
branches: Dictionary of branch configurations
|
|
184
|
+
Returns:
|
|
185
|
+
Any: Configured parallel chain
|
|
186
|
+
"""
|
|
187
|
+
from langchain.schema.runnable import RunnableParallel
|
|
188
|
+
return (
|
|
189
|
+
prompt_template
|
|
190
|
+
| model
|
|
191
|
+
| StrOutputParser()
|
|
192
|
+
| RunnableParallel(branches=branches)
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
@staticmethod
|
|
196
|
+
def create_branch_chain(conditions: List[tuple], default_chain: Any) -> Any:
|
|
197
|
+
"""
|
|
198
|
+
Create a branch chain
|
|
199
|
+
Args:
|
|
200
|
+
conditions: List of condition-chain tuples
|
|
201
|
+
default_chain: Default chain to use
|
|
202
|
+
Returns:
|
|
203
|
+
Any: Configured branch chain
|
|
204
|
+
"""
|
|
205
|
+
from langchain.schema.runnable import RunnableBranch
|
|
206
|
+
return RunnableBranch(*conditions, default_chain)
|