mathai 0.7.8__tar.gz → 0.8.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mathai-0.7.8 → mathai-0.8.0}/PKG-INFO +1 -1
- {mathai-0.7.8 → mathai-0.8.0}/mathai/expand.py +2 -20
- mathai-0.8.0/mathai/fraction.py +87 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai/integrate.py +10 -4
- {mathai-0.7.8 → mathai-0.8.0}/mathai/linear.py +12 -21
- {mathai-0.7.8 → mathai-0.8.0}/mathai/logic.py +5 -8
- {mathai-0.7.8 → mathai-0.8.0}/mathai/matrix.py +12 -52
- {mathai-0.7.8 → mathai-0.8.0}/mathai/ode.py +164 -104
- {mathai-0.7.8 → mathai-0.8.0}/mathai/parser.py +2 -8
- {mathai-0.7.8 → mathai-0.8.0}/mathai/pde.py +5 -10
- {mathai-0.7.8 → mathai-0.8.0}/mathai/simplify.py +26 -175
- {mathai-0.7.8 → mathai-0.8.0}/mathai/structure.py +3 -3
- {mathai-0.7.8 → mathai-0.8.0}/mathai/tool.py +19 -28
- {mathai-0.7.8 → mathai-0.8.0}/mathai/trig.py +44 -33
- {mathai-0.7.8 → mathai-0.8.0}/mathai/univariate_inequality.py +1 -2
- {mathai-0.7.8 → mathai-0.8.0}/mathai.egg-info/PKG-INFO +1 -1
- {mathai-0.7.8 → mathai-0.8.0}/mathai.egg-info/SOURCES.txt +0 -2
- {mathai-0.7.8 → mathai-0.8.0}/setup.py +1 -1
- mathai-0.7.8/mathai/console.py +0 -84
- mathai-0.7.8/mathai/fraction.py +0 -103
- mathai-0.7.8/mathai/parsetab.py +0 -61
- {mathai-0.7.8 → mathai-0.8.0}/README.md +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai/__init__.py +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai/apart.py +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai/base.py +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai/bivariate_inequality.py +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai/diff.py +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai/factor.py +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai/inverse.py +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai/limit.py +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai/printeq.py +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai/statistics.py +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai.egg-info/dependency_links.txt +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai.egg-info/requires.txt +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/mathai.egg-info/top_level.txt +0 -0
- {mathai-0.7.8 → mathai-0.8.0}/setup.cfg +0 -0
|
@@ -3,21 +3,12 @@ from .simplify import simplify
|
|
|
3
3
|
import itertools
|
|
4
4
|
|
|
5
5
|
def expand_nc(expr, label="f_mul"):
|
|
6
|
-
|
|
7
|
-
Expand expression where:
|
|
8
|
-
- f_add is commutative
|
|
9
|
-
- label (@) is NON-commutative
|
|
10
|
-
"""
|
|
11
|
-
# --- base cases ---
|
|
6
|
+
|
|
12
7
|
if expr.name not in {"f_add", label, "f_pow"}:
|
|
13
8
|
return expr
|
|
14
9
|
|
|
15
|
-
# --- expand children first ---
|
|
16
10
|
expr.children = [expand_nc(c, label) for c in expr.children]
|
|
17
11
|
|
|
18
|
-
# ==========================================================
|
|
19
|
-
# POWER: (A + B)^n only if n is positive integer
|
|
20
|
-
# ==========================================================
|
|
21
12
|
if expr.name == "f_pow":
|
|
22
13
|
base, exp = expr.children
|
|
23
14
|
n = frac(exp)
|
|
@@ -26,9 +17,6 @@ def expand_nc(expr, label="f_mul"):
|
|
|
26
17
|
return expand_nc(TreeNode(label, factors), label)
|
|
27
18
|
return expr
|
|
28
19
|
|
|
29
|
-
# ==========================================================
|
|
30
|
-
# ADDITION (commutative)
|
|
31
|
-
# ==========================================================
|
|
32
20
|
if expr.name == "f_add":
|
|
33
21
|
out = []
|
|
34
22
|
for c in expr.children:
|
|
@@ -38,20 +26,15 @@ def expand_nc(expr, label="f_mul"):
|
|
|
38
26
|
out.append(c)
|
|
39
27
|
return TreeNode("f_add", out)
|
|
40
28
|
|
|
41
|
-
# ==========================================================
|
|
42
|
-
# NON-COMMUTATIVE MULTIPLICATION (@)
|
|
43
|
-
# ==========================================================
|
|
44
29
|
if expr.name == label:
|
|
45
30
|
factors = []
|
|
46
31
|
|
|
47
|
-
# flatten only (NO reordering)
|
|
48
32
|
for c in expr.children:
|
|
49
33
|
if c.name == label:
|
|
50
34
|
factors.extend(c.children)
|
|
51
35
|
else:
|
|
52
36
|
factors.append(c)
|
|
53
37
|
|
|
54
|
-
# find first additive factor
|
|
55
38
|
for i, f in enumerate(factors):
|
|
56
39
|
if f.name == "f_add":
|
|
57
40
|
left = factors[:i]
|
|
@@ -66,13 +49,12 @@ def expand_nc(expr, label="f_mul"):
|
|
|
66
49
|
|
|
67
50
|
return TreeNode("f_add", terms)
|
|
68
51
|
|
|
69
|
-
# no addition inside → return as-is
|
|
70
52
|
return TreeNode(label, factors)
|
|
71
53
|
|
|
72
|
-
|
|
73
54
|
def expand2(eq, over="*"):
|
|
74
55
|
over = {"@": "f_wmul", ".":"f_dot", "*":"f_mul"}[over]
|
|
75
56
|
return expand_nc(eq, over)
|
|
76
57
|
def expand(eq, over="*"):
|
|
77
58
|
eq = expand2(eq, over)
|
|
78
59
|
return TreeNode(eq.name, [expand(child, over) for child in eq.children])
|
|
60
|
+
|
|
@@ -0,0 +1,87 @@
|
|
|
1
|
+
from .base import *
|
|
2
|
+
from .simplify import simplify
|
|
3
|
+
from .expand import expand
|
|
4
|
+
|
|
5
|
+
def fraction(expr):
|
|
6
|
+
if expr is None:
|
|
7
|
+
return None
|
|
8
|
+
|
|
9
|
+
expr = simplify(expr)
|
|
10
|
+
|
|
11
|
+
if expr.children == []:
|
|
12
|
+
return expr
|
|
13
|
+
|
|
14
|
+
children = [fraction(c) for c in expr.children]
|
|
15
|
+
|
|
16
|
+
if expr.name == "f_add":
|
|
17
|
+
terms = []
|
|
18
|
+
|
|
19
|
+
for c in children:
|
|
20
|
+
|
|
21
|
+
if c.name == "f_mul":
|
|
22
|
+
num = []
|
|
23
|
+
den = []
|
|
24
|
+
for f in c.children:
|
|
25
|
+
if (
|
|
26
|
+
f.name == "f_pow"
|
|
27
|
+
and f.children[1].name.startswith("d_")
|
|
28
|
+
and int(f.children[1].name[2:]) < 0
|
|
29
|
+
):
|
|
30
|
+
n = int(f.children[1].name[2:])
|
|
31
|
+
den.append(
|
|
32
|
+
f.children[0]
|
|
33
|
+
if n == -1
|
|
34
|
+
else TreeNode("f_pow", [f.children[0], tree_form(f"d_{-n}")])
|
|
35
|
+
)
|
|
36
|
+
else:
|
|
37
|
+
num.append(f)
|
|
38
|
+
terms.append((num, den))
|
|
39
|
+
|
|
40
|
+
elif (
|
|
41
|
+
c.name == "f_pow"
|
|
42
|
+
and c.children[1].name.startswith("d_")
|
|
43
|
+
and int(c.children[1].name[2:]) < 0
|
|
44
|
+
):
|
|
45
|
+
n = int(c.children[1].name[2:])
|
|
46
|
+
terms.append(([], [
|
|
47
|
+
c.children[0]
|
|
48
|
+
if n == -1
|
|
49
|
+
else TreeNode("f_pow", [c.children[0], tree_form(f"d_{-n}")])
|
|
50
|
+
]))
|
|
51
|
+
|
|
52
|
+
else:
|
|
53
|
+
terms.append(([c], []))
|
|
54
|
+
|
|
55
|
+
if not any(den for _, den in terms):
|
|
56
|
+
return TreeNode("f_add", children)
|
|
57
|
+
|
|
58
|
+
num_terms = []
|
|
59
|
+
for i, (num_i, _) in enumerate(terms):
|
|
60
|
+
acc = list(num_i)
|
|
61
|
+
for j, (_, den_j) in enumerate(terms):
|
|
62
|
+
if i != j:
|
|
63
|
+
acc += den_j
|
|
64
|
+
if not acc:
|
|
65
|
+
acc = [tree_form("d_1")]
|
|
66
|
+
num_terms.append(
|
|
67
|
+
acc[0] if len(acc) == 1 else TreeNode("f_mul", acc)
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
numerator = TreeNode("f_add", num_terms)
|
|
71
|
+
|
|
72
|
+
den_all = []
|
|
73
|
+
for _, den in terms:
|
|
74
|
+
den_all += den
|
|
75
|
+
|
|
76
|
+
denom = den_all[0] if len(den_all) == 1 else TreeNode("f_mul", den_all)
|
|
77
|
+
denom = TreeNode("f_pow", [denom, tree_form("d_-1")])
|
|
78
|
+
|
|
79
|
+
return simplify(
|
|
80
|
+
TreeNode(
|
|
81
|
+
"f_mul",
|
|
82
|
+
[simplify(expand(numerator)), denom],
|
|
83
|
+
)
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
return TreeNode(expr.name, children)
|
|
87
|
+
|
|
@@ -97,6 +97,8 @@ def place_try2(eq):
|
|
|
97
97
|
return eq.children[try_lst.pop(0)]
|
|
98
98
|
return TreeNode(eq.name, [place_try2(child) for child in eq.children])
|
|
99
99
|
def _solve_integrate(eq):
|
|
100
|
+
if eq is None:
|
|
101
|
+
return None
|
|
100
102
|
if eq.name == "f_ref":
|
|
101
103
|
return eq
|
|
102
104
|
if eq.name == "f_subs":
|
|
@@ -153,6 +155,8 @@ def inteq(eq):
|
|
|
153
155
|
else:
|
|
154
156
|
return TreeNode(eq.name, [inteq(child) for child in eq.children])
|
|
155
157
|
def rm(eq):
|
|
158
|
+
if eq is None:
|
|
159
|
+
return None
|
|
156
160
|
if eq.name == "f_try":
|
|
157
161
|
eq = TreeNode(eq.name, list(set(eq.children)))
|
|
158
162
|
return TreeNode(eq.name, [rm(child) for child in eq.children if child is not None])
|
|
@@ -161,6 +165,8 @@ def solve_integrate(eq):
|
|
|
161
165
|
eq2 = dowhile(eq, _solve_integrate)
|
|
162
166
|
#eq2 = dowhile(eq2, handle_try)
|
|
163
167
|
eq2 = rm(eq2)
|
|
168
|
+
if eq2 is None:
|
|
169
|
+
return None
|
|
164
170
|
if eq2.name == "f_try":
|
|
165
171
|
eq2.children = list(set(eq2.children))
|
|
166
172
|
return eq2
|
|
@@ -409,8 +415,8 @@ def integration_formula_ex():
|
|
|
409
415
|
|
|
410
416
|
formula_gen11 = integration_formula_ex()
|
|
411
417
|
def rm_const(equation):
|
|
412
|
-
if equation
|
|
413
|
-
return
|
|
418
|
+
if equation is None:
|
|
419
|
+
return None
|
|
414
420
|
eq2 = equation
|
|
415
421
|
if eq2.name == "f_integrate" and contain(eq2.children[0], eq2.children[1]):
|
|
416
422
|
equation = eq2.children[0]
|
|
@@ -436,8 +442,8 @@ def shorten(eq):
|
|
|
436
442
|
return tree_form("d_0")
|
|
437
443
|
return TreeNode(eq.name, [shorten(child) for child in eq.children])
|
|
438
444
|
def integrate_formula(equation):
|
|
439
|
-
if equation
|
|
440
|
-
return
|
|
445
|
+
if equation is None:
|
|
446
|
+
return None
|
|
441
447
|
eq2 = equation.copy_tree()
|
|
442
448
|
if eq2.name == "f_integrate":
|
|
443
449
|
integrand = eq2.children[0]
|
|
@@ -39,11 +39,10 @@ def islinear(eq, fxconst):
|
|
|
39
39
|
return False
|
|
40
40
|
def linear(eqlist, fxconst):
|
|
41
41
|
orig = [item.copy_tree() for item in eqlist]
|
|
42
|
-
|
|
43
|
-
|
|
42
|
+
|
|
44
43
|
if eqlist == [] or not all(islinear(eq, fxconst) for eq in eqlist):
|
|
45
44
|
return None
|
|
46
|
-
|
|
45
|
+
|
|
47
46
|
vl = []
|
|
48
47
|
def varlist(eq, fxconst):
|
|
49
48
|
nonlocal vl
|
|
@@ -54,7 +53,7 @@ def linear(eqlist, fxconst):
|
|
|
54
53
|
for eq in eqlist:
|
|
55
54
|
varlist(eq, fxconst)
|
|
56
55
|
vl = list(set(vl))
|
|
57
|
-
|
|
56
|
+
|
|
58
57
|
if len(vl) > len(eqlist):
|
|
59
58
|
return TreeNode("f_and", [TreeNode("f_eq", [x, tree_form("d_0")]) for x in eqlist])
|
|
60
59
|
m = []
|
|
@@ -71,11 +70,11 @@ def linear(eqlist, fxconst):
|
|
|
71
70
|
m[i][j] = simplify(expand(m[i][j]))
|
|
72
71
|
|
|
73
72
|
m = rref(m)
|
|
74
|
-
|
|
73
|
+
|
|
75
74
|
for i in range(len(m)):
|
|
76
75
|
for j in range(len(m[i])):
|
|
77
76
|
m[i][j] = fraction(m[i][j])
|
|
78
|
-
|
|
77
|
+
|
|
79
78
|
output = []
|
|
80
79
|
for index, row in enumerate(m):
|
|
81
80
|
if not all(item == 0 for item in row[:-1]):
|
|
@@ -88,26 +87,17 @@ def linear(eqlist, fxconst):
|
|
|
88
87
|
return tree_form("s_false")
|
|
89
88
|
return TreeNode("f_and", [TreeNode("f_eq", [x, tree_form("d_0")]) for x in output])
|
|
90
89
|
def order_collinear_indices(points, idx):
|
|
91
|
-
"""
|
|
92
|
-
Arrange a subset of collinear points (given by indices) along their line.
|
|
93
90
|
|
|
94
|
-
points: list of (x, y) tuples
|
|
95
|
-
idx: list of indices referring to points
|
|
96
|
-
Returns: list of indices sorted along the line
|
|
97
|
-
"""
|
|
98
91
|
if len(idx) <= 1:
|
|
99
92
|
return idx[:]
|
|
100
|
-
|
|
101
|
-
# Take first two points from the subset to define the line
|
|
93
|
+
|
|
102
94
|
p0, p1 = points[idx[0]], points[idx[1]]
|
|
103
95
|
dx, dy = p1[0] - p0[0], p1[1] - p0[1]
|
|
104
|
-
|
|
105
|
-
# Projection factor for sorting
|
|
96
|
+
|
|
106
97
|
def projection_factor(i):
|
|
107
98
|
vx, vy = points[i][0] - p0[0], points[i][1] - p0[1]
|
|
108
99
|
return compute((vx * dx + vy * dy) / (dx**2 + dy**2))
|
|
109
|
-
|
|
110
|
-
# Sort indices by projection
|
|
100
|
+
|
|
111
101
|
sorted_idx = sorted(idx, key=projection_factor)
|
|
112
102
|
return list(sorted_idx)
|
|
113
103
|
def linear_or(eq):
|
|
@@ -124,12 +114,12 @@ def linear_or(eq):
|
|
|
124
114
|
for item in itertools.combinations(enumerate(eqlst), 2):
|
|
125
115
|
x, y = item[0][0], item[1][0]
|
|
126
116
|
item = [item[0][1], item[1][1]]
|
|
127
|
-
|
|
117
|
+
|
|
128
118
|
out = linear_solve(TreeNode("f_and", list(item)))
|
|
129
119
|
|
|
130
120
|
if out is None:
|
|
131
121
|
return None
|
|
132
|
-
|
|
122
|
+
|
|
133
123
|
if out.name == "f_and" and all(len(vlist(child)) == 1 for child in out.children) and set(vlist(out)) == set(v) and all(len(vlist(simplify(child))) >0 for child in out.children):
|
|
134
124
|
t = {}
|
|
135
125
|
for child in out.children:
|
|
@@ -151,7 +141,7 @@ def linear_solve(eq, lst=None):
|
|
|
151
141
|
eq = simplify(eq)
|
|
152
142
|
eqlist = []
|
|
153
143
|
if eq.name =="f_and" and all(child.name == "f_eq" and child.children[1] == 0 for child in eq.children):
|
|
154
|
-
|
|
144
|
+
|
|
155
145
|
eqlist = [child.children[0] for child in eq.children]
|
|
156
146
|
else:
|
|
157
147
|
return eq
|
|
@@ -163,3 +153,4 @@ def linear_solve(eq, lst=None):
|
|
|
163
153
|
if out is None:
|
|
164
154
|
return None
|
|
165
155
|
return simplify(out)
|
|
156
|
+
|
|
@@ -108,7 +108,7 @@ def logic2(eq):
|
|
|
108
108
|
if len(lst) == 1:
|
|
109
109
|
return lst[0]
|
|
110
110
|
return TreeNode(eq.name, lst)
|
|
111
|
-
|
|
111
|
+
|
|
112
112
|
if eq.name in ["f_and", "f_or"] and any(child.children is not None and len(child.children)!=0 for child in eq.children):
|
|
113
113
|
for i in range(len(eq.children),1,-1):
|
|
114
114
|
for item in itertools.combinations(enumerate(eq.children), i):
|
|
@@ -159,7 +159,7 @@ def logic1(eq):
|
|
|
159
159
|
A, B = dowhile(A, logic2), dowhile(B, logic2)
|
|
160
160
|
return flatten_tree((A & B) | (A.fx("not") & B.fx("not")))
|
|
161
161
|
if eq.name == "f_imply":
|
|
162
|
-
|
|
162
|
+
|
|
163
163
|
A, B = eq.children
|
|
164
164
|
A, B = logic1(A), logic1(B)
|
|
165
165
|
A, B = dowhile(A, logic2), dowhile(B, logic2)
|
|
@@ -171,32 +171,28 @@ def logic1(eq):
|
|
|
171
171
|
return eq
|
|
172
172
|
eq = helper(eq)
|
|
173
173
|
eq = flatten_tree(eq)
|
|
174
|
-
|
|
174
|
+
|
|
175
175
|
if len(eq.children) > 2:
|
|
176
176
|
lst = []
|
|
177
177
|
l = len(eq.children)
|
|
178
178
|
|
|
179
|
-
# Handle last odd child directly
|
|
180
179
|
if l % 2 == 1:
|
|
181
180
|
last_child = eq.children[-1]
|
|
182
|
-
|
|
181
|
+
|
|
183
182
|
if isinstance(last_child, TreeNode):
|
|
184
183
|
last_child = dowhile(last_child, logic2)
|
|
185
184
|
lst.append(last_child)
|
|
186
185
|
l -= 1
|
|
187
186
|
|
|
188
|
-
# Pairwise combine children
|
|
189
187
|
for i in range(0, l, 2):
|
|
190
188
|
left, right = eq.children[i], eq.children[i+1]
|
|
191
189
|
pair = TreeNode(eq.name, [left, right])
|
|
192
190
|
simplified = dowhile(logic1(pair), logic2)
|
|
193
191
|
lst.append(simplified)
|
|
194
192
|
|
|
195
|
-
# If only one element left, just return it instead of nesting
|
|
196
193
|
if len(lst) == 1:
|
|
197
194
|
return flatten_tree(lst[0])
|
|
198
195
|
|
|
199
|
-
# Otherwise rewrap
|
|
200
196
|
return flatten_tree(TreeNode(eq.name, lst))
|
|
201
197
|
|
|
202
198
|
if eq.name == "f_and":
|
|
@@ -228,3 +224,4 @@ def logic1(eq):
|
|
|
228
224
|
out = out.children[0]
|
|
229
225
|
return flatten_tree(out)
|
|
230
226
|
return TreeNode(eq.name, [logic1(child) for child in eq.children])
|
|
227
|
+
|
|
@@ -3,7 +3,6 @@ import copy
|
|
|
3
3
|
from .simplify import simplify
|
|
4
4
|
import itertools
|
|
5
5
|
|
|
6
|
-
# ---------- tree <-> python list ----------
|
|
7
6
|
def tree_to_py(node):
|
|
8
7
|
if node.name=="f_list":
|
|
9
8
|
return [tree_to_py(c) for c in node.children]
|
|
@@ -14,16 +13,13 @@ def py_to_tree(obj):
|
|
|
14
13
|
return TreeNode("f_list",[py_to_tree(x) for x in obj])
|
|
15
14
|
return obj
|
|
16
15
|
|
|
17
|
-
# ---------- shape detection ----------
|
|
18
16
|
def is_vector(x):
|
|
19
17
|
return isinstance(x,list) and all(isinstance(item,TreeNode) for item in x)
|
|
20
18
|
def is_mat(x):
|
|
21
19
|
return isinstance(x,list) and all(isinstance(item,list) for item in x)
|
|
22
20
|
def is_matrix(x):
|
|
23
21
|
return isinstance(x, list) and all(isinstance(item, list) and (is_mat(item) or is_vector(item)) for item in x)
|
|
24
|
-
|
|
25
22
|
|
|
26
|
-
# ---------- algebra primitives ----------
|
|
27
23
|
def dot(u,v):
|
|
28
24
|
if len(u)!=len(v):
|
|
29
25
|
raise ValueError("Vector size mismatch")
|
|
@@ -33,9 +29,7 @@ def dot(u,v):
|
|
|
33
29
|
return s
|
|
34
30
|
|
|
35
31
|
def matmul(A, B):
|
|
36
|
-
|
|
37
|
-
# B: m × p
|
|
38
|
-
|
|
32
|
+
|
|
39
33
|
n = len(A)
|
|
40
34
|
m = len(A[0])
|
|
41
35
|
p = len(B[0])
|
|
@@ -54,7 +48,6 @@ def matmul(A, B):
|
|
|
54
48
|
)
|
|
55
49
|
return C
|
|
56
50
|
|
|
57
|
-
# ---------- promotion ----------
|
|
58
51
|
def promote(node):
|
|
59
52
|
if node.name=="f_list":
|
|
60
53
|
return tree_to_py(node)
|
|
@@ -68,7 +61,7 @@ def contains_neg(node):
|
|
|
68
61
|
if not contains_neg(child):
|
|
69
62
|
return False
|
|
70
63
|
return True
|
|
71
|
-
|
|
64
|
+
|
|
72
65
|
def multiply(left,right):
|
|
73
66
|
if left == tree_form("d_1"):
|
|
74
67
|
return right
|
|
@@ -83,17 +76,16 @@ def multiply(left,right):
|
|
|
83
76
|
return simplify(left2.children[0]**(left2.children[1]+right2.children[1]))
|
|
84
77
|
A,B = promote(left), promote(right)
|
|
85
78
|
|
|
86
|
-
# vector · vector
|
|
87
79
|
if is_vector(A) and is_vector(B):
|
|
88
80
|
return dot(A,B)
|
|
89
|
-
|
|
81
|
+
|
|
90
82
|
if is_matrix(A) and is_matrix(B):
|
|
91
83
|
return py_to_tree(matmul(A,B))
|
|
92
|
-
|
|
84
|
+
|
|
93
85
|
for _ in range(2):
|
|
94
86
|
if contains_neg(A) and is_vector(B):
|
|
95
87
|
return py_to_tree([TreeNode("f_mul",[A,x]) for x in B])
|
|
96
|
-
|
|
88
|
+
|
|
97
89
|
if contains_neg(A) and is_matrix(B):
|
|
98
90
|
return py_to_tree([[TreeNode("f_mul",[A,x]) for x in row] for row in B])
|
|
99
91
|
A, B = B, A
|
|
@@ -122,45 +114,16 @@ def matadd(A, B):
|
|
|
122
114
|
]
|
|
123
115
|
def addition(left,right):
|
|
124
116
|
A,B = promote(left), promote(right)
|
|
125
|
-
|
|
117
|
+
|
|
126
118
|
if is_vector(A) and is_vector(B):
|
|
127
119
|
return add_vec(A,B)
|
|
128
|
-
|
|
120
|
+
|
|
129
121
|
if is_matrix(A) and is_matrix(B):
|
|
130
122
|
return py_to_tree(matadd(A,B))
|
|
131
123
|
return None
|
|
132
|
-
|
|
133
|
-
def fold_wmul(eq):
|
|
134
|
-
if eq.name == "f_pow" and eq.children[1].name.startswith("d_"):
|
|
135
|
-
n = int(eq.children[1].name[2:])
|
|
136
|
-
if n == 1:
|
|
137
|
-
eq = eq.children[0]
|
|
138
|
-
elif n > 1:
|
|
139
|
-
tmp = promote(eq.children[0])
|
|
140
|
-
if is_matrix(tmp):
|
|
141
|
-
orig =tmp
|
|
142
|
-
for i in range(n-1):
|
|
143
|
-
tmp = matmul(orig, tmp)
|
|
144
|
-
eq = py_to_tree(tmp)
|
|
145
|
-
elif eq.name in ["f_wmul", "f_add"]:
|
|
146
|
-
if len(eq.children) == 1:
|
|
147
|
-
eq = eq.children[0]
|
|
148
|
-
else:
|
|
149
|
-
i = len(eq.children)-1
|
|
150
|
-
while i>0:
|
|
151
|
-
if eq.name == "f_wmul":
|
|
152
|
-
out = multiply(eq.children[i-1], eq.children[i])
|
|
153
|
-
else:
|
|
154
|
-
out = addition(eq.children[i-1], eq.children[i])
|
|
155
|
-
if out is not None:
|
|
156
|
-
eq.children.pop(i)
|
|
157
|
-
eq.children.pop(i-1)
|
|
158
|
-
eq.children.insert(i-1,out)
|
|
159
|
-
i = i-1
|
|
160
|
-
return TreeNode(eq.name, [fold_wmul(child) for child in eq.children])
|
|
161
|
-
'''
|
|
124
|
+
|
|
162
125
|
def fold_wmul(root):
|
|
163
|
-
|
|
126
|
+
|
|
164
127
|
stack = [(root, False)]
|
|
165
128
|
newnode = {}
|
|
166
129
|
|
|
@@ -168,17 +131,15 @@ def fold_wmul(root):
|
|
|
168
131
|
node, visited = stack.pop()
|
|
169
132
|
|
|
170
133
|
if not visited:
|
|
171
|
-
|
|
134
|
+
|
|
172
135
|
stack.append((node, True))
|
|
173
136
|
for child in node.children:
|
|
174
137
|
stack.append((child, False))
|
|
175
138
|
else:
|
|
176
|
-
|
|
139
|
+
|
|
177
140
|
children = [newnode[c] for c in node.children]
|
|
178
141
|
eq = TreeNode(node.name, children)
|
|
179
142
|
|
|
180
|
-
# ---- original rewrite logic ----
|
|
181
|
-
|
|
182
143
|
if eq.name == "f_pow" and eq.children[1].name.startswith("d_"):
|
|
183
144
|
n = int(eq.children[1].name[2:])
|
|
184
145
|
if n == 1:
|
|
@@ -208,8 +169,6 @@ def fold_wmul(root):
|
|
|
208
169
|
eq.children.insert(i - 1, out)
|
|
209
170
|
i -= 1
|
|
210
171
|
|
|
211
|
-
# --------------------------------
|
|
212
|
-
|
|
213
172
|
newnode[node] = eq
|
|
214
173
|
|
|
215
174
|
return newnode[root]
|
|
@@ -223,3 +182,4 @@ def _matrix_solve(eq):
|
|
|
223
182
|
return eq
|
|
224
183
|
def matrix_solve(eq):
|
|
225
184
|
return _matrix_solve(eq)
|
|
185
|
+
|