mathai 0.4.0__tar.gz → 0.4.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mathai-0.4.0 → mathai-0.4.1}/PKG-INFO +1 -1
- {mathai-0.4.0 → mathai-0.4.1}/mathai/__init__.py +0 -2
- {mathai-0.4.0 → mathai-0.4.1}/mathai/apart.py +19 -9
- {mathai-0.4.0 → mathai-0.4.1}/mathai/base.py +6 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/integrate.py +17 -10
- {mathai-0.4.0 → mathai-0.4.1}/mathai/linear.py +7 -4
- {mathai-0.4.0 → mathai-0.4.1}/mathai/simplify.py +17 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/trig.py +29 -8
- {mathai-0.4.0 → mathai-0.4.1}/mathai.egg-info/PKG-INFO +1 -1
- {mathai-0.4.0 → mathai-0.4.1}/setup.py +1 -1
- {mathai-0.4.0 → mathai-0.4.1}/README.md +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/console.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/diff.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/expand.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/factor.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/fraction.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/inverse.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/limit.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/logic.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/parser.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/printeq.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/search.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/structure.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/tool.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai/univariate_inequality.py +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai.egg-info/SOURCES.txt +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai.egg-info/dependency_links.txt +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai.egg-info/requires.txt +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/mathai.egg-info/top_level.txt +0 -0
- {mathai-0.4.0 → mathai-0.4.1}/setup.cfg +0 -0
@@ -1,14 +1,18 @@
|
|
1
1
|
from .linear import linear_solve
|
2
2
|
from .expand import expand
|
3
3
|
from .simplify import simplify
|
4
|
+
|
4
5
|
from .diff import diff
|
5
6
|
from .inverse import inverse
|
6
7
|
from .base import *
|
7
8
|
import math
|
8
9
|
from .tool import poly, enclose_const
|
9
10
|
|
10
|
-
def _apart(eq, v=
|
11
|
-
|
11
|
+
def _apart(eq, v=None):
|
12
|
+
if v is None:
|
13
|
+
if len(vlist(eq)) == 0:
|
14
|
+
return eq
|
15
|
+
v = vlist(eq)[0]
|
12
16
|
origv = vlist(eq)
|
13
17
|
eq = simplify(eq)
|
14
18
|
if eq.name != "f_mul":
|
@@ -42,8 +46,9 @@ def _apart(eq, v="v_0"):
|
|
42
46
|
s = []
|
43
47
|
facd = [simplify(x) for x in factor_generation(simplify(d))]
|
44
48
|
|
45
|
-
|
46
|
-
facd2 = remove_duplicates_custom(facd, lambda m, n: simplify(m-n) == tree_form("d_0"))
|
49
|
+
|
50
|
+
facd2 = remove_duplicates_custom(facd, lambda m, n: simplify(expand(simplify(m-n))) == tree_form("d_0"))
|
51
|
+
|
47
52
|
if len(facd2) == 1:
|
48
53
|
return eq
|
49
54
|
x = tree_form(v)
|
@@ -58,6 +63,7 @@ def _apart(eq, v="v_0"):
|
|
58
63
|
if n > 2:
|
59
64
|
return eq
|
60
65
|
n = tree_form("d_"+str(n))
|
66
|
+
|
61
67
|
l = len(poly(item, v))
|
62
68
|
if l == 3:
|
63
69
|
a = alloclst.pop(0)
|
@@ -93,14 +99,15 @@ def _apart(eq, v="v_0"):
|
|
93
99
|
final = summation(final2)
|
94
100
|
|
95
101
|
s = simplify(TreeNode("f_eq", [final-eq2, tree_form("d_0")]))
|
96
|
-
|
102
|
+
|
97
103
|
lst = poly(s.children[0], v)
|
98
|
-
|
104
|
+
|
99
105
|
lst = [TreeNode("f_eq", [item, tree_form("d_0")]) for item in lst if "v_" in str_form(item)]
|
100
106
|
lst2 = []
|
101
107
|
for item in lst:
|
102
108
|
lst2+=vlist(item)
|
103
109
|
origv = list(set(lst2)-set(origv))
|
110
|
+
|
104
111
|
out = linear_solve(TreeNode("f_and", lst), [tree_form(item) for item in origv])
|
105
112
|
for item in out.children:
|
106
113
|
|
@@ -108,6 +115,9 @@ def _apart(eq, v="v_0"):
|
|
108
115
|
return simplify(final3)
|
109
116
|
def apart(eq):
|
110
117
|
eq, fx = enclose_const(eq)
|
111
|
-
|
112
|
-
|
113
|
-
|
118
|
+
def helper(eq):
|
119
|
+
eq2 = _apart(eq)
|
120
|
+
if eq != eq2:
|
121
|
+
return eq2
|
122
|
+
return TreeNode(eq.name, [helper(child) for child in eq.children])
|
123
|
+
return fx(helper(eq))
|
@@ -131,6 +131,8 @@ def frac(eq):
|
|
131
131
|
return Fraction(int(eq.name[2:]))
|
132
132
|
if eq.name == "f_add":
|
133
133
|
p = frac(eq.children[0])
|
134
|
+
if p is None:
|
135
|
+
return None
|
134
136
|
for child in eq.children[1:]:
|
135
137
|
tmp = frac(child)
|
136
138
|
if isinstance(tmp, Fraction):
|
@@ -140,6 +142,8 @@ def frac(eq):
|
|
140
142
|
return p
|
141
143
|
if eq.name == "f_mul":
|
142
144
|
p = frac(eq.children[0])
|
145
|
+
if p is None:
|
146
|
+
return None
|
143
147
|
for child in eq.children[1:]:
|
144
148
|
tmp = frac(child)
|
145
149
|
if isinstance(tmp, Fraction):
|
@@ -286,6 +290,8 @@ def flatten_tree(node):
|
|
286
290
|
node.children = [flatten_tree(child) for child in node.children]
|
287
291
|
return node
|
288
292
|
def dowhile(eq, fx):
|
293
|
+
if eq is None:
|
294
|
+
return None
|
289
295
|
while True:
|
290
296
|
orig = eq.copy_tree()
|
291
297
|
eq2 = fx(eq)
|
@@ -104,8 +104,6 @@ def handle_try(eq):
|
|
104
104
|
else:
|
105
105
|
return TreeNode(eq.name, [handle_try(child) for child in eq.children])
|
106
106
|
def inteq(eq):
|
107
|
-
if "f_ref" not in str_form(eq):
|
108
|
-
return eq
|
109
107
|
if eq.name == "f_try":
|
110
108
|
eq2 = None
|
111
109
|
output = []
|
@@ -113,13 +111,19 @@ def inteq(eq):
|
|
113
111
|
if child.name == "f_ref":
|
114
112
|
eq2 = child.children[0]
|
115
113
|
break
|
114
|
+
if eq2 is None:
|
115
|
+
return eq
|
116
116
|
for child in eq.children:
|
117
117
|
if child.name == "f_ref":
|
118
118
|
output.append(child)
|
119
119
|
else:
|
120
120
|
eq3 = simplify(expand(simplify(eq2 - child)))
|
121
121
|
if contain(eq3, eq2):
|
122
|
-
|
122
|
+
out = inverse(eq3, str_form(eq2))
|
123
|
+
if out is None:
|
124
|
+
output.append(child)
|
125
|
+
else:
|
126
|
+
output.append(out)
|
123
127
|
else:
|
124
128
|
output.append(child)
|
125
129
|
return TreeNode("f_try", output)
|
@@ -128,13 +132,14 @@ def inteq(eq):
|
|
128
132
|
def rm(eq):
|
129
133
|
if eq.name == "f_try":
|
130
134
|
eq = TreeNode(eq.name, list(set(eq.children)))
|
131
|
-
return TreeNode(eq.name, [rm(child) for child in eq.children])
|
135
|
+
return TreeNode(eq.name, [rm(child) for child in eq.children if child is not None])
|
132
136
|
def solve_integrate(eq):
|
133
137
|
|
134
138
|
eq2 = dowhile(eq, _solve_integrate)
|
135
139
|
eq2 = dowhile(eq2, handle_try)
|
136
140
|
eq2 = rm(eq2)
|
137
|
-
eq2.
|
141
|
+
if eq2.name == "f_try":
|
142
|
+
eq2.children = list(set(eq2.children))
|
138
143
|
return eq2
|
139
144
|
def integrate_subs(equation, term, v1, v2):
|
140
145
|
output = []
|
@@ -165,7 +170,7 @@ def integrate_subs(equation, term, v1, v2):
|
|
165
170
|
|
166
171
|
return none
|
167
172
|
|
168
|
-
return TreeNode("f_subs", [TreeNode("f_integrate", [simplify(expand(simplify(equation))), tree_form(origv2)]),tree_form(origv2) ,g])
|
173
|
+
return TreeNode("f_subs", [TreeNode("f_integrate", [simplify(fraction(expand(simplify(equation)))), tree_form(origv2)]),tree_form(origv2) ,g])
|
169
174
|
|
170
175
|
def integrate_subs_main(equation):
|
171
176
|
if equation.name == "f_ref":
|
@@ -291,7 +296,7 @@ def _sqint(equation):
|
|
291
296
|
return coll
|
292
297
|
|
293
298
|
def sqint(eq):
|
294
|
-
out = _sqint(eq)
|
299
|
+
out = simplify(_sqint(eq))
|
295
300
|
if out is None:
|
296
301
|
return eq
|
297
302
|
return out
|
@@ -376,6 +381,7 @@ def rm_const(equation):
|
|
376
381
|
return rm_const(TreeNode("f_integrate",[equation, wrt])) *const
|
377
382
|
equation = eq2
|
378
383
|
return TreeNode(equation.name, [rm_const(child) for child in equation.children])
|
384
|
+
|
379
385
|
def integrate_formula(equation):
|
380
386
|
if equation.name == "f_ref":
|
381
387
|
return equation.copy_tree()
|
@@ -384,17 +390,18 @@ def integrate_formula(equation):
|
|
384
390
|
integrand = eq2.children[0]
|
385
391
|
wrt = eq2.children[1]
|
386
392
|
if integrand == wrt:
|
387
|
-
return
|
393
|
+
return wrt**2/2 # x^2/2
|
388
394
|
if not contain(integrand, wrt):
|
389
|
-
return
|
395
|
+
return integrand*wrt
|
390
396
|
out = transform_formula(simplify(trig0(integrand)), wrt.name, formula_gen[0], formula_gen[1], formula_gen[2])
|
391
397
|
if out is not None:
|
398
|
+
|
392
399
|
return out
|
393
400
|
expr_str = str_form(integrand)
|
394
401
|
if expr_str.count("f_sin") + expr_str.count("f_cos") > 2:
|
395
402
|
out = transform_formula(integrand, wrt.name, formula_gen4[0], formula_gen4[1], formula_gen4[2])
|
396
403
|
if out is not None:
|
397
|
-
|
404
|
+
|
398
405
|
return out
|
399
406
|
return TreeNode(eq2.name, [integrate_formula(child) for child in eq2.children])
|
400
407
|
|
@@ -3,6 +3,9 @@ from .simplify import simplify, solve
|
|
3
3
|
from .fraction import fraction
|
4
4
|
from .expand import expand
|
5
5
|
from .base import *
|
6
|
+
from .factor import factorconst
|
7
|
+
def ss(eq):
|
8
|
+
return dowhile(eq, lambda x: fraction(expand(simplify(x))))
|
6
9
|
def rref(matrix):
|
7
10
|
rows, cols = len(matrix), len(matrix[0])
|
8
11
|
lead = 0
|
@@ -10,7 +13,7 @@ def rref(matrix):
|
|
10
13
|
if lead >= cols:
|
11
14
|
return matrix
|
12
15
|
i = r
|
13
|
-
while
|
16
|
+
while ss(matrix[i][lead]) == tree_form("d_0"):
|
14
17
|
i += 1
|
15
18
|
if i == rows:
|
16
19
|
i = r
|
@@ -19,11 +22,11 @@ def rref(matrix):
|
|
19
22
|
return matrix
|
20
23
|
matrix[i], matrix[r] = matrix[r], matrix[i]
|
21
24
|
lv = matrix[r][lead]
|
22
|
-
matrix[r] = [
|
25
|
+
matrix[r] = [ss(m / lv) for m in matrix[r]]
|
23
26
|
for i in range(rows):
|
24
27
|
if i != r:
|
25
28
|
lv = matrix[i][lead]
|
26
|
-
matrix[i] = [
|
29
|
+
matrix[i] = [ss(m - lv * n) for m, n in zip(matrix[i], matrix[r])]
|
27
30
|
lead += 1
|
28
31
|
return matrix
|
29
32
|
def islinear(eq, fxconst):
|
@@ -91,7 +94,7 @@ def linear(eqlist, fxconst):
|
|
91
94
|
for i in range(len(m)):
|
92
95
|
for j in range(len(m[i])):
|
93
96
|
m[i][j] = fraction(m[i][j])
|
94
|
-
|
97
|
+
|
95
98
|
for item in m:
|
96
99
|
if all(item2==tree_form("d_0") for item2 in item[:-1]) and item[-1] != tree_form("d_0"):
|
97
100
|
return tree_form("s_false")
|
@@ -286,6 +286,23 @@ def simplify(eq):
|
|
286
286
|
error = True
|
287
287
|
else:
|
288
288
|
eq = tree_form("d_0")
|
289
|
+
|
290
|
+
if eq.name == "f_mul":
|
291
|
+
dic = {}
|
292
|
+
for child in eq.children:
|
293
|
+
head = child
|
294
|
+
tail = None
|
295
|
+
if child.name == "f_pow":
|
296
|
+
head = child.children[0]
|
297
|
+
tail = child.children[1]
|
298
|
+
if tail is None:
|
299
|
+
tail = tree_form("d_1")
|
300
|
+
if head not in dic.keys():
|
301
|
+
dic[head] = tail
|
302
|
+
else:
|
303
|
+
dic[head] += tail
|
304
|
+
if len(eq.children) != len(dic.keys()):
|
305
|
+
eq = product([key if dic[key] == 1 else key**dic[key] for key in dic.keys()])
|
289
306
|
if eq.name == "f_pow" and eq.children[0].name == "f_pow" and eq.children[0].children[1] == tree_form("d_2")**-1 and eq.children[1] == tree_form("d_2"):
|
290
307
|
eq = eq.children[0].children[0]
|
291
308
|
if (eq.name == "f_sin" and eq.children[0].name == "f_arcsin") or (eq.name == "f_cos" and eq.children[0].name == "f_arccos") or (eq.name == "f_tan" and eq.children[0].name == "f_arctan"):
|
@@ -199,16 +199,37 @@ def trig4(eq, numer=True):
|
|
199
199
|
return tree_form("d_1")/(1+a**2)**(tree_form("d_2")**-1)
|
200
200
|
|
201
201
|
return TreeNode(eq.name, [trig4(child, False) if not numer or (eq.name == "f_pow" and frac(eq.children[1]) is not None and frac(eq.children[1]) < 0) else trig4(child, True) for child in eq.children])
|
202
|
+
|
202
203
|
def trig2(eq):
|
203
204
|
if eq.name == "f_add":
|
204
205
|
for item in itertools.combinations(range(len(eq.children)), 2):
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
206
|
+
child1, child2 = eq.children[item[0]], eq.children[item[1]]
|
207
|
+
|
208
|
+
# Check if both are sin or cos
|
209
|
+
if child1.name in ["f_sin", "f_cos"] and child2.name in ["f_sin", "f_cos"]:
|
210
|
+
a, b = child1.children[0], child2.children[0]
|
211
|
+
|
212
|
+
# Compute the rest of the sum
|
213
|
+
rest = [eq.children[i] for i in range(len(eq.children)) if i not in item]
|
214
|
+
if len(rest) == 0:
|
215
|
+
rest_tree = tree_form("d_0")
|
216
|
+
else:
|
217
|
+
rest_tree = summation(rest)
|
218
|
+
|
219
|
+
# Now handle the sin/cos combination formula
|
220
|
+
if child1.name == "f_sin" and child2.name == "f_sin":
|
221
|
+
# sin A + sin B = 2 sin((A+B)/2) cos((A-B)/2)
|
222
|
+
two = tree_form("d_2")
|
223
|
+
combined = two * ((a + b) / two).fx("sin") * ((a - b) / two).fx("cos")
|
224
|
+
elif child1.name == "f_cos" and child2.name == "f_cos":
|
225
|
+
# cos A + cos B = 2 cos((A+B)/2) cos((A-B)/2)
|
226
|
+
two = tree_form("d_2")
|
227
|
+
combined = two * ((a + b) / two).fx("cos") * ((a - b) / two).fx("cos")
|
210
228
|
else:
|
211
|
-
|
212
|
-
|
213
|
-
|
229
|
+
# sin A + cos B = sin A + cos B (leave unchanged, or implement formula if desired)
|
230
|
+
continue # skip for now, keep original
|
231
|
+
|
232
|
+
return rest_tree + combined
|
233
|
+
|
234
|
+
# Recurse for other nodes
|
214
235
|
return TreeNode(eq.name, [trig2(child) for child in eq.children])
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|