masster 0.5.28__tar.gz → 0.6.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of masster might be problematic. Click here for more details.
- {masster-0.5.28 → masster-0.6.1}/PKG-INFO +17 -18
- {masster-0.5.28 → masster-0.6.1}/README.md +15 -16
- {masster-0.5.28 → masster-0.6.1}/pyproject.toml +2 -2
- {masster-0.5.28 → masster-0.6.1}/src/masster/_version.py +1 -1
- masster-0.6.1/src/masster/data/libs/aa_nort.json +240 -0
- masster-0.6.1/src/masster/data/libs/ccm_nort.json +1319 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/lib/lib.py +1 -1
- {masster-0.5.28 → masster-0.6.1}/src/masster/logger.py +0 -6
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/adducts.py +1 -1
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/defaults/find_adducts_def.py +1 -1
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/h5.py +152 -2
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/helpers.py +91 -5
- masster-0.6.1/src/masster/sample/id.py +1160 -0
- masster-0.6.1/src/masster/sample/importers.py +316 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/plot.py +175 -71
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/sample.py +18 -3
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/sample5_schema.json +99 -1
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/defaults/study_def.py +8 -12
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/export.py +62 -62
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/id.py +59 -12
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/load.py +0 -11
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/merge.py +153 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/plot.py +197 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/study.py +3 -1
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/study5_schema.json +15 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/wizard/wizard.py +11 -12
- masster-0.5.28/src/masster/data/libs/aa.csv +0 -22
- masster-0.5.28/src/masster/data/libs/ccm.csv +0 -120
- masster-0.5.28/src/masster/data/libs/urine.csv +0 -4693
- {masster-0.5.28 → masster-0.6.1}/.gitignore +0 -0
- {masster-0.5.28 → masster-0.6.1}/LICENSE +0 -0
- {masster-0.5.28 → masster-0.6.1}/THIRD_PARTY_NOTICES.md +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/__init__.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/chromatogram.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/data/wiff/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.timeseries.data +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/data/wiff/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/data/wiff/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff.scan +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/data/wiff/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff2 +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/lib/__init__.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/__init__.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/defaults/__init__.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/defaults/find_features_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/defaults/find_ms2_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/defaults/get_spectrum_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/defaults/sample_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/lib.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/load.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/parameters.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/processing.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/quant.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/save.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/sciex.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/sample/thermo.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/spectrum.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/__init__.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/analysis.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/defaults/__init__.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/defaults/align_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/defaults/export_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/defaults/fill_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/defaults/find_consensus_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/defaults/find_ms2_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/defaults/identify_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/defaults/integrate_chrom_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/defaults/integrate_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/defaults/merge_def.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/h5.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/helpers.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/importers.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/parameters.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/processing.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/study/save.py +0 -0
- {masster-0.5.28 → masster-0.6.1}/src/masster/wizard/__init__.py +0 -0
|
@@ -1,12 +1,12 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: masster
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.6.1
|
|
4
4
|
Summary: Mass spectrometry data analysis package
|
|
5
5
|
Project-URL: homepage, https://github.com/zamboni-lab/masster
|
|
6
6
|
Project-URL: repository, https://github.com/zamboni-lab/masster
|
|
7
7
|
Project-URL: documentation, https://github.com/zamboni-lab/masster#readme
|
|
8
8
|
Project-URL: Third-Party Licenses, https://github.com/zamboni-lab/masster/blob/main/THIRD_PARTY_NOTICES.md
|
|
9
|
-
Author: Zamboni Lab
|
|
9
|
+
Author: Zamboni Lab, ETH Zurich
|
|
10
10
|
License: GNU AFFERO GENERAL PUBLIC LICENSE
|
|
11
11
|
Version 3, 19 November 2007
|
|
12
12
|
|
|
@@ -734,19 +734,19 @@ Description-Content-Type: text/markdown
|
|
|
734
734
|
|
|
735
735
|
## Background and motivation
|
|
736
736
|
|
|
737
|
-
MASSter is actively used,
|
|
737
|
+
MASSter is actively used, maintained, and developed by the Zamboni Lab at ETH Zurich. The project started because many needs were unmet by the "usual" software packages (mzMine, MS-DIAL, Workflow4Metabolomics (W4M), ...), for example performance, scalability, sensitivity, robustness, speed, rapid implementation of new features, and embedding in ETL systems.
|
|
738
738
|
|
|
739
|
-
All methods include
|
|
739
|
+
All methods include many parameters and may wrap alternative algorithms. These options are primarily relevant for advanced users. We recommend running the processing methods with the defaults or using the Wizard.
|
|
740
740
|
|
|
741
741
|
## Content
|
|
742
742
|
|
|
743
743
|
MASSter is designed to deal with DDA data, and hides functionalities for DIA and ZTScan DIA data. The sample-centric feature detection uses OpenMS, which is both accurate and fast, and it was wrapped with additional code to improve isotope and adduct detection. All other functionalities are own implementations: centroiding, RT alignment, adduct and isotopomer detection, merging of multiple samples, gap-filling, quantification, etc.
|
|
744
744
|
|
|
745
|
-
MASSter was engineered to maximize quality
|
|
745
|
+
MASSter was engineered to maximize result quality, sensitivity, scalability, and speed. Yes, it's Python, which can be slower than other languages, but considerable effort was spent on optimizations, including the systematic use of [Polars](https://pola.rs/), NumPy vectorization, multiprocessing, and chunking. MASSter has been tested on studies with 3,000+ LC–MS/MS samples (≈1 million MS2 spectra) and autonomously completed analyses within a few hours.
|
|
746
746
|
|
|
747
747
|
## Architecture
|
|
748
748
|
|
|
749
|
-
MASSter defines
|
|
749
|
+
MASSter defines classes for Spectra, Chromatograms, Libraries, Samples, and Studies (a Study is a collection of samples, i.e. an LC–MS sequence). Users will typically work with a single `Study` object at a time. `Sample` objects are created when analyzing a batch (and saved for caching), or used for development, troubleshooting, or generating illustrations.
|
|
750
750
|
|
|
751
751
|
The analysis can be done in scripts (without user intervention, e.g. by the integrated Wizard), or interactively in notebooks, i.e. [marimo](https://marimo.io/) or [jupyter](https://jupyter.org/).
|
|
752
752
|
|
|
@@ -756,9 +756,9 @@ You'll need to install Python (3.10-3.13, 3.14 has not been tested yet).
|
|
|
756
756
|
|
|
757
757
|
MASSter reads raw (Thermo), wiff (SCIEX), or mzML data. Reading vendor formats relies on .NET libraries, and is only possible in Windows. On Linux or MacOS, you'll be forced to use mzML data.
|
|
758
758
|
|
|
759
|
-
**It's recommended to use data in either vendor's raw
|
|
759
|
+
**It's recommended to use data in either the vendor's raw formats (WIFF and Thermo RAW) or mzML in profile mode.** MASSter includes a sophisticated and sufficiently fast centroiding algorithm that works well across the full dynamic range and will only act on spectra that are relevant. In our tests with data from different vendors, the centroiding performed much better than most vendor implementations (which are primarily proteomics-centric).
|
|
760
760
|
|
|
761
|
-
If still want to convert raw data to centroided mzML, please use
|
|
761
|
+
If you still want to convert raw data to centroided mzML, please use CentroidR: https://github.com/Adafede/CentroidR/tree/0.0.0.9001
|
|
762
762
|
|
|
763
763
|
## Installation
|
|
764
764
|
|
|
@@ -769,7 +769,7 @@ pip install masster
|
|
|
769
769
|
## Getting started
|
|
770
770
|
**The quickest way to use, or learn how to use MASSter, is to use the Wizard** which we integrated and, ideally, takes care of everything automatically.
|
|
771
771
|
|
|
772
|
-
The Wizard only needs to know where to find the MS files and
|
|
772
|
+
The Wizard only needs to know where to find the MS files and where to store the results.
|
|
773
773
|
```python
|
|
774
774
|
from masster import Wizard
|
|
775
775
|
wiz = Wizard(
|
|
@@ -780,15 +780,15 @@ wiz = Wizard(
|
|
|
780
780
|
wiz.test_and_run()
|
|
781
781
|
```
|
|
782
782
|
|
|
783
|
-
This will trigger the analysis of raw data, and the creation of a script to process all samples and then assemble the study. The whole processing will be stored as `1_masster_workflow.py` in the output folder. The wizard will test once and, if
|
|
783
|
+
This will trigger the analysis of raw data, and the creation of a script to process all samples and then assemble the study. The whole processing will be stored as `1_masster_workflow.py` in the output folder. The wizard will test once and, if successful, run the full workflow using parallel processes. Once the processing is over you, navigate to `folder` to see what happened...
|
|
784
784
|
|
|
785
785
|
If you want to interact with your data, we recommend using [marimo](https://marimo.io/) or [jupyter](https://jupyter.org/) and open the `*.study5` file, for example:
|
|
786
786
|
|
|
787
787
|
```bash
|
|
788
|
-
# use marimo to open the script created by
|
|
789
|
-
marimo edit '
|
|
790
|
-
# or, if you use uv to manage an environment with masster
|
|
791
|
-
uv run marimo edit '
|
|
788
|
+
# use marimo to open the script created by marimo
|
|
789
|
+
marimo edit '..\\..\\folder_to_store_results\\2_interactive_analysis.py'
|
|
790
|
+
# or, if you use uv to manage an environment with masster
|
|
791
|
+
uv run marimo edit '..\\..\\folder_to_store_results\\2_interactive_analysis.py'
|
|
792
792
|
```
|
|
793
793
|
|
|
794
794
|
### Basic Workflow for analyzing LC-MS study with 1-1000+ samples
|
|
@@ -833,6 +833,7 @@ study.save()
|
|
|
833
833
|
study.plot_samples_pca()
|
|
834
834
|
study.plot_samples_umap()
|
|
835
835
|
study.plot_samples_2d()
|
|
836
|
+
study.plot_heatmap()
|
|
836
837
|
|
|
837
838
|
# To know more about the available methods...
|
|
838
839
|
dir(study)
|
|
@@ -874,7 +875,7 @@ sample.plot_2d()
|
|
|
874
875
|
sample.plot_features_stats()
|
|
875
876
|
|
|
876
877
|
# explore methods
|
|
877
|
-
dir(
|
|
878
|
+
dir(sample)
|
|
878
879
|
```
|
|
879
880
|
|
|
880
881
|
## Disclaimer
|
|
@@ -885,11 +886,9 @@ dir(study)
|
|
|
885
886
|
- **Backward compatibility**: We do not guarantee backward compatibility between versions. Breaking changes may occur as we improve the software
|
|
886
887
|
- **Performance**: While optimized for our workflows, performance may vary depending on your data and system configuration
|
|
887
888
|
- **Results**: We do our best to ensure accuracy, but you should validate results independently for your research
|
|
888
|
-
- **Support**: This is an academic project with limited resources.
|
|
889
|
+
- **Support**: This is an academic project with limited resources. At the moment, we do not provide external user support.
|
|
889
890
|
- **Production use**: If you plan to use MASSter in production or critical workflows, thorough testing with your data is recommended
|
|
890
891
|
|
|
891
|
-
We welcome feedback, bug reports, and contributions via GitHub!
|
|
892
|
-
|
|
893
892
|
## License
|
|
894
893
|
GNU Affero General Public License v3
|
|
895
894
|
|
|
@@ -6,19 +6,19 @@
|
|
|
6
6
|
|
|
7
7
|
## Background and motivation
|
|
8
8
|
|
|
9
|
-
MASSter is actively used,
|
|
9
|
+
MASSter is actively used, maintained, and developed by the Zamboni Lab at ETH Zurich. The project started because many needs were unmet by the "usual" software packages (mzMine, MS-DIAL, Workflow4Metabolomics (W4M), ...), for example performance, scalability, sensitivity, robustness, speed, rapid implementation of new features, and embedding in ETL systems.
|
|
10
10
|
|
|
11
|
-
All methods include
|
|
11
|
+
All methods include many parameters and may wrap alternative algorithms. These options are primarily relevant for advanced users. We recommend running the processing methods with the defaults or using the Wizard.
|
|
12
12
|
|
|
13
13
|
## Content
|
|
14
14
|
|
|
15
15
|
MASSter is designed to deal with DDA data, and hides functionalities for DIA and ZTScan DIA data. The sample-centric feature detection uses OpenMS, which is both accurate and fast, and it was wrapped with additional code to improve isotope and adduct detection. All other functionalities are own implementations: centroiding, RT alignment, adduct and isotopomer detection, merging of multiple samples, gap-filling, quantification, etc.
|
|
16
16
|
|
|
17
|
-
MASSter was engineered to maximize quality
|
|
17
|
+
MASSter was engineered to maximize result quality, sensitivity, scalability, and speed. Yes, it's Python, which can be slower than other languages, but considerable effort was spent on optimizations, including the systematic use of [Polars](https://pola.rs/), NumPy vectorization, multiprocessing, and chunking. MASSter has been tested on studies with 3,000+ LC–MS/MS samples (≈1 million MS2 spectra) and autonomously completed analyses within a few hours.
|
|
18
18
|
|
|
19
19
|
## Architecture
|
|
20
20
|
|
|
21
|
-
MASSter defines
|
|
21
|
+
MASSter defines classes for Spectra, Chromatograms, Libraries, Samples, and Studies (a Study is a collection of samples, i.e. an LC–MS sequence). Users will typically work with a single `Study` object at a time. `Sample` objects are created when analyzing a batch (and saved for caching), or used for development, troubleshooting, or generating illustrations.
|
|
22
22
|
|
|
23
23
|
The analysis can be done in scripts (without user intervention, e.g. by the integrated Wizard), or interactively in notebooks, i.e. [marimo](https://marimo.io/) or [jupyter](https://jupyter.org/).
|
|
24
24
|
|
|
@@ -28,9 +28,9 @@ You'll need to install Python (3.10-3.13, 3.14 has not been tested yet).
|
|
|
28
28
|
|
|
29
29
|
MASSter reads raw (Thermo), wiff (SCIEX), or mzML data. Reading vendor formats relies on .NET libraries, and is only possible in Windows. On Linux or MacOS, you'll be forced to use mzML data.
|
|
30
30
|
|
|
31
|
-
**It's recommended to use data in either vendor's raw
|
|
31
|
+
**It's recommended to use data in either the vendor's raw formats (WIFF and Thermo RAW) or mzML in profile mode.** MASSter includes a sophisticated and sufficiently fast centroiding algorithm that works well across the full dynamic range and will only act on spectra that are relevant. In our tests with data from different vendors, the centroiding performed much better than most vendor implementations (which are primarily proteomics-centric).
|
|
32
32
|
|
|
33
|
-
If still want to convert raw data to centroided mzML, please use
|
|
33
|
+
If you still want to convert raw data to centroided mzML, please use CentroidR: https://github.com/Adafede/CentroidR/tree/0.0.0.9001
|
|
34
34
|
|
|
35
35
|
## Installation
|
|
36
36
|
|
|
@@ -41,7 +41,7 @@ pip install masster
|
|
|
41
41
|
## Getting started
|
|
42
42
|
**The quickest way to use, or learn how to use MASSter, is to use the Wizard** which we integrated and, ideally, takes care of everything automatically.
|
|
43
43
|
|
|
44
|
-
The Wizard only needs to know where to find the MS files and
|
|
44
|
+
The Wizard only needs to know where to find the MS files and where to store the results.
|
|
45
45
|
```python
|
|
46
46
|
from masster import Wizard
|
|
47
47
|
wiz = Wizard(
|
|
@@ -52,15 +52,15 @@ wiz = Wizard(
|
|
|
52
52
|
wiz.test_and_run()
|
|
53
53
|
```
|
|
54
54
|
|
|
55
|
-
This will trigger the analysis of raw data, and the creation of a script to process all samples and then assemble the study. The whole processing will be stored as `1_masster_workflow.py` in the output folder. The wizard will test once and, if
|
|
55
|
+
This will trigger the analysis of raw data, and the creation of a script to process all samples and then assemble the study. The whole processing will be stored as `1_masster_workflow.py` in the output folder. The wizard will test once and, if successful, run the full workflow using parallel processes. Once the processing is over you, navigate to `folder` to see what happened...
|
|
56
56
|
|
|
57
57
|
If you want to interact with your data, we recommend using [marimo](https://marimo.io/) or [jupyter](https://jupyter.org/) and open the `*.study5` file, for example:
|
|
58
58
|
|
|
59
59
|
```bash
|
|
60
|
-
# use marimo to open the script created by
|
|
61
|
-
marimo edit '
|
|
62
|
-
# or, if you use uv to manage an environment with masster
|
|
63
|
-
uv run marimo edit '
|
|
60
|
+
# use marimo to open the script created by marimo
|
|
61
|
+
marimo edit '..\\..\\folder_to_store_results\\2_interactive_analysis.py'
|
|
62
|
+
# or, if you use uv to manage an environment with masster
|
|
63
|
+
uv run marimo edit '..\\..\\folder_to_store_results\\2_interactive_analysis.py'
|
|
64
64
|
```
|
|
65
65
|
|
|
66
66
|
### Basic Workflow for analyzing LC-MS study with 1-1000+ samples
|
|
@@ -105,6 +105,7 @@ study.save()
|
|
|
105
105
|
study.plot_samples_pca()
|
|
106
106
|
study.plot_samples_umap()
|
|
107
107
|
study.plot_samples_2d()
|
|
108
|
+
study.plot_heatmap()
|
|
108
109
|
|
|
109
110
|
# To know more about the available methods...
|
|
110
111
|
dir(study)
|
|
@@ -146,7 +147,7 @@ sample.plot_2d()
|
|
|
146
147
|
sample.plot_features_stats()
|
|
147
148
|
|
|
148
149
|
# explore methods
|
|
149
|
-
dir(
|
|
150
|
+
dir(sample)
|
|
150
151
|
```
|
|
151
152
|
|
|
152
153
|
## Disclaimer
|
|
@@ -157,11 +158,9 @@ dir(study)
|
|
|
157
158
|
- **Backward compatibility**: We do not guarantee backward compatibility between versions. Breaking changes may occur as we improve the software
|
|
158
159
|
- **Performance**: While optimized for our workflows, performance may vary depending on your data and system configuration
|
|
159
160
|
- **Results**: We do our best to ensure accuracy, but you should validate results independently for your research
|
|
160
|
-
- **Support**: This is an academic project with limited resources.
|
|
161
|
+
- **Support**: This is an academic project with limited resources. At the moment, we do not provide external user support.
|
|
161
162
|
- **Production use**: If you plan to use MASSter in production or critical workflows, thorough testing with your data is recommended
|
|
162
163
|
|
|
163
|
-
We welcome feedback, bug reports, and contributions via GitHub!
|
|
164
|
-
|
|
165
164
|
## License
|
|
166
165
|
GNU Affero General Public License v3
|
|
167
166
|
|
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
|
|
2
2
|
[project]
|
|
3
3
|
name = "masster"
|
|
4
|
-
version = "0.
|
|
4
|
+
version = "0.6.1"
|
|
5
5
|
description = "Mass spectrometry data analysis package"
|
|
6
6
|
authors = [
|
|
7
|
-
{ name = "Zamboni Lab" }
|
|
7
|
+
{ name = "Zamboni Lab, ETH Zurich" }
|
|
8
8
|
]
|
|
9
9
|
license = { file = "LICENSE" }
|
|
10
10
|
readme = "README.md"
|
|
@@ -0,0 +1,240 @@
|
|
|
1
|
+
{
|
|
2
|
+
"version": "1.0",
|
|
3
|
+
"creation_date": "2025-10-30T14:38:00.595771",
|
|
4
|
+
"description": "Converted from CSV file aa.csv containing 21 records",
|
|
5
|
+
"source_file": "aa.csv",
|
|
6
|
+
"record_count": 21,
|
|
7
|
+
"data": [
|
|
8
|
+
{
|
|
9
|
+
"Name": "L-Glutamic acid",
|
|
10
|
+
"Formula": "C5H9NO4",
|
|
11
|
+
"SMILES": "N[C@@H](CCC(O)=O)C(O)=O",
|
|
12
|
+
"InChIKey": "WHUUTDBJXJRKMK-VKHMYHEASA-N",
|
|
13
|
+
"db_id": "CID:33032",
|
|
14
|
+
"db": "pubchem",
|
|
15
|
+
"rt": "",
|
|
16
|
+
"rt_min": "",
|
|
17
|
+
"rt_max": ""
|
|
18
|
+
},
|
|
19
|
+
{
|
|
20
|
+
"Name": "L-Tyrosine",
|
|
21
|
+
"Formula": "C9H11NO3",
|
|
22
|
+
"SMILES": "N[C@@H](CC1=CC=C(O)C=C1)C(O)=O",
|
|
23
|
+
"InChIKey": "OUYCCCASQSFEME-QMMMGPOBSA-N",
|
|
24
|
+
"db_id": "CID:6057",
|
|
25
|
+
"db": "pubchem",
|
|
26
|
+
"rt": "",
|
|
27
|
+
"rt_min": "",
|
|
28
|
+
"rt_max": ""
|
|
29
|
+
},
|
|
30
|
+
{
|
|
31
|
+
"Name": "L-Phenylalanine",
|
|
32
|
+
"Formula": "C9H11NO2",
|
|
33
|
+
"SMILES": "N[C@@H](CC1=CC=CC=C1)C(O)=O",
|
|
34
|
+
"InChIKey": "COLNVLDHVKWLRT-QMMMGPOBSA-N",
|
|
35
|
+
"db_id": "CID:6140",
|
|
36
|
+
"db": "pubchem",
|
|
37
|
+
"rt": "",
|
|
38
|
+
"rt_min": "",
|
|
39
|
+
"rt_max": ""
|
|
40
|
+
},
|
|
41
|
+
{
|
|
42
|
+
"Name": "L-Alanine",
|
|
43
|
+
"Formula": "C3H7NO2",
|
|
44
|
+
"SMILES": "C[C@H](N)C(O)=O",
|
|
45
|
+
"InChIKey": "QNAYBMKLOCPYGJ-REOHCLBHSA-N",
|
|
46
|
+
"db_id": "CID:5950",
|
|
47
|
+
"db": "pubchem",
|
|
48
|
+
"rt": "",
|
|
49
|
+
"rt_min": "",
|
|
50
|
+
"rt_max": ""
|
|
51
|
+
},
|
|
52
|
+
{
|
|
53
|
+
"Name": "L-Proline",
|
|
54
|
+
"Formula": "C5H9NO2",
|
|
55
|
+
"SMILES": "OC(=O)[C@@H]1CCCN1",
|
|
56
|
+
"InChIKey": "ONIBWKKTOPOVIA-BYPYZUCNSA-N",
|
|
57
|
+
"db_id": "CID:145742",
|
|
58
|
+
"db": "pubchem",
|
|
59
|
+
"rt": "",
|
|
60
|
+
"rt_min": "",
|
|
61
|
+
"rt_max": ""
|
|
62
|
+
},
|
|
63
|
+
{
|
|
64
|
+
"Name": "L-Threonine",
|
|
65
|
+
"Formula": "C4H9NO3",
|
|
66
|
+
"SMILES": "C[C@@H](O)[C@H](N)C(O)=O",
|
|
67
|
+
"InChIKey": "AYFVYJQAPQTCCC-GBXIJSLDSA-N",
|
|
68
|
+
"db_id": "CID:6288",
|
|
69
|
+
"db": "pubchem",
|
|
70
|
+
"rt": "",
|
|
71
|
+
"rt_min": "",
|
|
72
|
+
"rt_max": ""
|
|
73
|
+
},
|
|
74
|
+
{
|
|
75
|
+
"Name": "L-Asparagine",
|
|
76
|
+
"Formula": "C4H8N2O3",
|
|
77
|
+
"SMILES": "N[C@@H](CC(N)=O)C(O)=O",
|
|
78
|
+
"InChIKey": "DCXYFEDJOCDNAF-REOHCLBHSA-N",
|
|
79
|
+
"db_id": "CID:6267",
|
|
80
|
+
"db": "pubchem",
|
|
81
|
+
"rt": "",
|
|
82
|
+
"rt_min": "",
|
|
83
|
+
"rt_max": ""
|
|
84
|
+
},
|
|
85
|
+
{
|
|
86
|
+
"Name": "L-Isoleucine",
|
|
87
|
+
"Formula": "C6H13NO2",
|
|
88
|
+
"SMILES": "CC[C@H](C)[C@H](N)C(O)=O",
|
|
89
|
+
"InChIKey": "AGPKZVBTJJNPAG-WHFBIAKZSA-N",
|
|
90
|
+
"db_id": "CID:6306",
|
|
91
|
+
"db": "pubchem",
|
|
92
|
+
"rt": "",
|
|
93
|
+
"rt_min": "",
|
|
94
|
+
"rt_max": ""
|
|
95
|
+
},
|
|
96
|
+
{
|
|
97
|
+
"Name": "L-Histidine",
|
|
98
|
+
"Formula": "C6H9N3O2",
|
|
99
|
+
"SMILES": "N[C@@H](CC1=CN=CN1)C(O)=O",
|
|
100
|
+
"InChIKey": "HNDVDQJCIGZPNO-YFKPBYRVSA-N",
|
|
101
|
+
"db_id": "CID:6274",
|
|
102
|
+
"db": "pubchem",
|
|
103
|
+
"rt": "",
|
|
104
|
+
"rt_min": "",
|
|
105
|
+
"rt_max": ""
|
|
106
|
+
},
|
|
107
|
+
{
|
|
108
|
+
"Name": "L-Lysine",
|
|
109
|
+
"Formula": "C6H14N2O2",
|
|
110
|
+
"SMILES": "NCCCC[C@H](N)C(O)=O",
|
|
111
|
+
"InChIKey": "KDXKERNSBIXSRK-YFKPBYRVSA-N",
|
|
112
|
+
"db_id": "CID:5962",
|
|
113
|
+
"db": "pubchem",
|
|
114
|
+
"rt": "",
|
|
115
|
+
"rt_min": "",
|
|
116
|
+
"rt_max": ""
|
|
117
|
+
},
|
|
118
|
+
{
|
|
119
|
+
"Name": "L-Serine",
|
|
120
|
+
"Formula": "C3H7NO3",
|
|
121
|
+
"SMILES": "N[C@@H](CO)C(O)=O",
|
|
122
|
+
"InChIKey": "MTCFGRXMJLQNBG-REOHCLBHSA-N",
|
|
123
|
+
"db_id": "CID:5951",
|
|
124
|
+
"db": "pubchem",
|
|
125
|
+
"rt": "",
|
|
126
|
+
"rt_min": "",
|
|
127
|
+
"rt_max": ""
|
|
128
|
+
},
|
|
129
|
+
{
|
|
130
|
+
"Name": "L-Aspartic acid",
|
|
131
|
+
"Formula": "C4H7NO4",
|
|
132
|
+
"SMILES": "N[C@@H](CC(O)=O)C(O)=O",
|
|
133
|
+
"InChIKey": "CKLJMWTZIZZHCS-REOHCLBHSA-N",
|
|
134
|
+
"db_id": "CID:5960",
|
|
135
|
+
"db": "pubchem",
|
|
136
|
+
"rt": "",
|
|
137
|
+
"rt_min": "",
|
|
138
|
+
"rt_max": ""
|
|
139
|
+
},
|
|
140
|
+
{
|
|
141
|
+
"Name": "L-Cystine",
|
|
142
|
+
"Formula": "C6H12N2O4S2",
|
|
143
|
+
"SMILES": "N[C@@H](CSSC[C@H](N)C(O)=O)C(O)=O",
|
|
144
|
+
"InChIKey": "LEVWYRKDKASIDU-IMJSIDKUSA-N",
|
|
145
|
+
"db_id": "CID:67678",
|
|
146
|
+
"db": "pubchem",
|
|
147
|
+
"rt": "",
|
|
148
|
+
"rt_min": "",
|
|
149
|
+
"rt_max": ""
|
|
150
|
+
},
|
|
151
|
+
{
|
|
152
|
+
"Name": "L-Arginine",
|
|
153
|
+
"Formula": "C6H14N4O2",
|
|
154
|
+
"SMILES": "N[C@@H](CCCNC(N)=N)C(O)=O",
|
|
155
|
+
"InChIKey": "ODKSFYDXXFIFQN-BYPYZUCNSA-N",
|
|
156
|
+
"db_id": "CID:6322",
|
|
157
|
+
"db": "pubchem",
|
|
158
|
+
"rt": "",
|
|
159
|
+
"rt_min": "",
|
|
160
|
+
"rt_max": ""
|
|
161
|
+
},
|
|
162
|
+
{
|
|
163
|
+
"Name": "L-Cysteine",
|
|
164
|
+
"Formula": "C3H7NO2S",
|
|
165
|
+
"SMILES": "N[C@@H](CS)C(O)=O",
|
|
166
|
+
"InChIKey": "XUJNEKJLAYXESH-REOHCLBHSA-N",
|
|
167
|
+
"db_id": "CID:5862",
|
|
168
|
+
"db": "pubchem",
|
|
169
|
+
"rt": "",
|
|
170
|
+
"rt_min": "",
|
|
171
|
+
"rt_max": ""
|
|
172
|
+
},
|
|
173
|
+
{
|
|
174
|
+
"Name": "L-Glutamine",
|
|
175
|
+
"Formula": "C5H10N2O3",
|
|
176
|
+
"SMILES": "N[C@@H](CCC(N)=O)C(O)=O",
|
|
177
|
+
"InChIKey": "ZDXPYRJPNDTMRX-VKHMYHEASA-N",
|
|
178
|
+
"db_id": "CID:5961",
|
|
179
|
+
"db": "pubchem",
|
|
180
|
+
"rt": "",
|
|
181
|
+
"rt_min": "",
|
|
182
|
+
"rt_max": ""
|
|
183
|
+
},
|
|
184
|
+
{
|
|
185
|
+
"Name": "L-Leucine",
|
|
186
|
+
"Formula": "C6H13NO2",
|
|
187
|
+
"SMILES": "CC(C)C[C@H](N)C(O)=O",
|
|
188
|
+
"InChIKey": "ROHFNLRQFUQHCH-YFKPBYRVSA-N",
|
|
189
|
+
"db_id": "CID:6106",
|
|
190
|
+
"db": "pubchem",
|
|
191
|
+
"rt": "",
|
|
192
|
+
"rt_min": "",
|
|
193
|
+
"rt_max": ""
|
|
194
|
+
},
|
|
195
|
+
{
|
|
196
|
+
"Name": "L-Methionine",
|
|
197
|
+
"Formula": "C5H11NO2S",
|
|
198
|
+
"SMILES": "CSCC[C@H](N)C(O)=O",
|
|
199
|
+
"InChIKey": "FFEARJCKVFRZRR-BYPYZUCNSA-N",
|
|
200
|
+
"db_id": "CID:6137",
|
|
201
|
+
"db": "pubchem",
|
|
202
|
+
"rt": "",
|
|
203
|
+
"rt_min": "",
|
|
204
|
+
"rt_max": ""
|
|
205
|
+
},
|
|
206
|
+
{
|
|
207
|
+
"Name": "L-Valine",
|
|
208
|
+
"Formula": "C5H11NO2",
|
|
209
|
+
"SMILES": "CC(C)[C@H](N)C(O)=O",
|
|
210
|
+
"InChIKey": "KZSNJWFQEVHDMF-BYPYZUCNSA-N",
|
|
211
|
+
"db_id": "CID:6287",
|
|
212
|
+
"db": "pubchem",
|
|
213
|
+
"rt": "",
|
|
214
|
+
"rt_min": "",
|
|
215
|
+
"rt_max": ""
|
|
216
|
+
},
|
|
217
|
+
{
|
|
218
|
+
"Name": "L-Tryptophan",
|
|
219
|
+
"Formula": "C11H12N2O2",
|
|
220
|
+
"SMILES": "N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O",
|
|
221
|
+
"InChIKey": "QIVBCDIJIAJPQS-VIFPVBQESA-N",
|
|
222
|
+
"db_id": "CID:6305",
|
|
223
|
+
"db": "pubchem",
|
|
224
|
+
"rt": "",
|
|
225
|
+
"rt_min": "",
|
|
226
|
+
"rt_max": ""
|
|
227
|
+
},
|
|
228
|
+
{
|
|
229
|
+
"Name": "Glycine",
|
|
230
|
+
"Formula": "C2H5NO2",
|
|
231
|
+
"SMILES": "NCC(O)=O",
|
|
232
|
+
"InChIKey": "QNAYBMKLOCPYGJ-UHFFFAOYSA-N",
|
|
233
|
+
"db_id": "CID:750",
|
|
234
|
+
"db": "Glycine",
|
|
235
|
+
"rt": "",
|
|
236
|
+
"rt_min": "",
|
|
237
|
+
"rt_max": ""
|
|
238
|
+
}
|
|
239
|
+
]
|
|
240
|
+
}
|