maradoner 0.13__tar.gz → 0.14__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of maradoner might be problematic. Click here for more details.

Files changed (26) hide show
  1. {maradoner-0.13 → maradoner-0.14}/PKG-INFO +1 -1
  2. {maradoner-0.13 → maradoner-0.14}/maradoner/__init__.py +1 -1
  3. {maradoner-0.13 → maradoner-0.14}/maradoner/create.py +8 -0
  4. {maradoner-0.13 → maradoner-0.14}/maradoner/dataset_filter.py +0 -1
  5. {maradoner-0.13 → maradoner-0.14}/maradoner/grn.py +13 -3
  6. {maradoner-0.13 → maradoner-0.14}/maradoner.egg-info/PKG-INFO +1 -1
  7. {maradoner-0.13 → maradoner-0.14}/README.md +0 -0
  8. {maradoner-0.13 → maradoner-0.14}/maradoner/export.py +0 -0
  9. {maradoner-0.13 → maradoner-0.14}/maradoner/fit.py +0 -0
  10. {maradoner-0.13 → maradoner-0.14}/maradoner/main.py +0 -0
  11. {maradoner-0.13 → maradoner-0.14}/maradoner/mara/__init__.py +0 -0
  12. {maradoner-0.13 → maradoner-0.14}/maradoner/mara/export.py +0 -0
  13. {maradoner-0.13 → maradoner-0.14}/maradoner/mara/fit.py +0 -0
  14. {maradoner-0.13 → maradoner-0.14}/maradoner/mara/main.py +0 -0
  15. {maradoner-0.13 → maradoner-0.14}/maradoner/mara.py +0 -0
  16. {maradoner-0.13 → maradoner-0.14}/maradoner/meta_optimizer.py +0 -0
  17. {maradoner-0.13 → maradoner-0.14}/maradoner/select.py +0 -0
  18. {maradoner-0.13 → maradoner-0.14}/maradoner/synthetic_data.py +0 -0
  19. {maradoner-0.13 → maradoner-0.14}/maradoner/utils.py +0 -0
  20. {maradoner-0.13 → maradoner-0.14}/maradoner.egg-info/SOURCES.txt +0 -0
  21. {maradoner-0.13 → maradoner-0.14}/maradoner.egg-info/dependency_links.txt +0 -0
  22. {maradoner-0.13 → maradoner-0.14}/maradoner.egg-info/entry_points.txt +0 -0
  23. {maradoner-0.13 → maradoner-0.14}/maradoner.egg-info/requires.txt +0 -0
  24. {maradoner-0.13 → maradoner-0.14}/maradoner.egg-info/top_level.txt +0 -0
  25. {maradoner-0.13 → maradoner-0.14}/setup.cfg +0 -0
  26. {maradoner-0.13 → maradoner-0.14}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: maradoner
3
- Version: 0.13
3
+ Version: 0.14
4
4
  Summary: Variance-adjusted estimation of motif activities.
5
5
  Home-page: https://github.com/autosome-ru/nemara
6
6
  Author: Georgy Meshcheryakov
@@ -1,5 +1,5 @@
1
1
  # -*- coding: utf-8 -*-
2
- __version__ = '0.13'
2
+ __version__ = '0.14'
3
3
  import importlib
4
4
 
5
5
 
@@ -74,6 +74,14 @@ def create_project(project_name: str, promoter_expression_filename: str, loading
74
74
  logger_print('Reading dataset...', verbose)
75
75
  promoter_expression = dt.fread(promoter_expression_filename).to_pandas()
76
76
  promoter_expression = promoter_expression.set_index(promoter_expression.columns[0])
77
+
78
+ if sample_groups:
79
+ cols = set()
80
+ for vals in sample_groups.values():
81
+ cols.update(vals)
82
+ cols = list(cols)
83
+ promoter_expression = promoter_expression[cols]
84
+
77
85
  proms = promoter_expression.index
78
86
  sample_names = promoter_expression.columns
79
87
  loading_matrices = [dt.fread(f).to_pandas() for f in loading_matrix_filenames]
@@ -141,6 +141,5 @@ def filter_lowexp(expression: pd.DataFrame, cutoff=0.95, max_mode=True,
141
141
  inds[:k] = False
142
142
  # print(inds)
143
143
  # inds[:] = 1
144
- print(x[inds].mean(), x[~inds].mean())
145
144
  inds = inds[inds_inv]
146
145
  return inds, ws
@@ -79,7 +79,7 @@ def estimate_promoter_variance(project_name: str, prior_top=0.90):
79
79
 
80
80
 
81
81
  def grn(project_name: str, output: str, use_hdf=False, save_stat=True,
82
- prior_h1=1/100):
82
+ fdr_alpha=0.05, prior_h1=1/100):
83
83
  data = read_init(project_name)
84
84
  fmt = data.fmt
85
85
  with openers[fmt](f'{project_name}.fit.{fmt}', 'rb') as f:
@@ -153,10 +153,20 @@ def grn(project_name: str, output: str, use_hdf=False, save_stat=True,
153
153
  lr = lr[inds]
154
154
  belief = belief[inds]
155
155
  belief = belief.astype(np.half)
156
+ sorted_beliefs = np.sort(belief)
157
+ cumulative_fdr = np.cumsum(sorted_beliefs) / (np.arange(len(sorted_beliefs)) + 1)
158
+ try:
159
+ k = np.max(np.where(cumulative_fdr <= fdr_alpha)[0])
160
+ fdr_threshold = sorted_beliefs[k-1]
161
+ except ValueError:
162
+ fdr_threshold = 1.0
163
+ filename = os.path.join(folder_belief, f'{name}.txt')
164
+ with open(filename, 'w') as f:
165
+ f.write(f'{fdr_threshold}')
166
+
156
167
 
157
- proms = list(np.array(prom_names)[inds])
158
168
 
159
- # pvalue = n.sf(lr) * (theta > 0) + n.cdf(lr) * (theta <= 0)
169
+ proms = list(np.array(prom_names)[inds])
160
170
  if use_hdf:
161
171
  if save_stat:
162
172
  lr = lr.astype(np.half)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: maradoner
3
- Version: 0.13
3
+ Version: 0.14
4
4
  Summary: Variance-adjusted estimation of motif activities.
5
5
  Home-page: https://github.com/autosome-ru/nemara
6
6
  Author: Georgy Meshcheryakov
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes