mapillary-downloader 0.4.1__tar.gz → 0.5.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (19) hide show
  1. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/PKG-INFO +1 -1
  2. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/pyproject.toml +1 -1
  3. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/src/mapillary_downloader/__main__.py +12 -0
  4. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/src/mapillary_downloader/client.py +2 -0
  5. mapillary_downloader-0.5.0/src/mapillary_downloader/downloader.py +485 -0
  6. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/src/mapillary_downloader/exif_writer.py +15 -3
  7. mapillary_downloader-0.5.0/src/mapillary_downloader/metadata_reader.py +123 -0
  8. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/src/mapillary_downloader/worker.py +25 -0
  9. mapillary_downloader-0.5.0/src/mapillary_downloader/worker_pool.py +136 -0
  10. mapillary_downloader-0.4.1/src/mapillary_downloader/downloader.py +0 -326
  11. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/LICENSE.md +0 -0
  12. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/README.md +0 -0
  13. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/src/mapillary_downloader/__init__.py +0 -0
  14. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/src/mapillary_downloader/ia_check.py +0 -0
  15. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/src/mapillary_downloader/ia_meta.py +0 -0
  16. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/src/mapillary_downloader/logging_config.py +0 -0
  17. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/src/mapillary_downloader/tar_sequences.py +0 -0
  18. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/src/mapillary_downloader/utils.py +0 -0
  19. {mapillary_downloader-0.4.1 → mapillary_downloader-0.5.0}/src/mapillary_downloader/webp_converter.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mapillary_downloader
3
- Version: 0.4.1
3
+ Version: 0.5.0
4
4
  Summary: Download your Mapillary data before it's gone
5
5
  Author-email: Gareth Davidson <gaz@bitplane.net>
6
6
  Requires-Python: >=3.10
@@ -1,7 +1,7 @@
1
1
  [project]
2
2
  name = "mapillary_downloader"
3
3
  description = "Download your Mapillary data before it's gone"
4
- version = "0.4.1"
4
+ version = "0.5.0"
5
5
  authors = [
6
6
  { name = "Gareth Davidson", email = "gaz@bitplane.net" }
7
7
  ]
@@ -56,9 +56,21 @@ def main():
56
56
  action="store_true",
57
57
  help="Don't check if collection exists on Internet Archive before downloading",
58
58
  )
59
+ parser.add_argument(
60
+ "--debug",
61
+ action="store_true",
62
+ help="Enable debug logging (EXIF data, API responses, etc.)",
63
+ )
59
64
 
60
65
  args = parser.parse_args()
61
66
 
67
+ # Set debug logging level if requested
68
+ if args.debug:
69
+ import logging
70
+
71
+ logging.getLogger("mapillary_downloader").setLevel(logging.DEBUG)
72
+ logger.debug("Debug logging enabled")
73
+
62
74
  # Check for token
63
75
  if not args.token:
64
76
  logger.error("Error: Mapillary API token required. Use --token or set MAPILLARY_TOKEN environment variable")
@@ -92,8 +92,10 @@ class MapillaryClient:
92
92
  images = data.get("data", [])
93
93
  total_fetched += len(images)
94
94
  logger.info(f"Fetched metadata for {total_fetched:,} images...")
95
+ logger.debug(f"API response paging: {data.get('paging', {})}")
95
96
 
96
97
  for image in images:
98
+ logger.debug(f"Image metadata: {image}")
97
99
  yield image
98
100
 
99
101
  # Get next page URL
@@ -0,0 +1,485 @@
1
+ """Main downloader logic."""
2
+
3
+ import gzip
4
+ import json
5
+ import logging
6
+ import os
7
+ import shutil
8
+ import time
9
+ from pathlib import Path
10
+ from mapillary_downloader.utils import format_size, format_time
11
+ from mapillary_downloader.ia_meta import generate_ia_metadata
12
+ from mapillary_downloader.ia_check import check_ia_exists
13
+ from mapillary_downloader.worker import worker_process
14
+ from mapillary_downloader.worker_pool import AdaptiveWorkerPool
15
+ from mapillary_downloader.metadata_reader import MetadataReader
16
+ from mapillary_downloader.tar_sequences import tar_sequence_directories
17
+ from mapillary_downloader.logging_config import add_file_handler
18
+
19
+ logger = logging.getLogger("mapillary_downloader")
20
+
21
+
22
+ def get_cache_dir():
23
+ """Get XDG cache directory for staging downloads.
24
+
25
+ Returns:
26
+ Path to cache directory for mapillary_downloader
27
+ """
28
+ xdg_cache = os.environ.get("XDG_CACHE_HOME")
29
+ if xdg_cache:
30
+ cache_dir = Path(xdg_cache)
31
+ else:
32
+ cache_dir = Path.home() / ".cache"
33
+
34
+ mapillary_cache = cache_dir / "mapillary_downloader"
35
+ mapillary_cache.mkdir(parents=True, exist_ok=True)
36
+ return mapillary_cache
37
+
38
+
39
+ class MapillaryDownloader:
40
+ """Handles downloading Mapillary data for a user."""
41
+
42
+ def __init__(
43
+ self,
44
+ client,
45
+ output_dir,
46
+ username=None,
47
+ quality=None,
48
+ workers=None,
49
+ tar_sequences=True,
50
+ convert_webp=False,
51
+ check_ia=True,
52
+ ):
53
+ """Initialize the downloader.
54
+
55
+ Args:
56
+ client: MapillaryClient instance
57
+ output_dir: Base directory to save downloads (final destination)
58
+ username: Mapillary username (for collection directory)
59
+ quality: Image quality (for collection directory)
60
+ workers: Number of parallel workers (default: half of cpu_count)
61
+ tar_sequences: Whether to tar sequence directories after download (default: True)
62
+ convert_webp: Whether to convert images to WebP (affects collection name)
63
+ check_ia: Whether to check if collection exists on Internet Archive (default: True)
64
+ """
65
+ self.client = client
66
+ self.base_output_dir = Path(output_dir)
67
+ self.username = username
68
+ self.quality = quality
69
+ self.workers = workers if workers is not None else max(1, os.cpu_count() // 2)
70
+ self.tar_sequences = tar_sequences
71
+ self.convert_webp = convert_webp
72
+ self.check_ia = check_ia
73
+
74
+ # Determine collection name
75
+ if username and quality:
76
+ collection_name = f"mapillary-{username}-{quality}"
77
+ if convert_webp:
78
+ collection_name += "-webp"
79
+ self.collection_name = collection_name
80
+ else:
81
+ self.collection_name = None
82
+
83
+ # Set up staging directory in cache
84
+ cache_dir = get_cache_dir()
85
+ if self.collection_name:
86
+ self.staging_dir = cache_dir / self.collection_name
87
+ self.final_dir = self.base_output_dir / self.collection_name
88
+ else:
89
+ self.staging_dir = cache_dir / "download"
90
+ self.final_dir = self.base_output_dir
91
+
92
+ # Work in staging directory during download
93
+ self.output_dir = self.staging_dir
94
+ self.output_dir.mkdir(parents=True, exist_ok=True)
95
+
96
+ logger.info(f"Staging directory: {self.staging_dir}")
97
+ logger.info(f"Final destination: {self.final_dir}")
98
+
99
+ # Set up file logging for archival with timestamp for incremental runs
100
+ timestamp = time.strftime("%Y%m%d-%H%M%S")
101
+ log_file = self.output_dir / f"download.log.{timestamp}"
102
+ add_file_handler(log_file)
103
+ logger.info(f"Logging to: {log_file}")
104
+
105
+ self.metadata_file = self.output_dir / "metadata.jsonl"
106
+ self.progress_file = self.output_dir / "progress.json"
107
+ self.downloaded = self._load_progress()
108
+
109
+ def _load_progress(self):
110
+ """Load previously downloaded image IDs for this quality."""
111
+ if self.progress_file.exists():
112
+ with open(self.progress_file) as f:
113
+ data = json.load(f)
114
+ # Support both old format (single list) and new format (per-quality dict)
115
+ if isinstance(data, dict):
116
+ if "downloaded" in data:
117
+ # Old format: {"downloaded": [...]}
118
+ return set(data["downloaded"])
119
+ else:
120
+ # New format: {"256": [...], "1024": [...], ...}
121
+ return set(data.get(str(self.quality), []))
122
+ else:
123
+ # Very old format: just a list
124
+ return set(data)
125
+ return set()
126
+
127
+ def _save_progress(self):
128
+ """Save progress to disk atomically, per-quality."""
129
+ # Load existing progress for all qualities
130
+ if self.progress_file.exists():
131
+ with open(self.progress_file) as f:
132
+ data = json.load(f)
133
+ # Convert old format to new format if needed
134
+ if isinstance(data, dict) and "downloaded" in data:
135
+ # Old format: {"downloaded": [...]} - migrate to per-quality
136
+ progress = {}
137
+ else:
138
+ progress = data if isinstance(data, dict) else {}
139
+ else:
140
+ progress = {}
141
+
142
+ # Update this quality's progress
143
+ progress[str(self.quality)] = list(self.downloaded)
144
+
145
+ # Write atomically
146
+ temp_file = self.progress_file.with_suffix(".json.tmp")
147
+ with open(temp_file, "w") as f:
148
+ json.dump(progress, f)
149
+ f.flush()
150
+ os.fsync(f.fileno())
151
+ temp_file.replace(self.progress_file)
152
+
153
+ def download_user_data(self, bbox=None, convert_webp=False):
154
+ """Download all images for a user using streaming queue-based architecture.
155
+
156
+ Args:
157
+ bbox: Optional bounding box [west, south, east, north]
158
+ convert_webp: Convert images to WebP format after download
159
+ """
160
+ if not self.username or not self.quality:
161
+ raise ValueError("Username and quality must be provided during initialization")
162
+
163
+ # Check if collection already exists on Internet Archive
164
+ if self.check_ia and self.collection_name:
165
+ logger.info(f"Checking if {self.collection_name} exists on Internet Archive...")
166
+ if check_ia_exists(self.collection_name):
167
+ logger.info("Collection already exists on archive.org, skipping download")
168
+ return
169
+
170
+ # Check if collection already exists in final destination
171
+ if self.final_dir.exists():
172
+ logger.info(f"Collection already exists at {self.final_dir}, skipping download")
173
+ return
174
+
175
+ quality_field = f"thumb_{self.quality}_url"
176
+
177
+ logger.info(f"Downloading images for user: {self.username}")
178
+ logger.info(f"Output directory: {self.output_dir}")
179
+ logger.info(f"Quality: {self.quality}")
180
+ logger.info(f"Using {self.workers} parallel workers")
181
+
182
+ start_time = time.time()
183
+
184
+ # Step 1: Build seen_ids from metadata file (streaming, only IDs)
185
+ logger.info("Building seen_ids from metadata...")
186
+ reader = MetadataReader(self.metadata_file)
187
+ seen_ids = reader.get_all_ids()
188
+ api_complete = reader.is_complete
189
+ logger.info(f"Found {len(seen_ids)} existing images in metadata")
190
+
191
+ # Step 2: Start worker pool (fork AFTER building seen_ids, BEFORE downloading)
192
+ pool = AdaptiveWorkerPool(
193
+ worker_process, min_workers=max(1, self.workers // 2), max_workers=self.workers, monitoring_interval=30
194
+ )
195
+ pool.start()
196
+
197
+ # Step 3: Download images from existing metadata while fetching new from API
198
+ downloaded_count = 0
199
+ skipped = 0
200
+ total_bytes = 0
201
+ failed_count = 0
202
+ submitted = 0
203
+ batch_start = time.time()
204
+
205
+ logger.info("Starting parallel download and API fetch...")
206
+
207
+ try:
208
+ # Step 3a: Fetch metadata from API in parallel (write-only, don't block on queue)
209
+ if not api_complete:
210
+ import threading
211
+
212
+ api_fetch_complete = threading.Event()
213
+ new_images_count = [0] # Mutable so thread can update it
214
+
215
+ def fetch_api_metadata():
216
+ """Fetch metadata from API and write to file (runs in thread)."""
217
+ try:
218
+ logger.info("API fetch thread: Starting...")
219
+ with open(self.metadata_file, "a") as meta_f:
220
+ for image in self.client.get_user_images(self.username, bbox=bbox):
221
+ image_id = image["id"]
222
+
223
+ # Skip if we already have this in our metadata file
224
+ if image_id in seen_ids:
225
+ continue
226
+
227
+ seen_ids.add(image_id)
228
+ new_images_count[0] += 1
229
+
230
+ # Save new metadata
231
+ meta_f.write(json.dumps(image) + "\n")
232
+ meta_f.flush()
233
+
234
+ if new_images_count[0] % 1000 == 0:
235
+ logger.info(f"API: Fetched {new_images_count[0]} new images from API")
236
+
237
+ # Mark as complete
238
+ MetadataReader.mark_complete(self.metadata_file)
239
+ logger.info(f"API fetch complete: {new_images_count[0]} new images")
240
+ finally:
241
+ api_fetch_complete.set()
242
+
243
+ # Start API fetch in background thread
244
+ api_thread = threading.Thread(target=fetch_api_metadata, daemon=True)
245
+ api_thread.start()
246
+ else:
247
+ logger.info("API fetch already complete, skipping API thread")
248
+ api_fetch_complete = None
249
+
250
+ # Step 3b: Tail metadata file and submit to workers
251
+ logger.info("Starting metadata tail and download queue feeder...")
252
+ last_position = 0
253
+
254
+ # Helper to process results from queue
255
+ def process_results():
256
+ nonlocal downloaded_count, total_bytes, failed_count
257
+ while True:
258
+ result = pool.get_result(timeout=0.001)
259
+ if result is None:
260
+ break
261
+
262
+ image_id, bytes_dl, success, error_msg = result
263
+
264
+ if success:
265
+ self.downloaded.add(image_id)
266
+ downloaded_count += 1
267
+ total_bytes += bytes_dl
268
+
269
+ # Log every download for first 10, then every 100
270
+ should_log = downloaded_count <= 10 or downloaded_count % 100 == 0
271
+ if should_log:
272
+ elapsed = time.time() - batch_start
273
+ rate = downloaded_count / elapsed if elapsed > 0 else 0
274
+ logger.info(
275
+ f"Downloaded: {downloaded_count} ({format_size(total_bytes)}) "
276
+ f"- Rate: {rate:.1f} images/sec"
277
+ )
278
+
279
+ if downloaded_count % 100 == 0:
280
+ self._save_progress()
281
+ pool.check_throughput(downloaded_count)
282
+ else:
283
+ failed_count += 1
284
+ logger.warning(f"Failed to download {image_id}: {error_msg}")
285
+
286
+ # Tail the metadata file and submit to workers
287
+ while True:
288
+ # Check if API fetch is done and we've processed everything
289
+ if api_fetch_complete and api_fetch_complete.is_set():
290
+ # Read any remaining lines
291
+ if self.metadata_file.exists():
292
+ with open(self.metadata_file) as f:
293
+ f.seek(last_position)
294
+ for line in f:
295
+ line = line.strip()
296
+ if not line:
297
+ continue
298
+
299
+ try:
300
+ image = json.loads(line)
301
+ except json.JSONDecodeError:
302
+ # Incomplete line, will retry
303
+ continue
304
+
305
+ # Skip completion marker
306
+ if image.get("__complete__"):
307
+ continue
308
+
309
+ image_id = image.get("id")
310
+ if not image_id:
311
+ continue
312
+
313
+ # Skip if already downloaded or no quality URL
314
+ if image_id in self.downloaded:
315
+ continue
316
+ if not image.get(quality_field):
317
+ continue
318
+
319
+ # Submit to workers
320
+ work_item = (
321
+ image,
322
+ str(self.output_dir),
323
+ self.quality,
324
+ convert_webp,
325
+ self.client.access_token,
326
+ )
327
+ pool.submit(work_item)
328
+ submitted += 1
329
+
330
+ if submitted % 1000 == 0:
331
+ logger.info(f"Queue: Submitted {submitted} images")
332
+
333
+ # Process results while submitting
334
+ process_results()
335
+
336
+ last_position = f.tell()
337
+
338
+ # API done and all lines processed, break
339
+ break
340
+
341
+ # API still running or API was already complete, tail the file
342
+ if self.metadata_file.exists():
343
+ with open(self.metadata_file) as f:
344
+ f.seek(last_position)
345
+ for line in f:
346
+ line = line.strip()
347
+ if not line:
348
+ continue
349
+
350
+ try:
351
+ image = json.loads(line)
352
+ except json.JSONDecodeError:
353
+ # Incomplete line, will retry next iteration
354
+ continue
355
+
356
+ # Skip completion marker
357
+ if image.get("__complete__"):
358
+ continue
359
+
360
+ image_id = image.get("id")
361
+ if not image_id:
362
+ continue
363
+
364
+ # Skip if already downloaded or no quality URL
365
+ if image_id in self.downloaded:
366
+ continue
367
+ if not image.get(quality_field):
368
+ continue
369
+
370
+ # Submit to workers
371
+ work_item = (
372
+ image,
373
+ str(self.output_dir),
374
+ self.quality,
375
+ convert_webp,
376
+ self.client.access_token,
377
+ )
378
+ pool.submit(work_item)
379
+ submitted += 1
380
+
381
+ if submitted % 1000 == 0:
382
+ logger.info(f"Queue: Submitted {submitted} images")
383
+
384
+ # Process results while submitting
385
+ process_results()
386
+
387
+ last_position = f.tell()
388
+
389
+ # Sleep briefly before next tail iteration
390
+ time.sleep(0.1)
391
+
392
+ # Process any results that came in
393
+ process_results()
394
+
395
+ # Send shutdown signals
396
+ logger.info(f"Submitted {submitted} images, waiting for workers to finish...")
397
+ for _ in range(pool.current_workers):
398
+ pool.submit(None)
399
+
400
+ # Collect remaining results
401
+ completed = downloaded_count + failed_count
402
+
403
+ while completed < submitted:
404
+ result = pool.get_result(timeout=5)
405
+ if result is None:
406
+ # Check throughput periodically
407
+ pool.check_throughput(downloaded_count)
408
+ continue
409
+
410
+ image_id, bytes_dl, success, error_msg = result
411
+ completed += 1
412
+
413
+ if success:
414
+ self.downloaded.add(image_id)
415
+ downloaded_count += 1
416
+ total_bytes += bytes_dl
417
+
418
+ if downloaded_count % 10 == 0:
419
+ elapsed = time.time() - batch_start
420
+ rate = downloaded_count / elapsed if elapsed > 0 else 0
421
+ remaining = submitted - completed
422
+ eta_seconds = remaining / rate if rate > 0 else 0
423
+
424
+ logger.info(
425
+ f"Downloaded: {downloaded_count}/{submitted} ({format_size(total_bytes)}) "
426
+ f"- ETA: {format_time(eta_seconds)}"
427
+ )
428
+ self._save_progress()
429
+ pool.check_throughput(downloaded_count)
430
+ else:
431
+ failed_count += 1
432
+ logger.warning(f"Failed to download {image_id}: {error_msg}")
433
+
434
+ finally:
435
+ # Shutdown worker pool
436
+ pool.shutdown()
437
+
438
+ self._save_progress()
439
+ elapsed = time.time() - start_time
440
+
441
+ # Count total images in metadata
442
+ total_images = len(seen_ids)
443
+ skipped = total_images - downloaded_count - failed_count
444
+
445
+ logger.info(
446
+ f"Complete! Total {total_images} images, downloaded {downloaded_count} ({format_size(total_bytes)}), "
447
+ f"skipped {skipped}, failed {failed_count}"
448
+ )
449
+ logger.info(f"Total time: {format_time(elapsed)}")
450
+
451
+ # Tar sequence directories for efficient IA uploads
452
+ if self.tar_sequences:
453
+ tar_sequence_directories(self.output_dir)
454
+
455
+ # Gzip metadata.jsonl to save space
456
+ if self.metadata_file.exists():
457
+ logger.info("Compressing metadata.jsonl...")
458
+ original_size = self.metadata_file.stat().st_size
459
+ gzipped_file = self.metadata_file.with_suffix(".jsonl.gz")
460
+
461
+ with open(self.metadata_file, "rb") as f_in:
462
+ with gzip.open(gzipped_file, "wb", compresslevel=9) as f_out:
463
+ shutil.copyfileobj(f_in, f_out)
464
+
465
+ compressed_size = gzipped_file.stat().st_size
466
+ self.metadata_file.unlink()
467
+
468
+ savings = 100 * (1 - compressed_size / original_size)
469
+ logger.info(
470
+ f"Compressed metadata: {format_size(original_size)} → {format_size(compressed_size)} "
471
+ f"({savings:.1f}% savings)"
472
+ )
473
+
474
+ # Generate IA metadata
475
+ generate_ia_metadata(self.output_dir)
476
+
477
+ # Move from staging to final destination
478
+ logger.info("Moving collection from staging to final destination...")
479
+ if self.final_dir.exists():
480
+ logger.warning(f"Destination already exists, removing: {self.final_dir}")
481
+ shutil.rmtree(self.final_dir)
482
+
483
+ self.final_dir.parent.mkdir(parents=True, exist_ok=True)
484
+ shutil.move(str(self.staging_dir), str(self.final_dir))
485
+ logger.info(f"Collection moved to: {self.final_dir}")
@@ -1,8 +1,11 @@
1
1
  """EXIF metadata writer for Mapillary images."""
2
2
 
3
+ import logging
3
4
  import piexif
4
5
  from datetime import datetime
5
6
 
7
+ logger = logging.getLogger("mapillary_downloader")
8
+
6
9
 
7
10
  def decimal_to_dms(decimal):
8
11
  """Convert decimal degrees to degrees, minutes, seconds format for EXIF.
@@ -47,6 +50,9 @@ def write_exif_to_image(image_path, metadata):
47
50
  True if successful, False otherwise
48
51
  """
49
52
  try:
53
+ logger.debug(f"Writing EXIF to {image_path}")
54
+ logger.debug(f"Metadata: {metadata}")
55
+
50
56
  # Load existing EXIF data if any
51
57
  try:
52
58
  exif_dict = piexif.load(str(image_path))
@@ -99,13 +105,17 @@ def write_exif_to_image(image_path, metadata):
99
105
  # GPS Altitude - prefer computed_altitude over altitude
100
106
  altitude = metadata.get("computed_altitude") or metadata.get("altitude")
101
107
  if altitude is not None:
102
- exif_dict["GPS"][piexif.GPSIFD.GPSAltitude] = (int(abs(altitude) * 100), 100)
108
+ altitude_val = int(abs(altitude) * 100)
109
+ logger.debug(f"Raw altitude value: {altitude}, calculated: {altitude_val}")
110
+ exif_dict["GPS"][piexif.GPSIFD.GPSAltitude] = (altitude_val, 100)
103
111
  exif_dict["GPS"][piexif.GPSIFD.GPSAltitudeRef] = 1 if altitude < 0 else 0
104
112
 
105
113
  # GPS Compass direction
106
114
  compass = metadata.get("computed_compass_angle") or metadata.get("compass_angle")
107
115
  if compass is not None:
108
- exif_dict["GPS"][piexif.GPSIFD.GPSImgDirection] = (int(compass * 100), 100)
116
+ # Normalize compass to 0-360 range
117
+ compass_val = int((compass % 360) * 100)
118
+ exif_dict["GPS"][piexif.GPSIFD.GPSImgDirection] = (compass_val, 100)
109
119
  exif_dict["GPS"][piexif.GPSIFD.GPSImgDirectionRef] = b"T" # True north
110
120
 
111
121
  # GPS Version
@@ -115,8 +125,10 @@ def write_exif_to_image(image_path, metadata):
115
125
  exif_bytes = piexif.dump(exif_dict)
116
126
  piexif.insert(exif_bytes, str(image_path))
117
127
 
128
+ logger.debug(f"Successfully wrote EXIF to {image_path}")
118
129
  return True
119
130
 
120
131
  except Exception as e:
121
- print(f"Warning: Failed to write EXIF data to {image_path}: {e}")
132
+ logger.warning(f"Failed to write EXIF data to {image_path}: {e}")
133
+ logger.debug(f"Full metadata: {metadata}")
122
134
  return False
@@ -0,0 +1,123 @@
1
+ """Streaming metadata reader with filtering."""
2
+
3
+ import gzip
4
+ import json
5
+ import logging
6
+ from pathlib import Path
7
+
8
+ logger = logging.getLogger("mapillary_downloader")
9
+
10
+
11
+ class MetadataReader:
12
+ """Streams metadata.jsonl line-by-line with filtering.
13
+
14
+ This avoids loading millions of image dicts into memory.
15
+ """
16
+
17
+ COMPLETION_MARKER = {"__complete__": True}
18
+
19
+ def __init__(self, metadata_file):
20
+ """Initialize metadata reader.
21
+
22
+ Args:
23
+ metadata_file: Path to metadata.jsonl or metadata.jsonl.gz
24
+ """
25
+ self.metadata_file = Path(metadata_file)
26
+ self.is_complete = False
27
+
28
+ def iter_images(self, quality_field=None, downloaded_ids=None):
29
+ """Stream images from metadata file with filtering.
30
+
31
+ Args:
32
+ quality_field: Optional field to check exists (e.g., 'thumb_1024_url')
33
+ downloaded_ids: Optional set of already downloaded IDs to skip
34
+
35
+ Yields:
36
+ Image metadata dicts that pass filters
37
+ """
38
+ if not self.metadata_file.exists():
39
+ return
40
+
41
+ # Handle gzipped files
42
+ if self.metadata_file.suffix == ".gz":
43
+ file_handle = gzip.open(self.metadata_file, "rt")
44
+ else:
45
+ file_handle = open(self.metadata_file)
46
+
47
+ with file_handle as f:
48
+ for line in f:
49
+ line = line.strip()
50
+ if not line:
51
+ continue
52
+
53
+ image = json.loads(line)
54
+
55
+ # Check for completion marker
56
+ if image.get("__complete__"):
57
+ self.is_complete = True
58
+ logger.debug("Found API fetch completion marker")
59
+ continue
60
+
61
+ image_id = image.get("id")
62
+ if not image_id:
63
+ continue
64
+
65
+ # Filter by downloaded status
66
+ if downloaded_ids and image_id in downloaded_ids:
67
+ continue
68
+
69
+ # Filter by quality field availability
70
+ if quality_field and not image.get(quality_field):
71
+ continue
72
+
73
+ yield image
74
+
75
+ def get_all_ids(self):
76
+ """Get set of all image IDs in metadata file.
77
+
78
+ Returns:
79
+ Set of image IDs (for building seen_ids)
80
+ """
81
+ ids = set()
82
+
83
+ if not self.metadata_file.exists():
84
+ return ids
85
+
86
+ # Handle gzipped files
87
+ if self.metadata_file.suffix == ".gz":
88
+ file_handle = gzip.open(self.metadata_file, "rt")
89
+ else:
90
+ file_handle = open(self.metadata_file)
91
+
92
+ with file_handle as f:
93
+ for line in f:
94
+ line = line.strip()
95
+ if not line:
96
+ continue
97
+
98
+ image = json.loads(line)
99
+
100
+ # Skip completion marker
101
+ if image.get("__complete__"):
102
+ self.is_complete = True
103
+ continue
104
+
105
+ image_id = image.get("id")
106
+ if image_id:
107
+ ids.add(image_id)
108
+
109
+ return ids
110
+
111
+ @staticmethod
112
+ def mark_complete(metadata_file):
113
+ """Append completion marker to metadata file.
114
+
115
+ Args:
116
+ metadata_file: Path to metadata.jsonl
117
+ """
118
+ metadata_file = Path(metadata_file)
119
+ if metadata_file.exists():
120
+ with open(metadata_file, "a") as f:
121
+ f.write(json.dumps(MetadataReader.COMPLETION_MARKER) + "\n")
122
+ f.flush()
123
+ logger.info("Marked metadata file as complete")
@@ -9,6 +9,31 @@ from mapillary_downloader.exif_writer import write_exif_to_image
9
9
  from mapillary_downloader.webp_converter import convert_to_webp
10
10
 
11
11
 
12
+ def worker_process(work_queue, result_queue, worker_id):
13
+ """Worker process that pulls from queue and processes images.
14
+
15
+ Args:
16
+ work_queue: Queue to pull work items from
17
+ result_queue: Queue to push results to
18
+ worker_id: Unique worker identifier
19
+ """
20
+ while True:
21
+ work_item = work_queue.get()
22
+
23
+ # None is the shutdown signal
24
+ if work_item is None:
25
+ break
26
+
27
+ # Unpack work item
28
+ image_data, output_dir, quality, convert_webp, access_token = work_item
29
+
30
+ # Process the image
31
+ result = download_and_convert_image(image_data, output_dir, quality, convert_webp, access_token)
32
+
33
+ # Push result back
34
+ result_queue.put(result)
35
+
36
+
12
37
  def download_and_convert_image(image_data, output_dir, quality, convert_webp, access_token):
13
38
  """Download and optionally convert a single image.
14
39
 
@@ -0,0 +1,136 @@
1
+ """Adaptive worker pool for parallel processing."""
2
+
3
+ import logging
4
+ import multiprocessing as mp
5
+ import queue
6
+ import time
7
+ from collections import deque
8
+
9
+ logger = logging.getLogger("mapillary_downloader")
10
+
11
+
12
+ class AdaptiveWorkerPool:
13
+ """Worker pool that scales based on throughput.
14
+
15
+ Monitors throughput every 30 seconds and adjusts worker count:
16
+ - If throughput increasing: add workers (up to max)
17
+ - If throughput plateauing/decreasing: reduce workers
18
+ """
19
+
20
+ def __init__(self, worker_func, min_workers=4, max_workers=16, monitoring_interval=30):
21
+ """Initialize adaptive worker pool.
22
+
23
+ Args:
24
+ worker_func: Function to run in each worker (must accept work_queue, result_queue)
25
+ min_workers: Minimum number of workers
26
+ max_workers: Maximum number of workers
27
+ monitoring_interval: Seconds between throughput checks
28
+ """
29
+ self.worker_func = worker_func
30
+ self.min_workers = min_workers
31
+ self.max_workers = max_workers
32
+ self.monitoring_interval = monitoring_interval
33
+
34
+ # Queues
35
+ self.work_queue = mp.Queue(maxsize=max_workers)
36
+ self.result_queue = mp.Queue()
37
+
38
+ # Worker management
39
+ self.workers = []
40
+ self.current_workers = min_workers
41
+
42
+ # Throughput monitoring
43
+ self.throughput_history = deque(maxlen=5) # Last 5 measurements
44
+ self.last_processed = 0
45
+ self.last_check_time = time.time()
46
+
47
+ self.running = False
48
+
49
+ def start(self):
50
+ """Start the worker pool."""
51
+ self.running = True
52
+ logger.info(f"Starting worker pool with {self.current_workers} workers")
53
+
54
+ for i in range(self.current_workers):
55
+ self._add_worker(i)
56
+
57
+ def _add_worker(self, worker_id):
58
+ """Add a new worker to the pool."""
59
+ p = mp.Process(target=self.worker_func, args=(self.work_queue, self.result_queue, worker_id))
60
+ p.start()
61
+ self.workers.append(p)
62
+ logger.debug(f"Started worker {worker_id}")
63
+
64
+ def submit(self, work_item):
65
+ """Submit work to the pool (blocks if queue is full)."""
66
+ self.work_queue.put(work_item)
67
+
68
+ def get_result(self, timeout=None):
69
+ """Get a result from the workers.
70
+
71
+ Returns:
72
+ Result from worker, or None if timeout
73
+ """
74
+ try:
75
+ return self.result_queue.get(timeout=timeout)
76
+ except queue.Empty:
77
+ return None
78
+
79
+ def check_throughput(self, total_processed):
80
+ """Check throughput and adjust workers if needed.
81
+
82
+ Args:
83
+ total_processed: Total number of items processed so far
84
+ """
85
+ now = time.time()
86
+ elapsed = now - self.last_check_time
87
+
88
+ if elapsed < self.monitoring_interval:
89
+ return
90
+
91
+ # Calculate current throughput (items/sec)
92
+ items_since_check = total_processed - self.last_processed
93
+ throughput = items_since_check / elapsed
94
+
95
+ self.throughput_history.append(throughput)
96
+ self.last_processed = total_processed
97
+ self.last_check_time = now
98
+
99
+ # Need at least 3 measurements to detect trends
100
+ if len(self.throughput_history) < 3:
101
+ return
102
+
103
+ # Check if throughput is increasing
104
+ recent_avg = sum(list(self.throughput_history)[-2:]) / 2
105
+ older_avg = sum(list(self.throughput_history)[-4:-2]) / 2
106
+
107
+ if recent_avg > older_avg * 1.1 and len(self.workers) < self.max_workers:
108
+ # Throughput increasing by >10%, add workers
109
+ new_worker_id = len(self.workers)
110
+ self._add_worker(new_worker_id)
111
+ self.current_workers += 1
112
+ logger.info(f"Throughput increasing ({throughput:.1f} items/s), added worker (now {self.current_workers})")
113
+
114
+ elif recent_avg < older_avg * 0.9 and len(self.workers) > self.min_workers:
115
+ # Throughput decreasing by >10%, remove worker
116
+ # (workers will exit naturally when they finish current work)
117
+ self.current_workers = max(self.min_workers, self.current_workers - 1)
118
+ logger.info(f"Throughput plateauing ({throughput:.1f} items/s), reducing to {self.current_workers} workers")
119
+
120
+ def shutdown(self, timeout=30):
121
+ """Shutdown the worker pool gracefully."""
122
+ logger.info("Shutting down worker pool...")
123
+ self.running = False
124
+
125
+ # Send stop signals
126
+ for _ in self.workers:
127
+ self.work_queue.put(None)
128
+
129
+ # Wait for workers to finish
130
+ for p in self.workers:
131
+ p.join(timeout=timeout)
132
+ if p.is_alive():
133
+ logger.warning(f"Worker {p.pid} did not exit cleanly, terminating")
134
+ p.terminate()
135
+
136
+ logger.info("Worker pool shutdown complete")
@@ -1,326 +0,0 @@
1
- """Main downloader logic."""
2
-
3
- import gzip
4
- import json
5
- import logging
6
- import os
7
- import shutil
8
- import time
9
- from pathlib import Path
10
- from concurrent.futures import ProcessPoolExecutor, as_completed
11
- from mapillary_downloader.utils import format_size, format_time
12
- from mapillary_downloader.ia_meta import generate_ia_metadata
13
- from mapillary_downloader.ia_check import check_ia_exists
14
- from mapillary_downloader.worker import download_and_convert_image
15
- from mapillary_downloader.tar_sequences import tar_sequence_directories
16
- from mapillary_downloader.logging_config import add_file_handler
17
-
18
- logger = logging.getLogger("mapillary_downloader")
19
-
20
-
21
- def get_cache_dir():
22
- """Get XDG cache directory for staging downloads.
23
-
24
- Returns:
25
- Path to cache directory for mapillary_downloader
26
- """
27
- xdg_cache = os.environ.get("XDG_CACHE_HOME")
28
- if xdg_cache:
29
- cache_dir = Path(xdg_cache)
30
- else:
31
- cache_dir = Path.home() / ".cache"
32
-
33
- mapillary_cache = cache_dir / "mapillary_downloader"
34
- mapillary_cache.mkdir(parents=True, exist_ok=True)
35
- return mapillary_cache
36
-
37
-
38
- class MapillaryDownloader:
39
- """Handles downloading Mapillary data for a user."""
40
-
41
- def __init__(
42
- self,
43
- client,
44
- output_dir,
45
- username=None,
46
- quality=None,
47
- workers=None,
48
- tar_sequences=True,
49
- convert_webp=False,
50
- check_ia=True,
51
- ):
52
- """Initialize the downloader.
53
-
54
- Args:
55
- client: MapillaryClient instance
56
- output_dir: Base directory to save downloads (final destination)
57
- username: Mapillary username (for collection directory)
58
- quality: Image quality (for collection directory)
59
- workers: Number of parallel workers (default: half of cpu_count)
60
- tar_sequences: Whether to tar sequence directories after download (default: True)
61
- convert_webp: Whether to convert images to WebP (affects collection name)
62
- check_ia: Whether to check if collection exists on Internet Archive (default: True)
63
- """
64
- self.client = client
65
- self.base_output_dir = Path(output_dir)
66
- self.username = username
67
- self.quality = quality
68
- self.workers = workers if workers is not None else max(1, os.cpu_count() // 2)
69
- self.tar_sequences = tar_sequences
70
- self.convert_webp = convert_webp
71
- self.check_ia = check_ia
72
-
73
- # Determine collection name
74
- if username and quality:
75
- collection_name = f"mapillary-{username}-{quality}"
76
- if convert_webp:
77
- collection_name += "-webp"
78
- self.collection_name = collection_name
79
- else:
80
- self.collection_name = None
81
-
82
- # Set up staging directory in cache
83
- cache_dir = get_cache_dir()
84
- if self.collection_name:
85
- self.staging_dir = cache_dir / self.collection_name
86
- self.final_dir = self.base_output_dir / self.collection_name
87
- else:
88
- self.staging_dir = cache_dir / "download"
89
- self.final_dir = self.base_output_dir
90
-
91
- # Work in staging directory during download
92
- self.output_dir = self.staging_dir
93
- self.output_dir.mkdir(parents=True, exist_ok=True)
94
-
95
- logger.info(f"Staging directory: {self.staging_dir}")
96
- logger.info(f"Final destination: {self.final_dir}")
97
-
98
- # Set up file logging for archival with timestamp for incremental runs
99
- timestamp = time.strftime("%Y%m%d-%H%M%S")
100
- log_file = self.output_dir / f"download.log.{timestamp}"
101
- add_file_handler(log_file)
102
- logger.info(f"Logging to: {log_file}")
103
-
104
- self.metadata_file = self.output_dir / "metadata.jsonl"
105
- self.progress_file = self.output_dir / "progress.json"
106
- self.downloaded = self._load_progress()
107
-
108
- def _load_progress(self):
109
- """Load previously downloaded image IDs."""
110
- if self.progress_file.exists():
111
- with open(self.progress_file) as f:
112
- return set(json.load(f).get("downloaded", []))
113
- return set()
114
-
115
- def _save_progress(self):
116
- """Save progress to disk atomically."""
117
- temp_file = self.progress_file.with_suffix(".json.tmp")
118
- with open(temp_file, "w") as f:
119
- json.dump({"downloaded": list(self.downloaded)}, f)
120
- f.flush()
121
- os.fsync(f.fileno())
122
- temp_file.replace(self.progress_file)
123
-
124
- def download_user_data(self, bbox=None, convert_webp=False):
125
- """Download all images for a user.
126
-
127
- Args:
128
- bbox: Optional bounding box [west, south, east, north]
129
- convert_webp: Convert images to WebP format after download
130
- """
131
- if not self.username or not self.quality:
132
- raise ValueError("Username and quality must be provided during initialization")
133
-
134
- # Check if collection already exists on Internet Archive
135
- if self.check_ia and self.collection_name:
136
- logger.info(f"Checking if {self.collection_name} exists on Internet Archive...")
137
- if check_ia_exists(self.collection_name):
138
- logger.info("Collection already exists on archive.org, skipping download")
139
- return
140
-
141
- # Check if collection already exists in final destination
142
- if self.final_dir.exists():
143
- logger.info(f"Collection already exists at {self.final_dir}, skipping download")
144
- return
145
-
146
- quality_field = f"thumb_{self.quality}_url"
147
-
148
- logger.info(f"Downloading images for user: {self.username}")
149
- logger.info(f"Output directory: {self.output_dir}")
150
- logger.info(f"Quality: {self.quality}")
151
- logger.info(f"Using {self.workers} parallel workers")
152
-
153
- processed = 0
154
- downloaded_count = 0
155
- skipped = 0
156
- total_bytes = 0
157
- failed_count = 0
158
-
159
- start_time = time.time()
160
-
161
- # Track which image IDs we've seen in metadata to avoid re-fetching
162
- seen_ids = set()
163
-
164
- # Collect images to download from existing metadata
165
- images_to_download = []
166
-
167
- if self.metadata_file.exists():
168
- logger.info("Processing existing metadata file...")
169
- with open(self.metadata_file) as f:
170
- for line in f:
171
- if line.strip():
172
- image = json.loads(line)
173
- image_id = image["id"]
174
- seen_ids.add(image_id)
175
- processed += 1
176
-
177
- if image_id in self.downloaded:
178
- skipped += 1
179
- continue
180
-
181
- # Queue for download
182
- if image.get(quality_field):
183
- images_to_download.append(image)
184
-
185
- # Download images from existing metadata in parallel
186
- if images_to_download:
187
- logger.info(f"Downloading {len(images_to_download)} images from existing metadata...")
188
- downloaded_count, total_bytes, failed_count = self._download_images_parallel(
189
- images_to_download, convert_webp
190
- )
191
-
192
- # Always check API for new images (will skip duplicates via seen_ids)
193
- logger.info("Checking for new images from API...")
194
- new_images = []
195
-
196
- with open(self.metadata_file, "a") as meta_f:
197
- for image in self.client.get_user_images(self.username, bbox=bbox):
198
- image_id = image["id"]
199
-
200
- # Skip if we already have this in our metadata file
201
- if image_id in seen_ids:
202
- continue
203
-
204
- seen_ids.add(image_id)
205
- processed += 1
206
-
207
- # Save new metadata
208
- meta_f.write(json.dumps(image) + "\n")
209
- meta_f.flush()
210
-
211
- # Skip if already downloaded
212
- if image_id in self.downloaded:
213
- skipped += 1
214
- continue
215
-
216
- # Queue for download
217
- if image.get(quality_field):
218
- new_images.append(image)
219
-
220
- # Download new images in parallel
221
- if new_images:
222
- logger.info(f"Downloading {len(new_images)} new images...")
223
- new_downloaded, new_bytes, new_failed = self._download_images_parallel(new_images, convert_webp)
224
- downloaded_count += new_downloaded
225
- total_bytes += new_bytes
226
- failed_count += new_failed
227
-
228
- self._save_progress()
229
- elapsed = time.time() - start_time
230
- logger.info(
231
- f"Complete! Processed {processed} images, downloaded {downloaded_count} ({format_size(total_bytes)}), "
232
- f"skipped {skipped}, failed {failed_count}"
233
- )
234
- logger.info(f"Total time: {format_time(elapsed)}")
235
-
236
- # Tar sequence directories for efficient IA uploads
237
- if self.tar_sequences:
238
- tar_sequence_directories(self.output_dir)
239
-
240
- # Gzip metadata.jsonl to save space
241
- if self.metadata_file.exists():
242
- logger.info("Compressing metadata.jsonl...")
243
- original_size = self.metadata_file.stat().st_size
244
- gzipped_file = self.metadata_file.with_suffix(".jsonl.gz")
245
-
246
- with open(self.metadata_file, "rb") as f_in:
247
- with gzip.open(gzipped_file, "wb", compresslevel=9) as f_out:
248
- shutil.copyfileobj(f_in, f_out)
249
-
250
- compressed_size = gzipped_file.stat().st_size
251
- self.metadata_file.unlink()
252
-
253
- savings = 100 * (1 - compressed_size / original_size)
254
- logger.info(
255
- f"Compressed metadata: {format_size(original_size)} → {format_size(compressed_size)} "
256
- f"({savings:.1f}% savings)"
257
- )
258
-
259
- # Generate IA metadata
260
- generate_ia_metadata(self.output_dir)
261
-
262
- # Move from staging to final destination
263
- logger.info("Moving collection from staging to final destination...")
264
- if self.final_dir.exists():
265
- logger.warning(f"Destination already exists, removing: {self.final_dir}")
266
- shutil.rmtree(self.final_dir)
267
-
268
- self.final_dir.parent.mkdir(parents=True, exist_ok=True)
269
- shutil.move(str(self.staging_dir), str(self.final_dir))
270
- logger.info(f"Collection moved to: {self.final_dir}")
271
-
272
- def _download_images_parallel(self, images, convert_webp):
273
- """Download images in parallel using worker pool.
274
-
275
- Args:
276
- images: List of image metadata dicts
277
- convert_webp: Whether to convert to WebP
278
-
279
- Returns:
280
- Tuple of (downloaded_count, total_bytes, failed_count)
281
- """
282
- downloaded_count = 0
283
- total_bytes = 0
284
- failed_count = 0
285
- batch_start_time = time.time()
286
-
287
- with ProcessPoolExecutor(max_workers=self.workers) as executor:
288
- # Submit all tasks
289
- future_to_image = {}
290
- for image in images:
291
- future = executor.submit(
292
- download_and_convert_image,
293
- image,
294
- str(self.output_dir),
295
- self.quality,
296
- convert_webp,
297
- self.client.access_token,
298
- )
299
- future_to_image[future] = image["id"]
300
-
301
- # Process results as they complete
302
- for future in as_completed(future_to_image):
303
- image_id, bytes_dl, success, error_msg = future.result()
304
-
305
- if success:
306
- self.downloaded.add(image_id)
307
- downloaded_count += 1
308
- total_bytes += bytes_dl
309
-
310
- if downloaded_count % 10 == 0:
311
- # Calculate ETA
312
- elapsed = time.time() - batch_start_time
313
- rate = downloaded_count / elapsed if elapsed > 0 else 0
314
- remaining = len(images) - downloaded_count
315
- eta_seconds = remaining / rate if rate > 0 else 0
316
-
317
- logger.info(
318
- f"Downloaded: {downloaded_count}/{len(images)} ({format_size(total_bytes)}) "
319
- f"- ETA: {format_time(eta_seconds)}"
320
- )
321
- self._save_progress()
322
- else:
323
- failed_count += 1
324
- logger.warning(f"Failed to download {image_id}: {error_msg}")
325
-
326
- return downloaded_count, total_bytes, failed_count