mapFolding 0.2.3__tar.gz → 0.2.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. {mapfolding-0.2.3 → mapfolding-0.2.4}/PKG-INFO +3 -1
  2. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/babbage.py +9 -4
  3. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/beDRY.py +0 -3
  4. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/benchmarks/benchmarking.py +3 -2
  5. mapfolding-0.2.4/mapFolding/countInitialize.py +44 -0
  6. mapfolding-0.2.4/mapFolding/countParallel.py +49 -0
  7. mapfolding-0.2.4/mapFolding/countSequential.py +43 -0
  8. mapfolding-0.2.4/mapFolding/importSelector.py +12 -0
  9. mapfolding-0.2.4/mapFolding/inlineAfunction.py +124 -0
  10. mapfolding-0.2.4/mapFolding/lovelace.py +213 -0
  11. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/startHere.py +0 -11
  12. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/theSSOT.py +13 -5
  13. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding.egg-info/PKG-INFO +3 -1
  14. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding.egg-info/SOURCES.txt +7 -2
  15. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding.egg-info/requires.txt +2 -0
  16. {mapfolding-0.2.3 → mapfolding-0.2.4}/pyproject.toml +2 -2
  17. {mapfolding-0.2.3 → mapfolding-0.2.4}/tests/conftest.py +8 -1
  18. {mapfolding-0.2.3 → mapfolding-0.2.4}/tests/test_other.py +164 -94
  19. mapfolding-0.2.4/tests/test_temporary.py +25 -0
  20. mapfolding-0.2.3/mapFolding/benchmarks/test_benchmarks.py +0 -74
  21. mapfolding-0.2.3/mapFolding/lovelace.py +0 -217
  22. {mapfolding-0.2.3 → mapfolding-0.2.4}/README.md +0 -0
  23. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/JAX/lunnanJAX.py +0 -0
  24. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/JAX/taskJAX.py +0 -0
  25. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/__init__.py +0 -0
  26. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/oeis.py +0 -0
  27. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/reference/flattened.py +0 -0
  28. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/reference/hunterNumba.py +0 -0
  29. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/reference/irvineJavaPort.py +0 -0
  30. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/reference/lunnan.py +0 -0
  31. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/reference/lunnanNumpy.py +0 -0
  32. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/reference/lunnanWhile.py +0 -0
  33. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/reference/rotatedEntryPoint.py +0 -0
  34. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding/reference/total_countPlus1vsPlusN.py +0 -0
  35. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding.egg-info/dependency_links.txt +0 -0
  36. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding.egg-info/entry_points.txt +0 -0
  37. {mapfolding-0.2.3 → mapfolding-0.2.4}/mapFolding.egg-info/top_level.txt +0 -0
  38. {mapfolding-0.2.3 → mapfolding-0.2.4}/setup.cfg +0 -0
  39. {mapfolding-0.2.3 → mapfolding-0.2.4}/tests/__init__.py +0 -0
  40. {mapfolding-0.2.3 → mapfolding-0.2.4}/tests/pythons_idiotic_namespace.py +0 -0
  41. {mapfolding-0.2.3 → mapfolding-0.2.4}/tests/test_oeis.py +0 -0
  42. {mapfolding-0.2.3 → mapfolding-0.2.4}/tests/test_tasks.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mapFolding
3
- Version: 0.2.3
3
+ Version: 0.2.4
4
4
  Summary: Algorithm(s) for counting distinct ways to fold a map (or a strip of stamps)
5
5
  Author-email: Hunter Hogan <HunterHogan@pm.me>
6
6
  Project-URL: homepage, https://github.com/hunterhogan/mapFolding
@@ -22,6 +22,8 @@ Requires-Dist: pytest; extra == "testing"
22
22
  Requires-Dist: pytest-cov; extra == "testing"
23
23
  Requires-Dist: pytest-env; extra == "testing"
24
24
  Requires-Dist: pytest-xdist; extra == "testing"
25
+ Requires-Dist: pytest-order; extra == "testing"
26
+ Requires-Dist: pytest-dependency; extra == "testing"
25
27
 
26
28
  # Algorithm(s) for counting distinct ways to fold a map (or a strip of stamps)
27
29
 
@@ -1,4 +1,5 @@
1
- from mapFolding.lovelace import countFoldsCompiled
1
+ from mapFolding.importSelector import countSequential, countParallel, countInitialize
2
+ from mapFolding import indexThe
2
3
  from numpy import integer
3
4
  from numpy.typing import NDArray
4
5
  from typing import Any, Tuple
@@ -25,6 +26,10 @@ def _countFolds(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[
25
26
  - and just a few dozen-jillion other things.
26
27
 
27
28
  """
28
- # TODO learn if I really must change this jitted function to get the super jit to recompile
29
- # print('babbage')
30
- countFoldsCompiled(connectionGraph=connectionGraph, foldsSubTotals=foldsSubTotals, gapsWhere=gapsWhere, my=my, the=the, track=track)
29
+ # print("babbage")
30
+ countInitialize(connectionGraph=connectionGraph, gapsWhere=gapsWhere, my=my, the=the, track=track)
31
+
32
+ if the[indexThe.taskDivisions.value] > 0:
33
+ countParallel(connectionGraph=connectionGraph, foldsSubTotals=foldsSubTotals, gapsWherePARALLEL=gapsWhere, myPARALLEL=my, the=the, trackPARALLEL=track)
34
+ else:
35
+ countSequential(connectionGraph=connectionGraph, foldsSubTotals=foldsSubTotals, gapsWhere=gapsWhere, my=my, the=the, track=track)
@@ -230,9 +230,6 @@ def parseDimensions(dimensions: Sequence[int], parameterName: str = 'unnamed par
230
230
  raise ValueError(f"Dimension {dimension} must be non-negative")
231
231
  listNonNegative.append(dimension)
232
232
 
233
- if not listNonNegative:
234
- raise ValueError("At least one dimension must be non-negative")
235
-
236
233
  return listNonNegative
237
234
 
238
235
  def setCPUlimit(CPUlimit: Union[bool, float, int, None]) -> int:
@@ -1,5 +1,6 @@
1
- import multiprocessing
1
+ """An incompetent benchmarking module for mapFolding."""
2
2
  from typing import Callable
3
+ import multiprocessing
3
4
  import numpy
4
5
  import pathlib
5
6
  import time
@@ -57,7 +58,7 @@ def runBenchmarks(benchmarkIterations: int = 30) -> None:
57
58
  listCartesianProduct = list(itertools.product(listParametersOEIS, range(benchmarkIterations)))
58
59
  with ProcessPoolExecutor(max_workers) as concurrencyManager:
59
60
  listConcurrency = [concurrencyManager.submit(oeisIDfor_n, *parameters[0]) for parameters in listCartesianProduct]
60
- for complete in tqdm(as_completed(listConcurrency), total=len(listCartesianProduct)):
61
+ for _complete in tqdm(as_completed(listConcurrency), total=len(listCartesianProduct)):
61
62
  pass
62
63
 
63
64
  if __name__ == '__main__':
@@ -0,0 +1,44 @@
1
+ import numba
2
+
3
+ @numba.jit((numba.int64[:, :, ::1], numba.int64[::1], numba.int64[::1], numba.int64[::1], numba.int64[:, ::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
4
+ def countInitialize(connectionGraph, gapsWhere, my, the, track):
5
+ while my[6] > 0:
6
+ if my[6] <= 1 or track[1, 0] == 1:
7
+ my[1] = 0
8
+ my[3] = track[3, my[6] - 1]
9
+ my[0] = 1
10
+ while my[0] <= the[0]:
11
+ if connectionGraph[my[0], my[6], my[6]] == my[6]:
12
+ my[1] += 1
13
+ else:
14
+ my[7] = connectionGraph[my[0], my[6], my[6]]
15
+ while my[7] != my[6]:
16
+ gapsWhere[my[3]] = my[7]
17
+ if track[2, my[7]] == 0:
18
+ my[3] += 1
19
+ track[2, my[7]] += 1
20
+ my[7] = connectionGraph[my[0], my[6], track[1, my[7]]]
21
+ my[0] += 1
22
+ if my[1] == the[0]:
23
+ my[4] = 0
24
+ while my[4] < my[6]:
25
+ gapsWhere[my[3]] = my[4]
26
+ my[3] += 1
27
+ my[4] += 1
28
+ my[5] = my[2]
29
+ while my[5] < my[3]:
30
+ gapsWhere[my[2]] = gapsWhere[my[5]]
31
+ if track[2, gapsWhere[my[5]]] == the[0] - my[1]:
32
+ my[2] += 1
33
+ track[2, gapsWhere[my[5]]] = 0
34
+ my[5] += 1
35
+ if my[6] > 0:
36
+ my[2] -= 1
37
+ track[0, my[6]] = gapsWhere[my[2]]
38
+ track[1, my[6]] = track[1, track[0, my[6]]]
39
+ track[1, track[0, my[6]]] = my[6]
40
+ track[0, track[1, my[6]]] = my[6]
41
+ track[3, my[6]] = my[2]
42
+ my[6] += 1
43
+ if my[2] > 0:
44
+ return
@@ -0,0 +1,49 @@
1
+ import numba
2
+
3
+ @numba.jit((numba.int64[:, :, ::1], numba.int64[::1], numba.int64[::1], numba.int64[::1], numba.int64[::1], numba.int64[:, ::1]), parallel=True, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
4
+ def countParallel(connectionGraph, foldsSubTotals, gapsWherePARALLEL, myPARALLEL, the, trackPARALLEL):
5
+ for indexSherpa in numba.prange(the[2]):
6
+ gapsWhere = gapsWherePARALLEL.copy()
7
+ my = myPARALLEL.copy()
8
+ my[8] = indexSherpa
9
+ track = trackPARALLEL.copy()
10
+ while my[6] > 0:
11
+ if my[6] <= 1 or track[1, 0] == 1:
12
+ if my[6] > the[1]:
13
+ foldsSubTotals[my[8]] += the[1]
14
+ else:
15
+ my[1] = 0
16
+ my[3] = track[3, my[6] - 1]
17
+ my[0] = 1
18
+ while my[0] <= the[0]:
19
+ if connectionGraph[my[0], my[6], my[6]] == my[6]:
20
+ my[1] += 1
21
+ else:
22
+ my[7] = connectionGraph[my[0], my[6], my[6]]
23
+ while my[7] != my[6]:
24
+ if my[6] != the[2] or my[7] % the[2] == my[8]:
25
+ gapsWhere[my[3]] = my[7]
26
+ if track[2, my[7]] == 0:
27
+ my[3] += 1
28
+ track[2, my[7]] += 1
29
+ my[7] = connectionGraph[my[0], my[6], track[1, my[7]]]
30
+ my[0] += 1
31
+ my[5] = my[2]
32
+ while my[5] < my[3]:
33
+ gapsWhere[my[2]] = gapsWhere[my[5]]
34
+ if track[2, gapsWhere[my[5]]] == the[0] - my[1]:
35
+ my[2] += 1
36
+ track[2, gapsWhere[my[5]]] = 0
37
+ my[5] += 1
38
+ while my[6] > 0 and my[2] == track[3, my[6] - 1]:
39
+ my[6] -= 1
40
+ track[1, track[0, my[6]]] = track[1, my[6]]
41
+ track[0, track[1, my[6]]] = track[0, my[6]]
42
+ if my[6] > 0:
43
+ my[2] -= 1
44
+ track[0, my[6]] = gapsWhere[my[2]]
45
+ track[1, my[6]] = track[1, track[0, my[6]]]
46
+ track[1, track[0, my[6]]] = my[6]
47
+ track[0, track[1, my[6]]] = my[6]
48
+ track[3, my[6]] = my[2]
49
+ my[6] += 1
@@ -0,0 +1,43 @@
1
+ import numba
2
+
3
+ @numba.jit((numba.int64[:, :, ::1], numba.int64[::1], numba.int64[::1], numba.int64[::1], numba.int64[::1], numba.int64[:, ::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
4
+ def countSequential(connectionGraph, foldsSubTotals, gapsWhere, my, the, track):
5
+ while my[6] > 0:
6
+ if my[6] <= 1 or track[1, 0] == 1:
7
+ if my[6] > the[1]:
8
+ foldsSubTotals[my[8]] += the[1]
9
+ else:
10
+ my[1] = 0
11
+ my[3] = track[3, my[6] - 1]
12
+ my[0] = 1
13
+ while my[0] <= the[0]:
14
+ if connectionGraph[my[0], my[6], my[6]] == my[6]:
15
+ my[1] += 1
16
+ else:
17
+ my[7] = connectionGraph[my[0], my[6], my[6]]
18
+ while my[7] != my[6]:
19
+ gapsWhere[my[3]] = my[7]
20
+ if track[2, my[7]] == 0:
21
+ my[3] += 1
22
+ track[2, my[7]] += 1
23
+ my[7] = connectionGraph[my[0], my[6], track[1, my[7]]]
24
+ my[0] += 1
25
+ my[5] = my[2]
26
+ while my[5] < my[3]:
27
+ gapsWhere[my[2]] = gapsWhere[my[5]]
28
+ if track[2, gapsWhere[my[5]]] == the[0] - my[1]:
29
+ my[2] += 1
30
+ track[2, gapsWhere[my[5]]] = 0
31
+ my[5] += 1
32
+ while my[6] > 0 and my[2] == track[3, my[6] - 1]:
33
+ my[6] -= 1
34
+ track[1, track[0, my[6]]] = track[1, my[6]]
35
+ track[0, track[1, my[6]]] = track[0, my[6]]
36
+ if my[6] > 0:
37
+ my[2] -= 1
38
+ track[0, my[6]] = gapsWhere[my[2]]
39
+ track[1, my[6]] = track[1, track[0, my[6]]]
40
+ track[1, track[0, my[6]]] = my[6]
41
+ track[0, track[1, my[6]]] = my[6]
42
+ track[3, my[6]] = my[2]
43
+ my[6] += 1
@@ -0,0 +1,12 @@
1
+ # useLovelace = True
2
+ useLovelace = False
3
+
4
+ if useLovelace:
5
+ from mapFolding.lovelace import countSequential
6
+ from mapFolding.lovelace import countParallel
7
+ from mapFolding.lovelace import countInitialize
8
+
9
+ else:
10
+ from mapFolding.countSequential import countSequential
11
+ from mapFolding.countParallel import countParallel
12
+ from mapFolding.countInitialize import countInitialize
@@ -0,0 +1,124 @@
1
+ from mapFolding import indexMy, indexThe, indexTrack
2
+ import ast
3
+ import pathlib
4
+
5
+ dictionaryEnumValues = {}
6
+ for enumIndex in [indexMy, indexThe, indexTrack]:
7
+ for memberName, memberValue in enumIndex._member_map_.items():
8
+ dictionaryEnumValues[f"{enumIndex.__name__}.{memberName}.value"] = memberValue.value
9
+
10
+ class RecursiveInliner(ast.NodeTransformer):
11
+ def __init__(self, dictionaryFunctions, dictionaryEnumValues):
12
+ self.dictionaryFunctions = dictionaryFunctions
13
+ self.dictionaryEnumValues = dictionaryEnumValues
14
+ self.processed = set() # Track processed functions to avoid infinite recursion
15
+
16
+ def inline_function_body(self, functionName):
17
+ if functionName in self.processed:
18
+ return None
19
+
20
+ self.processed.add(functionName)
21
+ inlineDefinition = self.dictionaryFunctions[functionName]
22
+ # Recursively process the function body
23
+ for node in ast.walk(inlineDefinition):
24
+ self.visit(node)
25
+ return inlineDefinition
26
+
27
+ def visit_Attribute(self, node):
28
+ # Substitute enum identifiers (e.g., indexMy.leaf1ndex.value)
29
+ if isinstance(node.value, ast.Attribute) and isinstance(node.value.value, ast.Name):
30
+ enumPath = f"{node.value.value.id}.{node.value.attr}.{node.attr}"
31
+ if enumPath in self.dictionaryEnumValues:
32
+ return ast.Constant(value=self.dictionaryEnumValues[enumPath])
33
+ return self.generic_visit(node)
34
+
35
+ def visit_Call(self, node):
36
+ callNode = self.generic_visit(node)
37
+ if isinstance(callNode, ast.Call) and isinstance(callNode.func, ast.Name) and callNode.func.id in self.dictionaryFunctions:
38
+ inlineDefinition = self.inline_function_body(callNode.func.id)
39
+ if inlineDefinition and inlineDefinition.body:
40
+ lastStmt = inlineDefinition.body[-1]
41
+ if isinstance(lastStmt, ast.Return) and lastStmt.value is not None:
42
+ return self.visit(lastStmt.value)
43
+ elif isinstance(lastStmt, ast.Expr) and lastStmt.value is not None:
44
+ return self.visit(lastStmt.value)
45
+ return None
46
+ return callNode
47
+
48
+ def visit_Expr(self, node):
49
+ if isinstance(node.value, ast.Call):
50
+ if isinstance(node.value.func, ast.Name) and node.value.func.id in self.dictionaryFunctions:
51
+ inlineDefinition = self.inline_function_body(node.value.func.id)
52
+ if inlineDefinition:
53
+ return [self.visit(stmt) for stmt in inlineDefinition.body]
54
+ return self.generic_visit(node)
55
+
56
+ def find_required_imports(node):
57
+ """Find all modules that need to be imported based on AST analysis."""
58
+ requiredImports = set()
59
+
60
+ class ImportFinder(ast.NodeVisitor):
61
+ def visit_Name(self, node):
62
+ # Common modules we might need
63
+ if node.id in {'numba'}:
64
+ requiredImports.add(node.id)
65
+ self.generic_visit(node)
66
+
67
+ def visit_Decorator(self, node):
68
+ if isinstance(node, ast.Call) and isinstance(node.func, ast.Name):
69
+ if node.func.id == 'jit':
70
+ requiredImports.add('numba')
71
+ self.generic_visit(node)
72
+
73
+ ImportFinder().visit(node)
74
+ return requiredImports
75
+
76
+ def generate_imports(requiredImports):
77
+ """Generate import statements based on required modules."""
78
+ importStatements = []
79
+
80
+ # Map of module names to their import statements
81
+ importMapping = {
82
+ 'numba': 'import numba',
83
+ }
84
+
85
+ for moduleName in sorted(requiredImports):
86
+ if moduleName in importMapping:
87
+ importStatements.append(importMapping[moduleName])
88
+
89
+ return '\n'.join(importStatements)
90
+
91
+ def inline_functions(sourceCode, targetFunctionName, dictionaryEnumValues):
92
+ dictionaryParsed = ast.parse(sourceCode)
93
+ dictionaryFunctions = {
94
+ element.name: element
95
+ for element in dictionaryParsed.body
96
+ if isinstance(element, ast.FunctionDef)
97
+ }
98
+ nodeTarget = dictionaryFunctions[targetFunctionName]
99
+ nodeInliner = RecursiveInliner(dictionaryFunctions, dictionaryEnumValues)
100
+ nodeInlined = nodeInliner.visit(nodeTarget)
101
+ ast.fix_missing_locations(nodeInlined)
102
+
103
+ # Generate imports
104
+ requiredImports = find_required_imports(nodeInlined)
105
+ importStatements = generate_imports(requiredImports)
106
+
107
+ # Combine imports with inlined code
108
+ inlinedCode = importStatements + '\n\n' + ast.unparse(ast.Module(body=[nodeInlined], type_ignores=[]))
109
+ return inlinedCode
110
+
111
+ pathFilenameSource = pathlib.Path("/apps/mapFolding/mapFolding/lovelace.py")
112
+ codeSource = pathFilenameSource.read_text()
113
+
114
+ listCallables = [
115
+ 'countSequential',
116
+ 'countParallel',
117
+ 'countInitialize',
118
+ ]
119
+ listPathFilenamesDestination = []
120
+ for callableTarget in listCallables:
121
+ pathFilenameDestination = pathFilenameSource.with_stem(callableTarget)
122
+ codeInlined = inline_functions(codeSource, callableTarget, dictionaryEnumValues)
123
+ pathFilenameDestination.write_text(codeInlined)
124
+ listPathFilenamesDestination.append(pathFilenameDestination)
@@ -0,0 +1,213 @@
1
+ from mapFolding import indexMy, indexThe, indexTrack
2
+ import numba
3
+
4
+ @numba.jit((numba.int64[::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
5
+ def activeGapIncrement(my):
6
+ my[indexMy.gap1ndex.value] += 1
7
+
8
+ @numba.jit((numba.int64[::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
9
+ def activeLeafGreaterThan0Condition(my):
10
+ return my[indexMy.leaf1ndex.value] > 0
11
+
12
+ @numba.jit((numba.int64[::1],numba.int64[::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
13
+ def activeLeafGreaterThanLeavesTotalCondition(my, the):
14
+ return my[indexMy.leaf1ndex.value] > the[indexThe.leavesTotal.value]
15
+
16
+ @numba.jit((numba.int64[::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
17
+ def activeLeafIsTheFirstLeafCondition(my):
18
+ return my[indexMy.leaf1ndex.value] <= 1
19
+
20
+ @numba.jit((numba.int64[::1],numba.int64[::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
21
+ def allDimensionsAreUnconstrained(my, the):
22
+ return my[indexMy.dimensionsUnconstrained.value] == the[indexThe.dimensionsTotal.value]
23
+
24
+ @numba.jit((numba.int64[::1],numba.int64[:,::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
25
+ def backtrack(my, track):
26
+ my[indexMy.leaf1ndex.value] -= 1
27
+ track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]
28
+ track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]
29
+
30
+ @numba.jit((numba.int64[::1],numba.int64[:,::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
31
+ def backtrackCondition(my, track):
32
+ return my[indexMy.leaf1ndex.value] > 0 and my[indexMy.gap1ndex.value] == track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
33
+
34
+ @numba.jit((numba.int64[::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
35
+ def gap1ndexCeilingIncrement(my):
36
+ my[indexMy.gap1ndexCeiling.value] += 1
37
+
38
+ @numba.jit((numba.int64[::1],numba.int64[::1],numba.int64[:,::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
39
+ def countGaps(gapsWhere, my, track):
40
+ gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.leafConnectee.value]
41
+ if track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] == 0:
42
+ gap1ndexCeilingIncrement(my=my)
43
+ track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] += 1
44
+
45
+ @numba.jit((numba.int64[::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
46
+ def dimension1ndexIncrement(my):
47
+ my[indexMy.dimension1ndex.value] += 1
48
+
49
+ @numba.jit((numba.int64[:,:,::1], numba.int64[::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
50
+ def dimensionsUnconstrainedCondition(connectionGraph, my):
51
+ return connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]] == my[indexMy.leaf1ndex.value]
52
+
53
+ @numba.jit((numba.int64[::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
54
+ def dimensionsUnconstrainedIncrement(my):
55
+ my[indexMy.dimensionsUnconstrained.value] += 1
56
+
57
+ @numba.jit((numba.int64[::1],numba.int64[::1],numba.int64[::1],numba.int64[:,::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
58
+ def filterCommonGaps(gapsWhere, my, the, track):
59
+ gapsWhere[my[indexMy.gap1ndex.value]] = gapsWhere[my[indexMy.indexMiniGap.value]]
60
+ if track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] == the[indexThe.dimensionsTotal.value] - my[indexMy.dimensionsUnconstrained.value]:
61
+ activeGapIncrement(my=my)
62
+ track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] = 0
63
+
64
+ @numba.jit((numba.int64[::1],numba.int64[:,::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
65
+ def findGapsInitializeVariables(my, track):
66
+ my[indexMy.dimensionsUnconstrained.value] = 0
67
+ my[indexMy.gap1ndexCeiling.value] = track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
68
+ my[indexMy.dimension1ndex.value] = 1
69
+
70
+ @numba.jit((numba.int64[::1],numba.int64[::1],numba.int64[::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
71
+ def foldsSubTotalIncrement(foldsSubTotals, my, the):
72
+ foldsSubTotals[my[indexMy.taskIndex.value]] += the[indexThe.leavesTotal.value]
73
+
74
+ @numba.jit((numba.int64[::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
75
+ def indexMiniGapIncrement(my):
76
+ my[indexMy.indexMiniGap.value] += 1
77
+
78
+ @numba.jit((numba.int64[::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
79
+ def indexMiniGapInitialization(my):
80
+ my[indexMy.indexMiniGap.value] = my[indexMy.gap1ndex.value]
81
+
82
+ @numba.jit((numba.int64[::1],numba.int64[::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
83
+ def insertUnconstrainedLeaf(gapsWhere, my):
84
+ my[indexMy.indexLeaf.value] = 0
85
+ while my[indexMy.indexLeaf.value] < my[indexMy.leaf1ndex.value]:
86
+ gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.indexLeaf.value]
87
+ my[indexMy.gap1ndexCeiling.value] += 1
88
+ my[indexMy.indexLeaf.value] += 1
89
+
90
+ @numba.jit((numba.int64[:,::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
91
+ def leafBelowSentinelIs1Condition(track):
92
+ return track[indexTrack.leafBelow.value, 0] == 1
93
+
94
+ @numba.jit((numba.int64[:,:,::1], numba.int64[::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
95
+ def leafConnecteeInitialization(connectionGraph, my):
96
+ my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]]
97
+
98
+ @numba.jit((numba.int64[:,:,::1], numba.int64[::1],numba.int64[:,::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
99
+ def leafConnecteeUpdate(connectionGraph, my, track):
100
+ my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], track[indexTrack.leafBelow.value, my[indexMy.leafConnectee.value]]]
101
+
102
+ @numba.jit((numba.int64[::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
103
+ def loopingLeavesConnectedToActiveLeaf(my):
104
+ return my[indexMy.leafConnectee.value] != my[indexMy.leaf1ndex.value]
105
+
106
+ @numba.jit((numba.int64[::1],numba.int64[::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
107
+ def loopingTheDimensions(my, the):
108
+ return my[indexMy.dimension1ndex.value] <= the[indexThe.dimensionsTotal.value]
109
+
110
+ @numba.jit((numba.int64[::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
111
+ def loopingToActiveGapCeiling(my):
112
+ return my[indexMy.indexMiniGap.value] < my[indexMy.gap1ndexCeiling.value]
113
+
114
+ @numba.jit((numba.int64[::1],numba.int64[::1],numba.int64[:,::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
115
+ def placeLeaf(gapsWhere, my, track):
116
+ my[indexMy.gap1ndex.value] -= 1
117
+ track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]] = gapsWhere[my[indexMy.gap1ndex.value]]
118
+ track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]] = track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]]
119
+ track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
120
+ track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
121
+ track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value]] = my[indexMy.gap1ndex.value]
122
+ my[indexMy.leaf1ndex.value] += 1
123
+
124
+ @numba.jit((numba.int64[::1],), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
125
+ def placeLeafCondition(my):
126
+ return my[indexMy.leaf1ndex.value] > 0
127
+
128
+ @numba.jit((numba.int64[::1],numba.int64[::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
129
+ def thereAreComputationDivisionsYouMightSkip(my, the):
130
+ return my[indexMy.leaf1ndex.value] != the[indexThe.taskDivisions.value] or my[indexMy.leafConnectee.value] % the[indexThe.taskDivisions.value] == my[indexMy.taskIndex.value]
131
+
132
+ @numba.jit((numba.int64[:,:,::1], numba.int64[::1], numba.int64[::1], numba.int64[::1], numba.int64[:,::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
133
+ def countInitialize(connectionGraph, gapsWhere, my, the, track):
134
+ while activeLeafGreaterThan0Condition(my=my):
135
+ if activeLeafIsTheFirstLeafCondition(my=my) or leafBelowSentinelIs1Condition(track=track):
136
+ findGapsInitializeVariables(my=my, track=track)
137
+ while loopingTheDimensions(my=my, the=the):
138
+ if dimensionsUnconstrainedCondition(connectionGraph=connectionGraph, my=my):
139
+ dimensionsUnconstrainedIncrement(my=my)
140
+ else:
141
+ leafConnecteeInitialization(connectionGraph=connectionGraph, my=my)
142
+ while loopingLeavesConnectedToActiveLeaf(my=my):
143
+ countGaps(gapsWhere=gapsWhere, my=my, track=track)
144
+ leafConnecteeUpdate(connectionGraph=connectionGraph, my=my, track=track)
145
+ dimension1ndexIncrement(my=my)
146
+ if allDimensionsAreUnconstrained(my=my, the=the):
147
+ insertUnconstrainedLeaf(gapsWhere=gapsWhere, my=my)
148
+ indexMiniGapInitialization(my=my)
149
+ while loopingToActiveGapCeiling(my=my):
150
+ filterCommonGaps(gapsWhere=gapsWhere, my=my, the=the, track=track)
151
+ indexMiniGapIncrement(my=my)
152
+ if placeLeafCondition(my=my):
153
+ placeLeaf(gapsWhere=gapsWhere, my=my, track=track)
154
+ if my[indexMy.gap1ndex.value] > 0:
155
+ return
156
+
157
+ @numba.jit((numba.int64[:,:,::1], numba.int64[::1], numba.int64[::1], numba.int64[::1], numba.int64[::1], numba.int64[:,::1]), parallel=False, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
158
+ def countSequential(connectionGraph, foldsSubTotals, gapsWhere, my, the, track):
159
+ while activeLeafGreaterThan0Condition(my=my):
160
+ if activeLeafIsTheFirstLeafCondition(my=my) or leafBelowSentinelIs1Condition(track=track):
161
+ if activeLeafGreaterThanLeavesTotalCondition(my=my, the=the):
162
+ foldsSubTotalIncrement(foldsSubTotals=foldsSubTotals, my=my, the=the)
163
+ else:
164
+ findGapsInitializeVariables(my=my, track=track)
165
+ while loopingTheDimensions(my=my, the=the):
166
+ if dimensionsUnconstrainedCondition(connectionGraph=connectionGraph, my=my):
167
+ dimensionsUnconstrainedIncrement(my=my)
168
+ else:
169
+ leafConnecteeInitialization(connectionGraph=connectionGraph, my=my)
170
+ while loopingLeavesConnectedToActiveLeaf(my=my):
171
+ countGaps(gapsWhere=gapsWhere, my=my, track=track)
172
+ leafConnecteeUpdate(connectionGraph=connectionGraph, my=my, track=track)
173
+ dimension1ndexIncrement(my=my)
174
+ indexMiniGapInitialization(my=my)
175
+ while loopingToActiveGapCeiling(my=my):
176
+ filterCommonGaps(gapsWhere=gapsWhere, my=my, the=the, track=track)
177
+ indexMiniGapIncrement(my=my)
178
+ while backtrackCondition(my=my, track=track):
179
+ backtrack(my=my, track=track)
180
+ if placeLeafCondition(my=my):
181
+ placeLeaf(gapsWhere=gapsWhere, my=my, track=track)
182
+
183
+ @numba.jit((numba.int64[:,:,::1], numba.int64[::1], numba.int64[::1],numba.int64[::1],numba.int64[::1],numba.int64[:,::1]), parallel=True, boundscheck=False, error_model='numpy', fastmath=True, looplift=False, nogil=True, nopython=True)
184
+ def countParallel(connectionGraph, foldsSubTotals, gapsWherePARALLEL, myPARALLEL, the, trackPARALLEL):
185
+ for indexSherpa in numba.prange(the[indexThe.taskDivisions.value]):
186
+ gapsWhere = gapsWherePARALLEL.copy()
187
+ my = myPARALLEL.copy()
188
+ my[indexMy.taskIndex.value] = indexSherpa
189
+ track = trackPARALLEL.copy()
190
+ while activeLeafGreaterThan0Condition(my=my):
191
+ if activeLeafIsTheFirstLeafCondition(my=my) or leafBelowSentinelIs1Condition(track=track):
192
+ if activeLeafGreaterThanLeavesTotalCondition(my=my, the=the):
193
+ foldsSubTotalIncrement(foldsSubTotals=foldsSubTotals, my=my, the=the)
194
+ else:
195
+ findGapsInitializeVariables(my=my, track=track)
196
+ while loopingTheDimensions(my=my, the=the):
197
+ if dimensionsUnconstrainedCondition(connectionGraph=connectionGraph, my=my):
198
+ dimensionsUnconstrainedIncrement(my=my)
199
+ else:
200
+ leafConnecteeInitialization(connectionGraph=connectionGraph, my=my)
201
+ while loopingLeavesConnectedToActiveLeaf(my=my):
202
+ if thereAreComputationDivisionsYouMightSkip(my=my, the=the):
203
+ countGaps(gapsWhere=gapsWhere, my=my, track=track)
204
+ leafConnecteeUpdate(connectionGraph=connectionGraph, my=my, track=track)
205
+ dimension1ndexIncrement(my=my)
206
+ indexMiniGapInitialization(my=my)
207
+ while loopingToActiveGapCeiling(my=my):
208
+ filterCommonGaps(gapsWhere=gapsWhere, my=my, the=the, track=track)
209
+ indexMiniGapIncrement(my=my)
210
+ while backtrackCondition(my=my, track=track):
211
+ backtrack(my=my, track=track)
212
+ if placeLeafCondition(my=my):
213
+ placeLeaf(gapsWhere=gapsWhere, my=my, track=track)
@@ -44,10 +44,8 @@ def countFolds(listDimensions: Sequence[int], writeFoldsTotal: Optional[Union[st
44
44
  pathFilenameFoldsTotal = pathFilenameFoldsTotal / filenameFoldsTotalDEFAULT
45
45
  pathFilenameFoldsTotal.parent.mkdir(parents=True, exist_ok=True)
46
46
 
47
- # NOTE Don't import a module with a numba.jit function until you want the function to compile and to freeze all settings for that function.
48
47
  from mapFolding.babbage import _countFolds
49
48
  _countFolds(**stateUniversal)
50
- # foldsSubTotals = benchmarkSherpa(**stateUniversal)
51
49
 
52
50
  foldsTotal = stateUniversal['foldsSubTotals'].sum().item()
53
51
 
@@ -59,12 +57,3 @@ def countFolds(listDimensions: Sequence[int], writeFoldsTotal: Optional[Union[st
59
57
  print(f"\nfoldsTotal foldsTotal foldsTotal foldsTotal foldsTotal\n\n{foldsTotal=}\n\nfoldsTotal foldsTotal foldsTotal foldsTotal foldsTotal")
60
58
 
61
59
  return foldsTotal
62
-
63
- # from numpy import integer
64
- # from numpy.typing import NDArray
65
- # from typing import Any, Tuple
66
- # from mapFolding.benchmarks.benchmarking import recordBenchmarks
67
- # @recordBenchmarks()
68
- # def benchmarkSherpa(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], mapShape: Tuple[int, ...], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
69
- # from mapFolding.babbage import _countFolds
70
- # return _countFolds(connectionGraph, foldsSubTotals, gapsWhere, mapShape, my, the, track)
@@ -5,9 +5,17 @@ import numpy.typing
5
5
  import pathlib
6
6
  import sys
7
7
 
8
- dtypeLarge = numpy.int64
9
- dtypeDefault = dtypeLarge
10
- dtypeSmall = dtypeDefault
8
+ datatypeModule = 'numpy'
9
+
10
+ datatypeLarge = 'int64'
11
+ datatypeDefault = datatypeLarge
12
+ datatypeSmall = datatypeDefault
13
+
14
+ make_dtype = lambda _datatype: eval(f"{datatypeModule}.{_datatype}")
15
+
16
+ dtypeLarge = make_dtype(datatypeLarge)
17
+ dtypeDefault = make_dtype(datatypeDefault)
18
+ dtypeSmall = make_dtype(datatypeSmall)
11
19
 
12
20
  try:
13
21
  _pathModule = pathlib.Path(__file__).parent
@@ -59,9 +67,9 @@ class indexTrack(EnumIndices):
59
67
 
60
68
  class computationState(TypedDict):
61
69
  connectionGraph: numpy.typing.NDArray[numpy.integer[Any]]
62
- foldsSubTotals: numpy.ndarray[numpy.int64, numpy.dtype[numpy.int64]]
70
+ foldsSubTotals: numpy.typing.NDArray[numpy.integer[Any]]
71
+ gapsWhere: numpy.typing.NDArray[numpy.integer[Any]]
63
72
  mapShape: Tuple[int, ...]
64
73
  my: numpy.typing.NDArray[numpy.integer[Any]]
65
- gapsWhere: numpy.typing.NDArray[numpy.integer[Any]]
66
74
  the: numpy.typing.NDArray[numpy.integer[Any]]
67
75
  track: numpy.typing.NDArray[numpy.integer[Any]]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mapFolding
3
- Version: 0.2.3
3
+ Version: 0.2.4
4
4
  Summary: Algorithm(s) for counting distinct ways to fold a map (or a strip of stamps)
5
5
  Author-email: Hunter Hogan <HunterHogan@pm.me>
6
6
  Project-URL: homepage, https://github.com/hunterhogan/mapFolding
@@ -22,6 +22,8 @@ Requires-Dist: pytest; extra == "testing"
22
22
  Requires-Dist: pytest-cov; extra == "testing"
23
23
  Requires-Dist: pytest-env; extra == "testing"
24
24
  Requires-Dist: pytest-xdist; extra == "testing"
25
+ Requires-Dist: pytest-order; extra == "testing"
26
+ Requires-Dist: pytest-dependency; extra == "testing"
25
27
 
26
28
  # Algorithm(s) for counting distinct ways to fold a map (or a strip of stamps)
27
29
 
@@ -3,6 +3,11 @@ pyproject.toml
3
3
  mapFolding/__init__.py
4
4
  mapFolding/babbage.py
5
5
  mapFolding/beDRY.py
6
+ mapFolding/countInitialize.py
7
+ mapFolding/countParallel.py
8
+ mapFolding/countSequential.py
9
+ mapFolding/importSelector.py
10
+ mapFolding/inlineAfunction.py
6
11
  mapFolding/lovelace.py
7
12
  mapFolding/oeis.py
8
13
  mapFolding/startHere.py
@@ -16,7 +21,6 @@ mapFolding.egg-info/top_level.txt
16
21
  mapFolding/JAX/lunnanJAX.py
17
22
  mapFolding/JAX/taskJAX.py
18
23
  mapFolding/benchmarks/benchmarking.py
19
- mapFolding/benchmarks/test_benchmarks.py
20
24
  mapFolding/reference/flattened.py
21
25
  mapFolding/reference/hunterNumba.py
22
26
  mapFolding/reference/irvineJavaPort.py
@@ -30,4 +34,5 @@ tests/conftest.py
30
34
  tests/pythons_idiotic_namespace.py
31
35
  tests/test_oeis.py
32
36
  tests/test_other.py
33
- tests/test_tasks.py
37
+ tests/test_tasks.py
38
+ tests/test_temporary.py