mapFolding 0.2.2__tar.gz → 0.2.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. {mapfolding-0.2.2 → mapfolding-0.2.3}/PKG-INFO +4 -4
  2. {mapfolding-0.2.2 → mapfolding-0.2.3}/README.md +3 -3
  3. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/__init__.py +1 -2
  4. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/babbage.py +2 -2
  5. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/beDRY.py +26 -12
  6. mapfolding-0.2.3/mapFolding/lovelace.py +217 -0
  7. mapfolding-0.2.3/mapFolding/reference/flattened.py +376 -0
  8. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/startHere.py +10 -8
  9. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/theSSOT.py +2 -2
  10. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding.egg-info/PKG-INFO +4 -4
  11. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding.egg-info/SOURCES.txt +2 -0
  12. {mapfolding-0.2.2 → mapfolding-0.2.3}/pyproject.toml +2 -2
  13. mapfolding-0.2.3/tests/__init__.py +1 -0
  14. {mapfolding-0.2.2 → mapfolding-0.2.3}/tests/conftest.py +24 -6
  15. mapfolding-0.2.3/tests/pythons_idiotic_namespace.py +1 -0
  16. {mapfolding-0.2.2 → mapfolding-0.2.3}/tests/test_other.py +108 -15
  17. mapfolding-0.2.2/mapFolding/lovelace.py +0 -145
  18. mapfolding-0.2.2/tests/__init__.py +0 -1
  19. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/JAX/lunnanJAX.py +0 -0
  20. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/JAX/taskJAX.py +0 -0
  21. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/benchmarks/benchmarking.py +0 -0
  22. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/benchmarks/test_benchmarks.py +0 -0
  23. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/oeis.py +0 -0
  24. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/reference/hunterNumba.py +0 -0
  25. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/reference/irvineJavaPort.py +0 -0
  26. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/reference/lunnan.py +0 -0
  27. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/reference/lunnanNumpy.py +0 -0
  28. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/reference/lunnanWhile.py +0 -0
  29. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/reference/rotatedEntryPoint.py +0 -0
  30. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding/reference/total_countPlus1vsPlusN.py +0 -0
  31. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding.egg-info/dependency_links.txt +0 -0
  32. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding.egg-info/entry_points.txt +0 -0
  33. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding.egg-info/requires.txt +0 -0
  34. {mapfolding-0.2.2 → mapfolding-0.2.3}/mapFolding.egg-info/top_level.txt +0 -0
  35. {mapfolding-0.2.2 → mapfolding-0.2.3}/setup.cfg +0 -0
  36. {mapfolding-0.2.2 → mapfolding-0.2.3}/tests/test_oeis.py +0 -0
  37. {mapfolding-0.2.2 → mapfolding-0.2.3}/tests/test_tasks.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mapFolding
3
- Version: 0.2.2
3
+ Version: 0.2.3
4
4
  Summary: Algorithm(s) for counting distinct ways to fold a map (or a strip of stamps)
5
5
  Author-email: Hunter Hogan <HunterHogan@pm.me>
6
6
  Project-URL: homepage, https://github.com/hunterhogan/mapFolding
@@ -25,7 +25,7 @@ Requires-Dist: pytest-xdist; extra == "testing"
25
25
 
26
26
  # Algorithm(s) for counting distinct ways to fold a map (or a strip of stamps)
27
27
 
28
- `mapFolding.countFolds()` will accept arbitrary values for the map's dimensions.
28
+ The function `mapFolding.countFolds()` counts distinct ways to fold maps and strips of stamps. The function accepts two or more dimensions:
29
29
 
30
30
  ```python
31
31
  from mapFolding import countFolds
@@ -34,12 +34,12 @@ foldsTotal = countFolds( [2,10] )
34
34
 
35
35
  The directory [mapFolding/reference](https://github.com/hunterhogan/mapFolding/blob/main/mapFolding/reference) has
36
36
 
37
- - a verbatim transcription of the "procedure" published in _The Computer Journal_,
37
+ - a verbatim transcription of Lunnon's "procedure" published in 1971 by _The Computer Journal_,
38
38
  - multiple referential versions of the procedure with explanatory comments including
39
39
  - [hunterNumba.py](https://github.com/hunterhogan/mapFolding/blob/main/mapFolding/reference), a one-size-fits-all, self-contained, reasonably fast, contemporary algorithm that is nevertheless infected by _noobaceae ignorancium_, and
40
40
  - miscellaneous notes.
41
41
 
42
- [![Python Tests](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml/badge.svg)](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml)
42
+ [![Python Tests](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml/badge.svg)](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml) [![pip install mapFolding](https://img.shields.io/badge/pip%20install-mapFolding-gray.svg?colorB=3b434b)](https://pypi.org/project/mapFolding/) ![Static Badge](https://img.shields.io/badge/stinkin'%20badges-don't%20need-b98e5e) ![PyPI - Downloads](https://img.shields.io/pypi/dd/mapFolding) ![Static Badge](https://img.shields.io/badge/issues-I%20have%20them-brightgreen) ![GitHub repo size](https://img.shields.io/github/repo-size/hunterhogan/mapFolding)
43
43
 
44
44
  ## Simple, easy usage based on OEIS IDs
45
45
 
@@ -1,6 +1,6 @@
1
1
  # Algorithm(s) for counting distinct ways to fold a map (or a strip of stamps)
2
2
 
3
- `mapFolding.countFolds()` will accept arbitrary values for the map's dimensions.
3
+ The function `mapFolding.countFolds()` counts distinct ways to fold maps and strips of stamps. The function accepts two or more dimensions:
4
4
 
5
5
  ```python
6
6
  from mapFolding import countFolds
@@ -9,12 +9,12 @@ foldsTotal = countFolds( [2,10] )
9
9
 
10
10
  The directory [mapFolding/reference](https://github.com/hunterhogan/mapFolding/blob/main/mapFolding/reference) has
11
11
 
12
- - a verbatim transcription of the "procedure" published in _The Computer Journal_,
12
+ - a verbatim transcription of Lunnon's "procedure" published in 1971 by _The Computer Journal_,
13
13
  - multiple referential versions of the procedure with explanatory comments including
14
14
  - [hunterNumba.py](https://github.com/hunterhogan/mapFolding/blob/main/mapFolding/reference), a one-size-fits-all, self-contained, reasonably fast, contemporary algorithm that is nevertheless infected by _noobaceae ignorancium_, and
15
15
  - miscellaneous notes.
16
16
 
17
- [![Python Tests](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml/badge.svg)](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml)
17
+ [![Python Tests](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml/badge.svg)](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml) [![pip install mapFolding](https://img.shields.io/badge/pip%20install-mapFolding-gray.svg?colorB=3b434b)](https://pypi.org/project/mapFolding/) ![Static Badge](https://img.shields.io/badge/stinkin'%20badges-don't%20need-b98e5e) ![PyPI - Downloads](https://img.shields.io/pypi/dd/mapFolding) ![Static Badge](https://img.shields.io/badge/issues-I%20have%20them-brightgreen) ![GitHub repo size](https://img.shields.io/github/repo-size/hunterhogan/mapFolding)
18
18
 
19
19
  ## Simple, easy usage based on OEIS IDs
20
20
 
@@ -1,7 +1,6 @@
1
1
  from .theSSOT import *
2
2
  from Z0Z_tools import defineConcurrencyLimit, intInnit, oopsieKwargsie
3
- from .beDRY import getTaskDivisions, makeConnectionGraph, outfitFoldings, setCPUlimit
4
- from .beDRY import getLeavesTotal, parseDimensions, validateListDimensions
3
+ from .beDRY import getFilenameFoldsTotal, outfitCountFolds
5
4
  from .startHere import countFolds
6
5
  from .oeis import oeisIDfor_n, getOEISids, clearOEIScache
7
6
 
@@ -6,7 +6,7 @@ import numba
6
6
  import numpy
7
7
 
8
8
  @numba.jit(cache=True)
9
- def _countFolds(connectionGraph: NDArray[integer[Any]], foldsTotal: NDArray[integer[Any]], mapShape: Tuple[int, ...], my: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]) -> int:
9
+ def _countFolds(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], mapShape: Tuple[int, ...], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
10
10
  """
11
11
  What in tarnation is this stupid module and function?
12
12
 
@@ -27,4 +27,4 @@ def _countFolds(connectionGraph: NDArray[integer[Any]], foldsTotal: NDArray[inte
27
27
  """
28
28
  # TODO learn if I really must change this jitted function to get the super jit to recompile
29
29
  # print('babbage')
30
- return countFoldsCompiled(connectionGraph, foldsTotal, my, gapsWhere, the, track)
30
+ countFoldsCompiled(connectionGraph=connectionGraph, foldsSubTotals=foldsSubTotals, gapsWhere=gapsWhere, my=my, the=the, track=track)
@@ -1,14 +1,16 @@
1
1
  """A relatively stable API for oft-needed functionality."""
2
- from mapFolding import intInnit, defineConcurrencyLimit, oopsieKwargsie
2
+ from mapFolding import dtypeDefault, dtypeLarge
3
3
  from mapFolding import indexMy, indexThe, indexTrack, computationState
4
- from mapFolding import dtypeDefault, dtypeLarge, dtypeSmall
4
+ from mapFolding import intInnit, defineConcurrencyLimit, oopsieKwargsie
5
+ from numpy import integer
6
+ from numpy.typing import NDArray
5
7
  from typing import Any, List, Optional, Sequence, Type, Union
6
- import numpy
7
8
  import numba
8
- from numpy.typing import NDArray
9
- from numpy import integer
9
+ import numpy
10
10
  import sys
11
- import operator
11
+
12
+ def getFilenameFoldsTotal(listDimensions: Sequence[int]) -> str:
13
+ return str(sorted(listDimensions)).replace(' ', '') + '.foldsTotal'
12
14
 
13
15
  def getLeavesTotal(listDimensions: Sequence[int]) -> int:
14
16
  """
@@ -146,7 +148,7 @@ def makeDataContainer(shape, datatype: Optional[Type] = None):
146
148
  datatype = dtypeDefault
147
149
  return numpy.zeros(shape, dtype=datatype)
148
150
 
149
- def outfitFoldings(listDimensions: Sequence[int], computationDivisions: Optional[Union[int, str]] = None, CPUlimit: Optional[Union[bool, float, int]] = None, **keywordArguments: Optional[Type]) -> computationState:
151
+ def outfitCountFolds(listDimensions: Sequence[int], computationDivisions: Optional[Union[int, str]] = None, CPUlimit: Optional[Union[bool, float, int]] = None, **keywordArguments: Optional[Type]) -> computationState:
150
152
  """
151
153
  Initializes and configures the computation state for map folding computations.
152
154
 
@@ -155,21 +157,33 @@ def outfitFoldings(listDimensions: Sequence[int], computationDivisions: Optional
155
157
  listDimensions:
156
158
  The dimensions of the map to be folded
157
159
  computationDivisions (None):
158
- Specifies how to divide the computation tasks
160
+ Specifies how to divide computations:
161
+ - None: no division of the computation into tasks; sets task divisions to 0
162
+ - int: direct set the number of task divisions; cannot exceed the map's total leaves
163
+ - "maximum": divides into `leavesTotal`-many `taskDivisions`
164
+ - "cpu": limits the divisions to the number of available CPUs, i.e. `concurrencyLimit`
159
165
  CPUlimit (None):
160
- Limits the CPU usage for computations
166
+ Whether and how to limit the CPU usage. See notes for details.
161
167
 
162
168
  Returns
163
169
  -------
164
170
  computationState
165
171
  An initialized computation state containing:
166
172
  - connectionGraph: Graph representing connections in the map
167
- - foldsTotal: Array tracking total folds
173
+ - foldsSubTotals: Array tracking total folds
168
174
  - mapShape: Validated and sorted dimensions of the map
169
175
  - my: Array for internal state tracking
170
176
  - gapsWhere: Array tracking gap positions
171
177
  - the: Static settings and metadata
172
178
  - track: Array for tracking computation progress
179
+
180
+ Limits on CPU usage `CPUlimit`:
181
+ - `False`, `None`, or `0`: No limits on CPU usage; uses all available CPUs. All other values will potentially limit CPU usage.
182
+ - `True`: Yes, limit the CPU usage; limits to 1 CPU.
183
+ - Integer `>= 1`: Limits usage to the specified number of CPUs.
184
+ - Decimal value (`float`) between 0 and 1: Fraction of total CPUs to use.
185
+ - Decimal value (`float`) between -1 and 0: Fraction of CPUs to *not* use.
186
+ - Integer `<= -1`: Subtract the absolute value from total CPUs.
173
187
  """
174
188
  datatypeDefault = keywordArguments.get('datatypeDefault', dtypeDefault)
175
189
  datatypeLarge = keywordArguments.get('datatypeLarge', dtypeLarge)
@@ -181,10 +195,10 @@ def outfitFoldings(listDimensions: Sequence[int], computationDivisions: Optional
181
195
  the[indexThe.dimensionsTotal] = len(mapShape)
182
196
  concurrencyLimit = setCPUlimit(CPUlimit)
183
197
  the[indexThe.taskDivisions] = getTaskDivisions(computationDivisions, concurrencyLimit, CPUlimit, listDimensions)
184
-
198
+
185
199
  stateInitialized = computationState(
186
200
  connectionGraph = makeConnectionGraph(mapShape, datatype=datatypeDefault),
187
- foldsTotal = makeDataContainer(the[indexThe.leavesTotal], datatypeLarge),
201
+ foldsSubTotals = makeDataContainer(the[indexThe.leavesTotal], datatypeLarge),
188
202
  mapShape = mapShape,
189
203
  my = makeDataContainer(len(indexMy), datatypeLarge),
190
204
  gapsWhere = makeDataContainer(int(the[indexThe.leavesTotal]) * int(the[indexThe.leavesTotal]) + 1, datatypeDefault),
@@ -0,0 +1,217 @@
1
+ from mapFolding import indexMy, indexThe, indexTrack
2
+ from numpy import integer
3
+ from numpy.typing import NDArray
4
+ from typing import Any
5
+ import numba
6
+ import numpy
7
+
8
+ def activeGapIncrement(my: NDArray[integer[Any]]):
9
+ my[indexMy.gap1ndex.value] += 1
10
+
11
+ def activeLeafGreaterThan0Condition(my: NDArray[integer[Any]]):
12
+ return my[indexMy.leaf1ndex.value] > 0
13
+
14
+ def activeLeafGreaterThanLeavesTotalCondition(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
15
+ return my[indexMy.leaf1ndex.value] > the[indexThe.leavesTotal.value]
16
+
17
+ def activeLeafIsTheFirstLeafCondition(my: NDArray[integer[Any]]):
18
+ return my[indexMy.leaf1ndex.value] <= 1
19
+
20
+ def activeLeafNotEqualToTaskDivisionsCondition(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
21
+ return my[indexMy.leaf1ndex.value] != the[indexThe.taskDivisions.value]
22
+
23
+ def allDimensionsAreUnconstrained(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
24
+ return my[indexMy.dimensionsUnconstrained.value] == the[indexThe.dimensionsTotal.value]
25
+
26
+ def backtrack(my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
27
+ my[indexMy.leaf1ndex.value] -= 1
28
+ track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]
29
+ track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]
30
+
31
+ def backtrackCondition(my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
32
+ return my[indexMy.leaf1ndex.value] > 0 and my[indexMy.gap1ndex.value] == track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
33
+
34
+ def countGaps(gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
35
+ gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.leafConnectee.value]
36
+ if track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] == 0:
37
+ gap1ndexCeilingIncrement(my=my)
38
+ track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] += 1
39
+
40
+ def dimension1ndexIncrement(my: NDArray[integer[Any]]):
41
+ my[indexMy.dimension1ndex.value] += 1
42
+
43
+ def dimensionsUnconstrainedCondition(connectionGraph: NDArray[integer[Any]], my: NDArray[integer[Any]]):
44
+ return connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]] == my[indexMy.leaf1ndex.value]
45
+
46
+ def dimensionsUnconstrainedIncrement(my: NDArray[integer[Any]]):
47
+ my[indexMy.dimensionsUnconstrained.value] += 1
48
+
49
+ def filterCommonGaps(gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
50
+ gapsWhere[my[indexMy.gap1ndex.value]] = gapsWhere[my[indexMy.indexMiniGap.value]]
51
+ if track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] == the[indexThe.dimensionsTotal.value] - my[indexMy.dimensionsUnconstrained.value]:
52
+ activeGapIncrement(my=my)
53
+ track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] = 0
54
+
55
+ def findGapsInitializeVariables(my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
56
+ my[indexMy.dimensionsUnconstrained.value] = 0
57
+ my[indexMy.gap1ndexCeiling.value] = track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
58
+ my[indexMy.dimension1ndex.value] = 1
59
+
60
+ def foldsSubTotalIncrement(foldsSubTotals: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
61
+ foldsSubTotals[my[indexMy.taskIndex.value]] += the[indexThe.leavesTotal.value]
62
+
63
+ def gap1ndexCeilingIncrement(my: NDArray[integer[Any]]):
64
+ my[indexMy.gap1ndexCeiling.value] += 1
65
+
66
+ def indexMiniGapIncrement(my: NDArray[integer[Any]]):
67
+ my[indexMy.indexMiniGap.value] += 1
68
+
69
+ def indexMiniGapInitialization(my: NDArray[integer[Any]]):
70
+ my[indexMy.indexMiniGap.value] = my[indexMy.gap1ndex.value]
71
+
72
+ def insertUnconstrainedLeaf(gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]]):
73
+ my[indexMy.indexLeaf.value] = 0
74
+ while my[indexMy.indexLeaf.value] < my[indexMy.leaf1ndex.value]:
75
+ gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.indexLeaf.value]
76
+ my[indexMy.gap1ndexCeiling.value] += 1
77
+ my[indexMy.indexLeaf.value] += 1
78
+
79
+ def leafBelowSentinelIs1Condition(track: NDArray[integer[Any]]):
80
+ return track[indexTrack.leafBelow.value, 0] == 1
81
+
82
+ def leafConnecteeInitialization(connectionGraph: NDArray[integer[Any]], my: NDArray[integer[Any]]):
83
+ my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]]
84
+
85
+ def leafConnecteeUpdate(connectionGraph: NDArray[integer[Any]], my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
86
+ my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], track[indexTrack.leafBelow.value, my[indexMy.leafConnectee.value]]]
87
+
88
+ def loopingLeavesConnectedToActiveLeaf(my: NDArray[integer[Any]]):
89
+ return my[indexMy.leafConnectee.value] != my[indexMy.leaf1ndex.value]
90
+
91
+ def loopingTheDimensions(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
92
+ return my[indexMy.dimension1ndex.value] <= the[indexThe.dimensionsTotal.value]
93
+
94
+ def loopingToActiveGapCeiling(my: NDArray[integer[Any]]):
95
+ return my[indexMy.indexMiniGap.value] < my[indexMy.gap1ndexCeiling.value]
96
+
97
+ def placeLeaf(gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
98
+ my[indexMy.gap1ndex.value] -= 1
99
+ track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]] = gapsWhere[my[indexMy.gap1ndex.value]]
100
+ track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]] = track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]]
101
+ track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
102
+ track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
103
+ track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value]] = my[indexMy.gap1ndex.value]
104
+ my[indexMy.leaf1ndex.value] += 1
105
+
106
+ def placeLeafCondition(my: NDArray[integer[Any]]):
107
+ return my[indexMy.leaf1ndex.value] > 0
108
+
109
+ def taskIndexCondition(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
110
+ return my[indexMy.leafConnectee.value] % the[indexThe.taskDivisions.value] == my[indexMy.taskIndex.value]
111
+
112
+ def thereAreComputationDivisionsYouMightSkip(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
113
+ if activeLeafNotEqualToTaskDivisionsCondition(my=my, the=the):
114
+ return True
115
+ if taskIndexCondition(my=my, the=the):
116
+ return True
117
+ return False
118
+
119
+ def initialize(connectionGraph: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
120
+ while activeLeafGreaterThan0Condition(my=my):
121
+ if activeLeafIsTheFirstLeafCondition(my=my) or leafBelowSentinelIs1Condition(track=track):
122
+ findGapsInitializeVariables(my=my, track=track)
123
+ while loopingTheDimensions(my=my, the=the):
124
+ if dimensionsUnconstrainedCondition(connectionGraph=connectionGraph, my=my):
125
+ dimensionsUnconstrainedIncrement(my=my)
126
+ else:
127
+ leafConnecteeInitialization(connectionGraph=connectionGraph, my=my)
128
+ while loopingLeavesConnectedToActiveLeaf(my=my):
129
+ countGaps(gapsWhere=gapsWhere, my=my, track=track)
130
+ leafConnecteeUpdate(connectionGraph=connectionGraph, my=my, track=track)
131
+ dimension1ndexIncrement(my=my)
132
+ if allDimensionsAreUnconstrained(my=my, the=the):
133
+ insertUnconstrainedLeaf(gapsWhere=gapsWhere, my=my)
134
+ indexMiniGapInitialization(my=my)
135
+ while loopingToActiveGapCeiling(my=my):
136
+ filterCommonGaps(gapsWhere=gapsWhere, my=my, the=the, track=track)
137
+ indexMiniGapIncrement(my=my)
138
+ if placeLeafCondition(my=my):
139
+ placeLeaf(gapsWhere=gapsWhere, my=my, track=track)
140
+ if my[indexMy.gap1ndex.value] > 0:
141
+ break
142
+
143
+ def countParallel(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
144
+ while activeLeafGreaterThan0Condition(my=my):
145
+ if activeLeafIsTheFirstLeafCondition(my=my) or leafBelowSentinelIs1Condition(track=track):
146
+ if activeLeafGreaterThanLeavesTotalCondition(my=my, the=the):
147
+ foldsSubTotalIncrement(foldsSubTotals=foldsSubTotals, my=my, the=the)
148
+ else:
149
+ findGapsInitializeVariables(my=my, track=track)
150
+ while loopingTheDimensions(my=my, the=the):
151
+ if dimensionsUnconstrainedCondition(connectionGraph=connectionGraph, my=my):
152
+ dimensionsUnconstrainedIncrement(my=my)
153
+ else:
154
+ leafConnecteeInitialization(connectionGraph=connectionGraph, my=my)
155
+ while loopingLeavesConnectedToActiveLeaf(my=my):
156
+ if thereAreComputationDivisionsYouMightSkip(my=my, the=the):
157
+ countGaps(gapsWhere=gapsWhere, my=my, track=track)
158
+ leafConnecteeUpdate(connectionGraph=connectionGraph, my=my, track=track)
159
+ dimension1ndexIncrement(my=my)
160
+ indexMiniGapInitialization(my=my)
161
+ while loopingToActiveGapCeiling(my=my):
162
+ filterCommonGaps(gapsWhere=gapsWhere, my=my, the=the, track=track)
163
+ indexMiniGapIncrement(my=my)
164
+ while backtrackCondition(my=my, track=track):
165
+ backtrack(my=my, track=track)
166
+ if placeLeafCondition(my=my):
167
+ placeLeaf(gapsWhere=gapsWhere, my=my, track=track)
168
+
169
+ def countSequential(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
170
+ while activeLeafGreaterThan0Condition(my=my):
171
+ if activeLeafIsTheFirstLeafCondition(my=my) or leafBelowSentinelIs1Condition(track=track):
172
+ if activeLeafGreaterThanLeavesTotalCondition(my=my, the=the):
173
+ foldsSubTotalIncrement(foldsSubTotals=foldsSubTotals, my=my, the=the)
174
+ else:
175
+ findGapsInitializeVariables(my=my, track=track)
176
+ while loopingTheDimensions(my=my, the=the):
177
+ if dimensionsUnconstrainedCondition(connectionGraph=connectionGraph, my=my):
178
+ dimensionsUnconstrainedIncrement(my=my)
179
+ else:
180
+ leafConnecteeInitialization(connectionGraph=connectionGraph, my=my)
181
+ while loopingLeavesConnectedToActiveLeaf(my=my):
182
+ countGaps(gapsWhere=gapsWhere, my=my, track=track)
183
+ leafConnecteeUpdate(connectionGraph=connectionGraph, my=my, track=track)
184
+ dimension1ndexIncrement(my=my)
185
+ indexMiniGapInitialization(my=my)
186
+ while loopingToActiveGapCeiling(my=my):
187
+ filterCommonGaps(gapsWhere=gapsWhere, my=my, the=the, track=track)
188
+ indexMiniGapIncrement(my=my)
189
+ while backtrackCondition(my=my, track=track):
190
+ backtrack(my=my, track=track)
191
+ if placeLeafCondition(my=my):
192
+ placeLeaf(gapsWhere=gapsWhere, my=my, track=track)
193
+
194
+ @numba.jit(parallel=True, _nrt=True, boundscheck=False, error_model='numpy', fastmath=True, forceinline=True, looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nogil=True, nopython=True)
195
+ def doTaskIndices(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
196
+
197
+ stateGapsWhere = gapsWhere.copy()
198
+ stateMy = my.copy()
199
+ stateTrack = track.copy()
200
+
201
+ for indexSherpa in numba.prange(the[indexThe.taskDivisions.value]):
202
+ mySherpa = stateMy.copy()
203
+ mySherpa[indexMy.taskIndex.value] = indexSherpa
204
+ countParallel(connectionGraph=connectionGraph, foldsSubTotals=foldsSubTotals, gapsWhere=stateGapsWhere.copy(), my=mySherpa, the=the, track=stateTrack.copy())
205
+
206
+ return foldsSubTotals
207
+
208
+ def countFoldsCompiled(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
209
+
210
+ initialize(connectionGraph=connectionGraph, gapsWhere=gapsWhere, my=my, the=the, track=track)
211
+
212
+ if the[indexThe.taskDivisions.value] > 0:
213
+ doTaskIndices(connectionGraph=connectionGraph, foldsSubTotals=foldsSubTotals, gapsWhere=gapsWhere, my=my, the=the, track=track)
214
+ else:
215
+ countSequential(connectionGraph=connectionGraph, foldsSubTotals=foldsSubTotals, gapsWhere=gapsWhere, my=my, the=the, track=track)
216
+
217
+ numba.jit_module(parallel=False, _nrt=True, boundscheck=False, error_model='numpy', fastmath=True, forceinline=True, looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nogil=True, nopython=True)