lyroi 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lyroi-0.1.0/LICENSE +201 -0
- lyroi-0.1.0/PKG-INFO +221 -0
- lyroi-0.1.0/README.md +189 -0
- lyroi-0.1.0/lyroi/__init__.py +41 -0
- lyroi-0.1.0/lyroi/entrypoints.py +153 -0
- lyroi-0.1.0/lyroi/inference.py +160 -0
- lyroi-0.1.0/lyroi/nnunet_interface.py +49 -0
- lyroi-0.1.0/lyroi/utils.py +212 -0
- lyroi-0.1.0/lyroi.egg-info/PKG-INFO +221 -0
- lyroi-0.1.0/lyroi.egg-info/SOURCES.txt +15 -0
- lyroi-0.1.0/lyroi.egg-info/dependency_links.txt +1 -0
- lyroi-0.1.0/lyroi.egg-info/entry_points.txt +3 -0
- lyroi-0.1.0/lyroi.egg-info/requires.txt +8 -0
- lyroi-0.1.0/lyroi.egg-info/top_level.txt +1 -0
- lyroi-0.1.0/pyproject.toml +61 -0
- lyroi-0.1.0/setup.cfg +4 -0
- lyroi-0.1.0/setup.py +3 -0
lyroi-0.1.0/LICENSE
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
1
|
+
Apache License
|
|
2
|
+
Version 2.0, January 2004
|
|
3
|
+
http://www.apache.org/licenses/
|
|
4
|
+
|
|
5
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
6
|
+
|
|
7
|
+
1. Definitions.
|
|
8
|
+
|
|
9
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
|
10
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
|
11
|
+
|
|
12
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
|
13
|
+
the copyright owner that is granting the License.
|
|
14
|
+
|
|
15
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
|
16
|
+
other entities that control, are controlled by, or are under common
|
|
17
|
+
control with that entity. For the purposes of this definition,
|
|
18
|
+
"control" means (i) the power, direct or indirect, to cause the
|
|
19
|
+
direction or management of such entity, whether by contract or
|
|
20
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
21
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
22
|
+
|
|
23
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
|
24
|
+
exercising permissions granted by this License.
|
|
25
|
+
|
|
26
|
+
"Source" form shall mean the preferred form for making modifications,
|
|
27
|
+
including but not limited to software source code, documentation
|
|
28
|
+
source, and configuration files.
|
|
29
|
+
|
|
30
|
+
"Object" form shall mean any form resulting from mechanical
|
|
31
|
+
transformation or translation of a Source form, including but
|
|
32
|
+
not limited to compiled object code, generated documentation,
|
|
33
|
+
and conversions to other media types.
|
|
34
|
+
|
|
35
|
+
"Work" shall mean the work of authorship, whether in Source or
|
|
36
|
+
Object form, made available under the License, as indicated by a
|
|
37
|
+
copyright notice that is included in or attached to the work
|
|
38
|
+
(an example is provided in the Appendix below).
|
|
39
|
+
|
|
40
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
|
41
|
+
form, that is based on (or derived from) the Work and for which the
|
|
42
|
+
editorial revisions, annotations, elaborations, or other modifications
|
|
43
|
+
represent, as a whole, an original work of authorship. For the purposes
|
|
44
|
+
of this License, Derivative Works shall not include works that remain
|
|
45
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
|
46
|
+
the Work and Derivative Works thereof.
|
|
47
|
+
|
|
48
|
+
"Contribution" shall mean any work of authorship, including
|
|
49
|
+
the original version of the Work and any modifications or additions
|
|
50
|
+
to that Work or Derivative Works thereof, that is intentionally
|
|
51
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
52
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
|
53
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
|
54
|
+
means any form of electronic, verbal, or written communication sent
|
|
55
|
+
to the Licensor or its representatives, including but not limited to
|
|
56
|
+
communication on electronic mailing lists, source code control systems,
|
|
57
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
|
58
|
+
Licensor for the purpose of discussing and improving the Work, but
|
|
59
|
+
excluding communication that is conspicuously marked or otherwise
|
|
60
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
|
61
|
+
|
|
62
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
63
|
+
on behalf of whom a Contribution has been received by Licensor and
|
|
64
|
+
subsequently incorporated within the Work.
|
|
65
|
+
|
|
66
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
67
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
68
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
69
|
+
copyright license to reproduce, prepare Derivative Works of,
|
|
70
|
+
publicly display, publicly perform, sublicense, and distribute the
|
|
71
|
+
Work and such Derivative Works in Source or Object form.
|
|
72
|
+
|
|
73
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
|
74
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
75
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
76
|
+
(except as stated in this section) patent license to make, have made,
|
|
77
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
78
|
+
where such license applies only to those patent claims licensable
|
|
79
|
+
by such Contributor that are necessarily infringed by their
|
|
80
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
|
81
|
+
with the Work to which such Contribution(s) was submitted. If You
|
|
82
|
+
institute patent litigation against any entity (including a
|
|
83
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
84
|
+
or a Contribution incorporated within the Work constitutes direct
|
|
85
|
+
or contributory patent infringement, then any patent licenses
|
|
86
|
+
granted to You under this License for that Work shall terminate
|
|
87
|
+
as of the date such litigation is filed.
|
|
88
|
+
|
|
89
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
|
90
|
+
Work or Derivative Works thereof in any medium, with or without
|
|
91
|
+
modifications, and in Source or Object form, provided that You
|
|
92
|
+
meet the following conditions:
|
|
93
|
+
|
|
94
|
+
(a) You must give any other recipients of the Work or
|
|
95
|
+
Derivative Works a copy of this License; and
|
|
96
|
+
|
|
97
|
+
(b) You must cause any modified files to carry prominent notices
|
|
98
|
+
stating that You changed the files; and
|
|
99
|
+
|
|
100
|
+
(c) You must retain, in the Source form of any Derivative Works
|
|
101
|
+
that You distribute, all copyright, patent, trademark, and
|
|
102
|
+
attribution notices from the Source form of the Work,
|
|
103
|
+
excluding those notices that do not pertain to any part of
|
|
104
|
+
the Derivative Works; and
|
|
105
|
+
|
|
106
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
|
107
|
+
distribution, then any Derivative Works that You distribute must
|
|
108
|
+
include a readable copy of the attribution notices contained
|
|
109
|
+
within such NOTICE file, excluding those notices that do not
|
|
110
|
+
pertain to any part of the Derivative Works, in at least one
|
|
111
|
+
of the following places: within a NOTICE text file distributed
|
|
112
|
+
as part of the Derivative Works; within the Source form or
|
|
113
|
+
documentation, if provided along with the Derivative Works; or,
|
|
114
|
+
within a display generated by the Derivative Works, if and
|
|
115
|
+
wherever such third-party notices normally appear. The contents
|
|
116
|
+
of the NOTICE file are for informational purposes only and
|
|
117
|
+
do not modify the License. You may add Your own attribution
|
|
118
|
+
notices within Derivative Works that You distribute, alongside
|
|
119
|
+
or as an addendum to the NOTICE text from the Work, provided
|
|
120
|
+
that such additional attribution notices cannot be construed
|
|
121
|
+
as modifying the License.
|
|
122
|
+
|
|
123
|
+
You may add Your own copyright statement to Your modifications and
|
|
124
|
+
may provide additional or different license terms and conditions
|
|
125
|
+
for use, reproduction, or distribution of Your modifications, or
|
|
126
|
+
for any such Derivative Works as a whole, provided Your use,
|
|
127
|
+
reproduction, and distribution of the Work otherwise complies with
|
|
128
|
+
the conditions stated in this License.
|
|
129
|
+
|
|
130
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
131
|
+
any Contribution intentionally submitted for inclusion in the Work
|
|
132
|
+
by You to the Licensor shall be under the terms and conditions of
|
|
133
|
+
this License, without any additional terms or conditions.
|
|
134
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
|
135
|
+
the terms of any separate license agreement you may have executed
|
|
136
|
+
with Licensor regarding such Contributions.
|
|
137
|
+
|
|
138
|
+
6. Trademarks. This License does not grant permission to use the trade
|
|
139
|
+
names, trademarks, service marks, or product names of the Licensor,
|
|
140
|
+
except as required for reasonable and customary use in describing the
|
|
141
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
|
142
|
+
|
|
143
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
144
|
+
agreed to in writing, Licensor provides the Work (and each
|
|
145
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
146
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
147
|
+
implied, including, without limitation, any warranties or conditions
|
|
148
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
149
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
150
|
+
appropriateness of using or redistributing the Work and assume any
|
|
151
|
+
risks associated with Your exercise of permissions under this License.
|
|
152
|
+
|
|
153
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
|
154
|
+
whether in tort (including negligence), contract, or otherwise,
|
|
155
|
+
unless required by applicable law (such as deliberate and grossly
|
|
156
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
|
157
|
+
liable to You for damages, including any direct, indirect, special,
|
|
158
|
+
incidental, or consequential damages of any character arising as a
|
|
159
|
+
result of this License or out of the use or inability to use the
|
|
160
|
+
Work (including but not limited to damages for loss of goodwill,
|
|
161
|
+
work stoppage, computer failure or malfunction, or any and all
|
|
162
|
+
other commercial damages or losses), even if such Contributor
|
|
163
|
+
has been advised of the possibility of such damages.
|
|
164
|
+
|
|
165
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
|
166
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
|
167
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
168
|
+
or other liability obligations and/or rights consistent with this
|
|
169
|
+
License. However, in accepting such obligations, You may act only
|
|
170
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
|
171
|
+
of any other Contributor, and only if You agree to indemnify,
|
|
172
|
+
defend, and hold each Contributor harmless for any liability
|
|
173
|
+
incurred by, or claims asserted against, such Contributor by reason
|
|
174
|
+
of your accepting any such warranty or additional liability.
|
|
175
|
+
|
|
176
|
+
END OF TERMS AND CONDITIONS
|
|
177
|
+
|
|
178
|
+
APPENDIX: How to apply the Apache License to your work.
|
|
179
|
+
|
|
180
|
+
To apply the Apache License to your work, attach the following
|
|
181
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
|
182
|
+
replaced with your own identifying information. (Don't include
|
|
183
|
+
the brackets!) The text should be enclosed in the appropriate
|
|
184
|
+
comment syntax for the file format. We also recommend that a
|
|
185
|
+
file or class name and description of purpose be included on the
|
|
186
|
+
same "printed page" as the copyright notice for easier
|
|
187
|
+
identification within third-party archives.
|
|
188
|
+
|
|
189
|
+
Copyright [2025] [HZDR and contributors]
|
|
190
|
+
|
|
191
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
192
|
+
you may not use this file except in compliance with the License.
|
|
193
|
+
You may obtain a copy of the License at
|
|
194
|
+
|
|
195
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
196
|
+
|
|
197
|
+
Unless required by applicable law or agreed to in writing, software
|
|
198
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
199
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
200
|
+
See the License for the specific language governing permissions and
|
|
201
|
+
limitations under the License.
|
lyroi-0.1.0/PKG-INFO
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: lyroi
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: LyROI - nnU-Net-based Lymphoma Total Metabolic Tumor Volume Segmentation
|
|
5
|
+
Author-email: Pavel Nikulin <p.nikulin@hzdr.de>, Jens Maus <j.maus@hzdr.de>
|
|
6
|
+
License-Expression: Apache-2.0
|
|
7
|
+
Project-URL: Homepage, https://github.com/hzdr-MedImaging/LyROI
|
|
8
|
+
Project-URL: Documentation, https://github.com/hzdr-MedImaging/LyROI/blob/main/README.md
|
|
9
|
+
Project-URL: Source, https://github.com/hzdr-MedImaging/LyROI
|
|
10
|
+
Keywords: deep learning,ai,lymphoma,pet,petct,tmtv,mtv,nnunet,lyroi,delineations,segmentation,cancer
|
|
11
|
+
Classifier: Development Status :: 3 - Alpha
|
|
12
|
+
Classifier: Intended Audience :: Developers
|
|
13
|
+
Classifier: Intended Audience :: Science/Research
|
|
14
|
+
Classifier: Intended Audience :: Healthcare Industry
|
|
15
|
+
Classifier: Programming Language :: Python :: 3
|
|
16
|
+
Classifier: Operating System :: Unix
|
|
17
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
18
|
+
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
|
19
|
+
Classifier: Topic :: Scientific/Engineering :: Medical Science Apps.
|
|
20
|
+
Requires-Python: >=3.9
|
|
21
|
+
Description-Content-Type: text/markdown
|
|
22
|
+
License-File: LICENSE
|
|
23
|
+
Requires-Dist: torch>=2.1.2
|
|
24
|
+
Requires-Dist: numpy
|
|
25
|
+
Requires-Dist: acvl-utils==0.2
|
|
26
|
+
Requires-Dist: nnunetv2>=2.5.2
|
|
27
|
+
Requires-Dist: requests
|
|
28
|
+
Requires-Dist: nibabel
|
|
29
|
+
Requires-Dist: packaging
|
|
30
|
+
Requires-Dist: psutil
|
|
31
|
+
Dynamic: license-file
|
|
32
|
+
|
|
33
|
+
# LyROI – nnU-Net-based Lymphoma Total Metabolic Tumor Volume Delineation
|
|
34
|
+
|
|
35
|
+
> [!IMPORTANT]
|
|
36
|
+
> **Regulatory status:** This software and the bundled model are intended **solely for research and development (R&D)**.
|
|
37
|
+
> They are **not** intended for primary diagnosis, therapy, or any other clinical decision-making and must **not** be used
|
|
38
|
+
> as a medical device.
|
|
39
|
+
|
|
40
|
+
## Overview
|
|
41
|
+
|
|
42
|
+
**Ly**mphoma **ROI** prediction framework (**LyROI**) is a collection of neural network models and support tools for
|
|
43
|
+
metabolic tumor volume delineation in (Non-Hodgkin) lymphoma patients in FDG-PET/CT images.
|
|
44
|
+
|
|
45
|
+
A comprehensive description of development and evaluation of the models is given in the respective [paper](DOI:XXX).
|
|
46
|
+
Briefly, the models were trained with the [nnU-Net](https://github.com/MIC-DKFZ/nnUNet) software package. A total of
|
|
47
|
+
1192 FDG-PET/CT scans from 716 patients with Non-Hodgkin
|
|
48
|
+
lymphoma participating in the [PETAL](https://doi.org/10.1200/jco.2017.76.8093) trial comprised the training dataset.
|
|
49
|
+
The ground truth delineation included all lesions (irrespective of size or uptake) that were clinically considered as
|
|
50
|
+
lymphoma manifestations by an experienced observer. It was developed iteratively with the assistance of intermediate CNN
|
|
51
|
+
models. Accurate contouring of each lesion was achieved by selecting the most appropriate semi-automated delineation
|
|
52
|
+
algorithm, manually adjusting its settings, and performing manual corrections when necessary.
|
|
53
|
+
|
|
54
|
+
Training and testing were performed following a 5-fold cross-validation scheme. Three configurations of the nnU-Net were
|
|
55
|
+
used for training: regular U-Net, residual encoder U-Net (8 GB GPU memory target), and large residual encoder U-Net
|
|
56
|
+
(24 GB GPU memory target).
|
|
57
|
+
They can be installed as described below and used separately, however, their use in an ensemble (merging individual
|
|
58
|
+
outputs via union operation) is recommended to maximize lesion detection sensitivity.
|
|
59
|
+
|
|
60
|
+
The collection of the trained models can be found here:
|
|
61
|
+
|
|
62
|
+
[](https://doi.org/10.14278/rodare.4160)
|
|
63
|
+
|
|
64
|
+
List of available models:
|
|
65
|
+
- `LyROI_Orig.zip`: regular U-Net
|
|
66
|
+
- `LyROI_ResM.zip`: residual encoder U-Net (medium)
|
|
67
|
+
- `LyROI_ResL.zip`: residual encoder U-Net (large)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
[Scripts](scripts/) subfolder
|
|
72
|
+
provides example code snippets to execute the prediction with each model and merge the resulting delineations when using
|
|
73
|
+
directly within existing nnU-Net installation. See [manual installation](#manual-installation-and-use) section for more
|
|
74
|
+
details.
|
|
75
|
+
For simplified workflow, LyROI is also available as a stand-alone tool, see [quick start](#quick-start) section for
|
|
76
|
+
usage and installation instructions.
|
|
77
|
+
|
|
78
|
+
Please cite [nnU-Net](https://www.nature.com/articles/s41592-020-01008-z) and the [following paper](DOI:XXX) when using
|
|
79
|
+
LyROI:
|
|
80
|
+
|
|
81
|
+
```
|
|
82
|
+
XXX
|
|
83
|
+
```
|
|
84
|
+
|
|
85
|
+
Special thanks to the PETAL study group for the access to the [PETAL](https://doi.org/10.1200/jco.2017.76.8093) trial dataset
|
|
86
|
+
for the network training and agreeing to share the resulting models.
|
|
87
|
+
|
|
88
|
+
## Quick Start
|
|
89
|
+
|
|
90
|
+
> [!IMPORTANT]
|
|
91
|
+
> Working within a dedicated virtual environment (`venv` or `conda`) is highly recommended.
|
|
92
|
+
|
|
93
|
+
> **Requirements**
|
|
94
|
+
> - `python` (>= 3.9)
|
|
95
|
+
> - [`pytorch`](https://pytorch.org/get-started/locally/) (>= 2.1.2)
|
|
96
|
+
|
|
97
|
+
1. Install `python` and `pytorch` (see requirements list above).
|
|
98
|
+
|
|
99
|
+
**Note: As of now, torch >=2.9.0 leads to severe performance
|
|
100
|
+
reduction. Earlier versions are recommended.**
|
|
101
|
+
2. Install `lyroi` as a package (recommended):
|
|
102
|
+
```
|
|
103
|
+
pip install lyroi
|
|
104
|
+
```
|
|
105
|
+
or as modifiable copy (for experienced users):
|
|
106
|
+
```
|
|
107
|
+
git clone https://github.com/hzdr-MedImaging/LyROI.git
|
|
108
|
+
cd LyROI
|
|
109
|
+
pip install -e .
|
|
110
|
+
```
|
|
111
|
+
3. (OPTIONAL) To change the default model installation directory (default: `$HOME/.lyroi`), set the environment variable
|
|
112
|
+
`LYROI_DIR` to the desired location. See, e.g.
|
|
113
|
+
[here](https://www.freecodecamp.org/news/how-to-set-an-environment-variable-in-linux/) for guidance.
|
|
114
|
+
4. Download and install the model files:
|
|
115
|
+
```
|
|
116
|
+
lyroi_install
|
|
117
|
+
```
|
|
118
|
+
5. Run LyROI for
|
|
119
|
+
- all images in the `input_folder` (see [below](#data-format) for input data format) and output delineation in
|
|
120
|
+
`output_folder`:
|
|
121
|
+
```
|
|
122
|
+
lyroi -i input_folder -o output_folder
|
|
123
|
+
```
|
|
124
|
+
- a single patient with CT image `ct.nii.gz` and PET image `pet.nii.gz` (must be coregistered and have the same
|
|
125
|
+
matrix and voxel sizes) and output delineation to `roi.nii.gz`:
|
|
126
|
+
```
|
|
127
|
+
lyroi -i ct.nii.gz pet.nii.gz -o roi.nii.gz
|
|
128
|
+
```
|
|
129
|
+
Execution on a GPU-equipped workstation is highly recommended. In case if no GPU is available, use a flag `-d cpu` to force
|
|
130
|
+
run on CPU (can be **VERY** slow). Flag `-d cpu-max` can help with cpu performance by using all available
|
|
131
|
+
computational resources (may slow down other programs). `nnUNet_def_n_proc` environment variable can be set to limit
|
|
132
|
+
the number of utilized cpu cores in `cpu-max` mode.
|
|
133
|
+
|
|
134
|
+
## Manual Installation and Use
|
|
135
|
+
|
|
136
|
+
> **Requirements**
|
|
137
|
+
> - `python` (>= 3.9)
|
|
138
|
+
> - [`pytorch`](https://pytorch.org/get-started/locally/) (>= 2.1.2)
|
|
139
|
+
> - [`nnU-Net`](https://github.com/MIC-DKFZ/nnUNet/blob/dev/documentation/installation_instructions.md) (>= 2.5.2)
|
|
140
|
+
|
|
141
|
+
1. To download and install the models for each used nnU-Net configuration, execute:
|
|
142
|
+
```
|
|
143
|
+
nnUNetv2_install_pretrained_model_from_zip https://rodare.hzdr.de/record/4177/files/LyROI_Orig.zip
|
|
144
|
+
nnUNetv2_install_pretrained_model_from_zip https://rodare.hzdr.de/record/4177/files/LyROI_ResM.zip
|
|
145
|
+
nnUNetv2_install_pretrained_model_from_zip https://rodare.hzdr.de/record/4177/files/LyROI_ResL.zip
|
|
146
|
+
```
|
|
147
|
+
2. By default, the models will be installed in the folder ``$nnUNet_results/Dataset001_LyROI/``. This might create
|
|
148
|
+
conflicts if you already have a project with the number 001 in your ``$nnUNet_results`` folder. In this case, please
|
|
149
|
+
choose an unoccupied index ``XXX`` for the dataset and rename the LyROI folder to ``DatasetXXX_LyROI``.
|
|
150
|
+
3. Download all files in [scripts](scripts/) folder and put them in the same folder. If you changed the dataset index of
|
|
151
|
+
LyROI, edit the [predict.sh](scripts/predict.sh) file and change the ``dataset_id="001"`` line to
|
|
152
|
+
``dataset_id="XXX"``, where XXX is the new dataset index you selected.
|
|
153
|
+
4. Prepare the input data according to the instructions [below](#data-format).
|
|
154
|
+
5. Execute ``./predict.sh /path/to/your/folder/input_folder`` and wait for the process to complete. The resulting
|
|
155
|
+
delineations can be found in ``input_folder/pred/`` subfolder. If you want to keep the outputs of the intermediate
|
|
156
|
+
networks, comment out the last line in [predict.sh](scripts/predict.sh). Execution on a GPU-equipped workstation is
|
|
157
|
+
highly recommended. In case if no GPU is available, add a flag `-device cpu` to `nnUNetv2_predict` calls within the
|
|
158
|
+
script (can be **VERY** slow). Set `nnUNet_def_n_proc` environment variable to specify the number of cpu cores to use
|
|
159
|
+
for inference (set to the number of physical cpu cores for max performance).
|
|
160
|
+
|
|
161
|
+
## Data Format
|
|
162
|
+
|
|
163
|
+
The input data for batch processing should be presented in the nnU-Net compatible format
|
|
164
|
+
(see [here](https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/dataset_format_inference.md) for details).
|
|
165
|
+
Only compressed NIfTI (`.nii.gz`) images are currently supported. Corresponding CT and PET volumes must be coregistered
|
|
166
|
+
and have the same matrix and voxel sizes.
|
|
167
|
+
|
|
168
|
+
Input channels:
|
|
169
|
+
- `0000` is CT
|
|
170
|
+
- `0001` is PET
|
|
171
|
+
|
|
172
|
+
Here is an example of how the input folder can look like:
|
|
173
|
+
|
|
174
|
+
```
|
|
175
|
+
input_folder
|
|
176
|
+
├── lymph_20250101_0000.nii.gz
|
|
177
|
+
├── lymph_20250101_0001.nii.gz
|
|
178
|
+
├── pat01_0000.nii.gz
|
|
179
|
+
├── pat01_0001.nii.gz
|
|
180
|
+
├── rchop001_0000.nii.gz
|
|
181
|
+
├── rchop001_0001.nii.gz
|
|
182
|
+
├── ...
|
|
183
|
+
```
|
|
184
|
+
|
|
185
|
+
## Intended Purpose (Non-Medical)
|
|
186
|
+
|
|
187
|
+
- The software is intended for **algorithmic research, benchmarking, and method exploration** in lymphoma delineation.
|
|
188
|
+
- It is **not intended** to provide information for diagnostic or therapeutic purposes and **must not** be used in
|
|
189
|
+
clinical workflows.
|
|
190
|
+
- Do **not** deploy or advertise this software as a medical product or service.
|
|
191
|
+
|
|
192
|
+
## Disclaimer (Research Use Only – Not a Medical Device)
|
|
193
|
+
|
|
194
|
+
This software and any bundled or referenced model weights are provided **exclusively for research and development
|
|
195
|
+
purposes**. They are **not intended** for use in the diagnosis, cure, mitigation, treatment, or prevention of disease,
|
|
196
|
+
or for any other clinical decision-making.
|
|
197
|
+
|
|
198
|
+
- The software is **not** a medical device and is **not** CE-marked.
|
|
199
|
+
- No clinical performance, safety, or effectiveness is claimed or implied.
|
|
200
|
+
- Any results must not be used to guide patient management.
|
|
201
|
+
- Users are responsible for compliance with all applicable laws, regulations, and data protection requirements when
|
|
202
|
+
processing data.
|
|
203
|
+
|
|
204
|
+
THE SOFTWARE AND MODELS ARE PROVIDED “AS IS”, WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED.
|
|
205
|
+
|
|
206
|
+
## Licenses
|
|
207
|
+
|
|
208
|
+
The **code** in this repository is licensed under **Apache-2.0** (see [`LICENSE`](LICENSE)).
|
|
209
|
+
The **model weights** are licensed under **CC-BY-SA-4.0** (see [`MODEL_LICENSE.md`](MODEL_LICENSE.md)).
|
|
210
|
+
|
|
211
|
+
## Third-Party Licenses
|
|
212
|
+
|
|
213
|
+
This project uses or interoperates with the following third-party components:
|
|
214
|
+
|
|
215
|
+
- **nnU-Net v2** – Copyright © respective authors.
|
|
216
|
+
- License: **Apache-2.0**
|
|
217
|
+
- **PyTorch**, **NumPy**, **Nibabel**, etc.
|
|
218
|
+
- Licensed under their respective open-source licenses.
|
|
219
|
+
|
|
220
|
+
Each third-party component is the property of its respective owners and is provided under its own license terms. Copies
|
|
221
|
+
of these licenses are available from the upstream projects.
|
lyroi-0.1.0/README.md
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
1
|
+
# LyROI – nnU-Net-based Lymphoma Total Metabolic Tumor Volume Delineation
|
|
2
|
+
|
|
3
|
+
> [!IMPORTANT]
|
|
4
|
+
> **Regulatory status:** This software and the bundled model are intended **solely for research and development (R&D)**.
|
|
5
|
+
> They are **not** intended for primary diagnosis, therapy, or any other clinical decision-making and must **not** be used
|
|
6
|
+
> as a medical device.
|
|
7
|
+
|
|
8
|
+
## Overview
|
|
9
|
+
|
|
10
|
+
**Ly**mphoma **ROI** prediction framework (**LyROI**) is a collection of neural network models and support tools for
|
|
11
|
+
metabolic tumor volume delineation in (Non-Hodgkin) lymphoma patients in FDG-PET/CT images.
|
|
12
|
+
|
|
13
|
+
A comprehensive description of development and evaluation of the models is given in the respective [paper](DOI:XXX).
|
|
14
|
+
Briefly, the models were trained with the [nnU-Net](https://github.com/MIC-DKFZ/nnUNet) software package. A total of
|
|
15
|
+
1192 FDG-PET/CT scans from 716 patients with Non-Hodgkin
|
|
16
|
+
lymphoma participating in the [PETAL](https://doi.org/10.1200/jco.2017.76.8093) trial comprised the training dataset.
|
|
17
|
+
The ground truth delineation included all lesions (irrespective of size or uptake) that were clinically considered as
|
|
18
|
+
lymphoma manifestations by an experienced observer. It was developed iteratively with the assistance of intermediate CNN
|
|
19
|
+
models. Accurate contouring of each lesion was achieved by selecting the most appropriate semi-automated delineation
|
|
20
|
+
algorithm, manually adjusting its settings, and performing manual corrections when necessary.
|
|
21
|
+
|
|
22
|
+
Training and testing were performed following a 5-fold cross-validation scheme. Three configurations of the nnU-Net were
|
|
23
|
+
used for training: regular U-Net, residual encoder U-Net (8 GB GPU memory target), and large residual encoder U-Net
|
|
24
|
+
(24 GB GPU memory target).
|
|
25
|
+
They can be installed as described below and used separately, however, their use in an ensemble (merging individual
|
|
26
|
+
outputs via union operation) is recommended to maximize lesion detection sensitivity.
|
|
27
|
+
|
|
28
|
+
The collection of the trained models can be found here:
|
|
29
|
+
|
|
30
|
+
[](https://doi.org/10.14278/rodare.4160)
|
|
31
|
+
|
|
32
|
+
List of available models:
|
|
33
|
+
- `LyROI_Orig.zip`: regular U-Net
|
|
34
|
+
- `LyROI_ResM.zip`: residual encoder U-Net (medium)
|
|
35
|
+
- `LyROI_ResL.zip`: residual encoder U-Net (large)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
[Scripts](scripts/) subfolder
|
|
40
|
+
provides example code snippets to execute the prediction with each model and merge the resulting delineations when using
|
|
41
|
+
directly within existing nnU-Net installation. See [manual installation](#manual-installation-and-use) section for more
|
|
42
|
+
details.
|
|
43
|
+
For simplified workflow, LyROI is also available as a stand-alone tool, see [quick start](#quick-start) section for
|
|
44
|
+
usage and installation instructions.
|
|
45
|
+
|
|
46
|
+
Please cite [nnU-Net](https://www.nature.com/articles/s41592-020-01008-z) and the [following paper](DOI:XXX) when using
|
|
47
|
+
LyROI:
|
|
48
|
+
|
|
49
|
+
```
|
|
50
|
+
XXX
|
|
51
|
+
```
|
|
52
|
+
|
|
53
|
+
Special thanks to the PETAL study group for the access to the [PETAL](https://doi.org/10.1200/jco.2017.76.8093) trial dataset
|
|
54
|
+
for the network training and agreeing to share the resulting models.
|
|
55
|
+
|
|
56
|
+
## Quick Start
|
|
57
|
+
|
|
58
|
+
> [!IMPORTANT]
|
|
59
|
+
> Working within a dedicated virtual environment (`venv` or `conda`) is highly recommended.
|
|
60
|
+
|
|
61
|
+
> **Requirements**
|
|
62
|
+
> - `python` (>= 3.9)
|
|
63
|
+
> - [`pytorch`](https://pytorch.org/get-started/locally/) (>= 2.1.2)
|
|
64
|
+
|
|
65
|
+
1. Install `python` and `pytorch` (see requirements list above).
|
|
66
|
+
|
|
67
|
+
**Note: As of now, torch >=2.9.0 leads to severe performance
|
|
68
|
+
reduction. Earlier versions are recommended.**
|
|
69
|
+
2. Install `lyroi` as a package (recommended):
|
|
70
|
+
```
|
|
71
|
+
pip install lyroi
|
|
72
|
+
```
|
|
73
|
+
or as modifiable copy (for experienced users):
|
|
74
|
+
```
|
|
75
|
+
git clone https://github.com/hzdr-MedImaging/LyROI.git
|
|
76
|
+
cd LyROI
|
|
77
|
+
pip install -e .
|
|
78
|
+
```
|
|
79
|
+
3. (OPTIONAL) To change the default model installation directory (default: `$HOME/.lyroi`), set the environment variable
|
|
80
|
+
`LYROI_DIR` to the desired location. See, e.g.
|
|
81
|
+
[here](https://www.freecodecamp.org/news/how-to-set-an-environment-variable-in-linux/) for guidance.
|
|
82
|
+
4. Download and install the model files:
|
|
83
|
+
```
|
|
84
|
+
lyroi_install
|
|
85
|
+
```
|
|
86
|
+
5. Run LyROI for
|
|
87
|
+
- all images in the `input_folder` (see [below](#data-format) for input data format) and output delineation in
|
|
88
|
+
`output_folder`:
|
|
89
|
+
```
|
|
90
|
+
lyroi -i input_folder -o output_folder
|
|
91
|
+
```
|
|
92
|
+
- a single patient with CT image `ct.nii.gz` and PET image `pet.nii.gz` (must be coregistered and have the same
|
|
93
|
+
matrix and voxel sizes) and output delineation to `roi.nii.gz`:
|
|
94
|
+
```
|
|
95
|
+
lyroi -i ct.nii.gz pet.nii.gz -o roi.nii.gz
|
|
96
|
+
```
|
|
97
|
+
Execution on a GPU-equipped workstation is highly recommended. In case if no GPU is available, use a flag `-d cpu` to force
|
|
98
|
+
run on CPU (can be **VERY** slow). Flag `-d cpu-max` can help with cpu performance by using all available
|
|
99
|
+
computational resources (may slow down other programs). `nnUNet_def_n_proc` environment variable can be set to limit
|
|
100
|
+
the number of utilized cpu cores in `cpu-max` mode.
|
|
101
|
+
|
|
102
|
+
## Manual Installation and Use
|
|
103
|
+
|
|
104
|
+
> **Requirements**
|
|
105
|
+
> - `python` (>= 3.9)
|
|
106
|
+
> - [`pytorch`](https://pytorch.org/get-started/locally/) (>= 2.1.2)
|
|
107
|
+
> - [`nnU-Net`](https://github.com/MIC-DKFZ/nnUNet/blob/dev/documentation/installation_instructions.md) (>= 2.5.2)
|
|
108
|
+
|
|
109
|
+
1. To download and install the models for each used nnU-Net configuration, execute:
|
|
110
|
+
```
|
|
111
|
+
nnUNetv2_install_pretrained_model_from_zip https://rodare.hzdr.de/record/4177/files/LyROI_Orig.zip
|
|
112
|
+
nnUNetv2_install_pretrained_model_from_zip https://rodare.hzdr.de/record/4177/files/LyROI_ResM.zip
|
|
113
|
+
nnUNetv2_install_pretrained_model_from_zip https://rodare.hzdr.de/record/4177/files/LyROI_ResL.zip
|
|
114
|
+
```
|
|
115
|
+
2. By default, the models will be installed in the folder ``$nnUNet_results/Dataset001_LyROI/``. This might create
|
|
116
|
+
conflicts if you already have a project with the number 001 in your ``$nnUNet_results`` folder. In this case, please
|
|
117
|
+
choose an unoccupied index ``XXX`` for the dataset and rename the LyROI folder to ``DatasetXXX_LyROI``.
|
|
118
|
+
3. Download all files in [scripts](scripts/) folder and put them in the same folder. If you changed the dataset index of
|
|
119
|
+
LyROI, edit the [predict.sh](scripts/predict.sh) file and change the ``dataset_id="001"`` line to
|
|
120
|
+
``dataset_id="XXX"``, where XXX is the new dataset index you selected.
|
|
121
|
+
4. Prepare the input data according to the instructions [below](#data-format).
|
|
122
|
+
5. Execute ``./predict.sh /path/to/your/folder/input_folder`` and wait for the process to complete. The resulting
|
|
123
|
+
delineations can be found in ``input_folder/pred/`` subfolder. If you want to keep the outputs of the intermediate
|
|
124
|
+
networks, comment out the last line in [predict.sh](scripts/predict.sh). Execution on a GPU-equipped workstation is
|
|
125
|
+
highly recommended. In case if no GPU is available, add a flag `-device cpu` to `nnUNetv2_predict` calls within the
|
|
126
|
+
script (can be **VERY** slow). Set `nnUNet_def_n_proc` environment variable to specify the number of cpu cores to use
|
|
127
|
+
for inference (set to the number of physical cpu cores for max performance).
|
|
128
|
+
|
|
129
|
+
## Data Format
|
|
130
|
+
|
|
131
|
+
The input data for batch processing should be presented in the nnU-Net compatible format
|
|
132
|
+
(see [here](https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/dataset_format_inference.md) for details).
|
|
133
|
+
Only compressed NIfTI (`.nii.gz`) images are currently supported. Corresponding CT and PET volumes must be coregistered
|
|
134
|
+
and have the same matrix and voxel sizes.
|
|
135
|
+
|
|
136
|
+
Input channels:
|
|
137
|
+
- `0000` is CT
|
|
138
|
+
- `0001` is PET
|
|
139
|
+
|
|
140
|
+
Here is an example of how the input folder can look like:
|
|
141
|
+
|
|
142
|
+
```
|
|
143
|
+
input_folder
|
|
144
|
+
├── lymph_20250101_0000.nii.gz
|
|
145
|
+
├── lymph_20250101_0001.nii.gz
|
|
146
|
+
├── pat01_0000.nii.gz
|
|
147
|
+
├── pat01_0001.nii.gz
|
|
148
|
+
├── rchop001_0000.nii.gz
|
|
149
|
+
├── rchop001_0001.nii.gz
|
|
150
|
+
├── ...
|
|
151
|
+
```
|
|
152
|
+
|
|
153
|
+
## Intended Purpose (Non-Medical)
|
|
154
|
+
|
|
155
|
+
- The software is intended for **algorithmic research, benchmarking, and method exploration** in lymphoma delineation.
|
|
156
|
+
- It is **not intended** to provide information for diagnostic or therapeutic purposes and **must not** be used in
|
|
157
|
+
clinical workflows.
|
|
158
|
+
- Do **not** deploy or advertise this software as a medical product or service.
|
|
159
|
+
|
|
160
|
+
## Disclaimer (Research Use Only – Not a Medical Device)
|
|
161
|
+
|
|
162
|
+
This software and any bundled or referenced model weights are provided **exclusively for research and development
|
|
163
|
+
purposes**. They are **not intended** for use in the diagnosis, cure, mitigation, treatment, or prevention of disease,
|
|
164
|
+
or for any other clinical decision-making.
|
|
165
|
+
|
|
166
|
+
- The software is **not** a medical device and is **not** CE-marked.
|
|
167
|
+
- No clinical performance, safety, or effectiveness is claimed or implied.
|
|
168
|
+
- Any results must not be used to guide patient management.
|
|
169
|
+
- Users are responsible for compliance with all applicable laws, regulations, and data protection requirements when
|
|
170
|
+
processing data.
|
|
171
|
+
|
|
172
|
+
THE SOFTWARE AND MODELS ARE PROVIDED “AS IS”, WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED.
|
|
173
|
+
|
|
174
|
+
## Licenses
|
|
175
|
+
|
|
176
|
+
The **code** in this repository is licensed under **Apache-2.0** (see [`LICENSE`](LICENSE)).
|
|
177
|
+
The **model weights** are licensed under **CC-BY-SA-4.0** (see [`MODEL_LICENSE.md`](MODEL_LICENSE.md)).
|
|
178
|
+
|
|
179
|
+
## Third-Party Licenses
|
|
180
|
+
|
|
181
|
+
This project uses or interoperates with the following third-party components:
|
|
182
|
+
|
|
183
|
+
- **nnU-Net v2** – Copyright © respective authors.
|
|
184
|
+
- License: **Apache-2.0**
|
|
185
|
+
- **PyTorch**, **NumPy**, **Nibabel**, etc.
|
|
186
|
+
- Licensed under their respective open-source licenses.
|
|
187
|
+
|
|
188
|
+
Each third-party component is the property of its respective owners and is provided under its own license terms. Copies
|
|
189
|
+
of these licenses are available from the upstream projects.
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
from datetime import datetime
|
|
2
|
+
from importlib.metadata import version, PackageNotFoundError, metadata
|
|
3
|
+
import re
|
|
4
|
+
import sys
|
|
5
|
+
import signal
|
|
6
|
+
|
|
7
|
+
__package__ = "lyroi"
|
|
8
|
+
creation_date = datetime(2025, 11, 26)
|
|
9
|
+
|
|
10
|
+
try:
|
|
11
|
+
__version__ = version(__package__)
|
|
12
|
+
except PackageNotFoundError:
|
|
13
|
+
__version__ = "0.0.0"
|
|
14
|
+
|
|
15
|
+
meta = metadata(__package__)
|
|
16
|
+
email_list = meta.get("Author-email", "")
|
|
17
|
+
author_str = re.sub(r"<[^>]*>", "", email_list).strip()
|
|
18
|
+
now_date = datetime.now()
|
|
19
|
+
date_str = now_date.strftime("%Y") if creation_date.year == now_date.year else creation_date.strftime("%Y") + "-" + now_date.strftime("%Y")
|
|
20
|
+
__copyright__ = "Copyright (c) " + date_str + " " + author_str + ", www.hzdr.de"
|
|
21
|
+
__license__ = meta.get("License-Expression")
|
|
22
|
+
|
|
23
|
+
__legal__ = ("Disclaimer:\n"
|
|
24
|
+
"This software is intended for research use only.\n"
|
|
25
|
+
"It is not a medical device and must not be used for clinical decisions.\n\n"
|
|
26
|
+
f"{__package__} {__version__}\n"
|
|
27
|
+
f"{__copyright__}\n"
|
|
28
|
+
f"License: {__license__}; models are licensed separately")
|
|
29
|
+
|
|
30
|
+
def error_handler(exctype, value, traceback):
|
|
31
|
+
print()
|
|
32
|
+
print("Error:", value, file=sys.stderr)
|
|
33
|
+
sys.exit(1)
|
|
34
|
+
|
|
35
|
+
def exit_handler(signal, frame):
|
|
36
|
+
print()
|
|
37
|
+
print("User abort (CTRL-C) received.")
|
|
38
|
+
sys.exit(0)
|
|
39
|
+
|
|
40
|
+
signal.signal(signal.SIGINT, exit_handler)
|
|
41
|
+
sys.excepthook = error_handler
|