lt-tensor 0.0.1a37__tar.gz → 0.0.1a39__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/PKG-INFO +1 -1
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/__init__.py +1 -1
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/losses.py +10 -4
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/audio_models/diffwave/__init__.py +68 -81
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/convs.py +25 -16
- lt_tensor-0.0.1a39/lt_tensor/model_zoo/losses/_envelope_disc/__init__.py +116 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/losses/discriminators.py +34 -64
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/processors/audio.py +4 -2
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor.egg-info/PKG-INFO +1 -1
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor.egg-info/SOURCES.txt +1 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/setup.py +1 -1
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/LICENSE +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/README.md +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/config_templates.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/lr_schedulers.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/math_ops.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/misc_utils.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_base.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/__init__.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/activations/__init__.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/activations/alias_free/__init__.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/activations/alias_free/act.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/activations/alias_free/filter.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/activations/alias_free/resample.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/activations/snake/__init__.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/audio_models/__init__.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/audio_models/bigvgan/__init__.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/audio_models/hifigan/__init__.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/audio_models/istft/__init__.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/audio_models/resblocks.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/basic.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/features.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/fusion.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/losses/CQT/__init__.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/losses/CQT/transforms.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/losses/CQT/utils.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/losses/__init__.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/pos_encoder.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/residual.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/transformer.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/monotonic_align.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/noise_tools.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/processors/__init__.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/torch_commons.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/transform.py +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor.egg-info/dependency_links.txt +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor.egg-info/requires.txt +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor.egg-info/top_level.txt +0 -0
- {lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/setup.cfg +0 -0
@@ -133,7 +133,7 @@ class MultiMelScaleLoss(Model):
|
|
133
133
|
loss_mel_fn: Callable[[Tensor, Tensor], Tensor] = nn.L1Loss(),
|
134
134
|
loss_pitch_fn: Callable[[Tensor, Tensor], Tensor] = nn.L1Loss(),
|
135
135
|
loss_rms_fn: Callable[[Tensor, Tensor], Tensor] = nn.L1Loss(),
|
136
|
-
center: bool =
|
136
|
+
center: bool = False,
|
137
137
|
power: float = 1.0,
|
138
138
|
normalized: bool = False,
|
139
139
|
pad_mode: str = "reflect",
|
@@ -149,6 +149,7 @@ class MultiMelScaleLoss(Model):
|
|
149
149
|
lambda_rms: float = 1.0,
|
150
150
|
lambda_pitch: float = 1.0,
|
151
151
|
weight: float = 1.0,
|
152
|
+
mel: Literal["librosa", "torch"] = "torch",
|
152
153
|
):
|
153
154
|
super().__init__()
|
154
155
|
assert (
|
@@ -188,6 +189,7 @@ class MultiMelScaleLoss(Model):
|
|
188
189
|
onesided,
|
189
190
|
std,
|
190
191
|
mean,
|
192
|
+
mel,
|
191
193
|
)
|
192
194
|
|
193
195
|
def _setup_mels(
|
@@ -206,6 +208,7 @@ class MultiMelScaleLoss(Model):
|
|
206
208
|
onesided: Optional[bool],
|
207
209
|
std: int,
|
208
210
|
mean: int,
|
211
|
+
mel: str,
|
209
212
|
):
|
210
213
|
assert (
|
211
214
|
len(n_mels)
|
@@ -224,6 +227,7 @@ class MultiMelScaleLoss(Model):
|
|
224
227
|
pad_mode=pad_mode,
|
225
228
|
std=std,
|
226
229
|
mean=mean,
|
230
|
+
mel_default=mel,
|
227
231
|
)
|
228
232
|
self.mel_spectrograms: List[AudioProcessor] = nn.ModuleList(
|
229
233
|
[
|
@@ -247,12 +251,14 @@ class MultiMelScaleLoss(Model):
|
|
247
251
|
def forward(
|
248
252
|
self, input_wave: torch.Tensor, target_wave: torch.Tensor
|
249
253
|
) -> torch.Tensor:
|
250
|
-
assert self.use_istft_norm or input_wave.shape[-1] == target_wave.shape[-1]
|
254
|
+
assert self.use_istft_norm or input_wave.shape[-1] == target_wave.shape[-1], (
|
255
|
+
f"Size mismatch! input_wave {input_wave.shape[-1]} must match target_wave: {target_wave.shape[-1]}. "
|
256
|
+
"Alternatively 'use_istft_norm' can be set to Trie with will automatically force the audio to that size."
|
257
|
+
)
|
251
258
|
target_wave = target_wave.to(input_wave.device)
|
252
259
|
losses = 0.0
|
253
260
|
for M in self.mel_spectrograms:
|
254
|
-
|
255
|
-
if self.use_istft_norm:
|
261
|
+
if self.use_istft_norm and input_proc.shape[-1] != target_proc.shape[-1]:
|
256
262
|
input_proc = M.istft_norm(input_wave, length=target_wave.shape[-1])
|
257
263
|
target_proc = M.istft_norm(target_wave, length=target_wave.shape[-1])
|
258
264
|
else:
|
{lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/audio_models/diffwave/__init__.py
RENAMED
@@ -1,14 +1,15 @@
|
|
1
|
-
__all__ = ["DiffWave", "DiffWaveConfig", "
|
1
|
+
__all__ = ["DiffWave", "DiffWaveConfig", "SpectrogramUpsampler", "DiffusionEmbedding"]
|
2
2
|
|
3
3
|
import numpy as np
|
4
4
|
from lt_tensor.torch_commons import *
|
5
5
|
from torch.nn import functional as F
|
6
6
|
from lt_tensor.config_templates import ModelConfig
|
7
7
|
from lt_tensor.torch_commons import *
|
8
|
-
from lt_tensor.model_zoo.convs import ConvNets,
|
8
|
+
from lt_tensor.model_zoo.convs import ConvNets, ConvEXT
|
9
9
|
from lt_tensor.model_base import Model
|
10
10
|
from math import sqrt
|
11
11
|
from lt_utils.common import *
|
12
|
+
from lt_tensor.misc_utils import log_tensor
|
12
13
|
|
13
14
|
|
14
15
|
class DiffWaveConfig(ModelConfig):
|
@@ -21,12 +22,8 @@ class DiffWaveConfig(ModelConfig):
|
|
21
22
|
unconditional = False
|
22
23
|
apply_norm: Optional[Literal["weight", "spectral"]] = None
|
23
24
|
apply_norm_resblock: Optional[Literal["weight", "spectral"]] = None
|
24
|
-
noise_schedule: list[int] = np.linspace(1e-4, 0.05,
|
25
|
+
noise_schedule: list[int] = np.linspace(1e-4, 0.05, 25).tolist()
|
25
26
|
# settings for auto-fixes
|
26
|
-
interpolate = False
|
27
|
-
interpolation_mode: Literal[
|
28
|
-
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
|
29
|
-
] = "nearest"
|
30
27
|
|
31
28
|
def __init__(
|
32
29
|
self,
|
@@ -37,16 +34,6 @@ class DiffWaveConfig(ModelConfig):
|
|
37
34
|
dilation_cycle_length=10,
|
38
35
|
unconditional=False,
|
39
36
|
noise_schedule: list[int] = np.linspace(1e-4, 0.05, 50).tolist(),
|
40
|
-
interpolate_cond=False,
|
41
|
-
interpolation_mode: Literal[
|
42
|
-
"nearest",
|
43
|
-
"linear",
|
44
|
-
"bilinear",
|
45
|
-
"bicubic",
|
46
|
-
"trilinear",
|
47
|
-
"area",
|
48
|
-
"nearest-exact",
|
49
|
-
] = "nearest",
|
50
37
|
apply_norm: Optional[Literal["weight", "spectral"]] = None,
|
51
38
|
apply_norm_resblock: Optional[Literal["weight", "spectral"]] = None,
|
52
39
|
):
|
@@ -58,8 +45,6 @@ class DiffWaveConfig(ModelConfig):
|
|
58
45
|
"residual_channels": residual_channels,
|
59
46
|
"unconditional": unconditional,
|
60
47
|
"noise_schedule": noise_schedule,
|
61
|
-
"interpolate": interpolate_cond,
|
62
|
-
"interpolation_mode": interpolation_mode,
|
63
48
|
"apply_norm": apply_norm,
|
64
49
|
"apply_norm_resblock": apply_norm_resblock,
|
65
50
|
}
|
@@ -102,19 +87,34 @@ class DiffusionEmbedding(Model):
|
|
102
87
|
return table
|
103
88
|
|
104
89
|
|
105
|
-
class
|
90
|
+
class SpectrogramUpsampler(Model):
|
106
91
|
def __init__(self):
|
107
92
|
super().__init__()
|
108
|
-
self.
|
109
|
-
|
110
|
-
|
93
|
+
self.conv_net = nn.Sequential(
|
94
|
+
ConvEXT(
|
95
|
+
1,
|
96
|
+
1,
|
97
|
+
[3, 32],
|
98
|
+
stride=[1, 16],
|
99
|
+
padding=[1, 8],
|
100
|
+
module_type="2d",
|
101
|
+
transpose=True,
|
102
|
+
),
|
103
|
+
nn.LeakyReLU(0.1),
|
104
|
+
ConvEXT(
|
105
|
+
1,
|
106
|
+
1,
|
107
|
+
[3, 32],
|
108
|
+
stride=[1, 16],
|
109
|
+
padding=[1, 8],
|
110
|
+
module_type="2d",
|
111
|
+
transpose=True,
|
112
|
+
),
|
113
|
+
nn.LeakyReLU(0.1),
|
114
|
+
)
|
111
115
|
|
112
|
-
def forward(self, x):
|
113
|
-
|
114
|
-
x = self.activation(self.conv1(x))
|
115
|
-
x = self.activation(self.conv2(x))
|
116
|
-
x = torch.squeeze(x, 1)
|
117
|
-
return x
|
116
|
+
def forward(self, x: Tensor):
|
117
|
+
return self.conv_net(x.unsqueeze(0)).squeeze(1)
|
118
118
|
|
119
119
|
|
120
120
|
class ResidualBlock(Model):
|
@@ -133,7 +133,7 @@ class ResidualBlock(Model):
|
|
133
133
|
:param uncond: disable spectrogram conditional
|
134
134
|
"""
|
135
135
|
super().__init__()
|
136
|
-
self.dilated_conv =
|
136
|
+
self.dilated_conv = ConvEXT(
|
137
137
|
residual_channels,
|
138
138
|
2 * residual_channels,
|
139
139
|
3,
|
@@ -142,18 +142,18 @@ class ResidualBlock(Model):
|
|
142
142
|
apply_norm=apply_norm,
|
143
143
|
)
|
144
144
|
self.diffusion_projection = nn.Linear(512, residual_channels)
|
145
|
-
|
146
|
-
|
145
|
+
self.uncoditional = uncond
|
146
|
+
self.conditioner_projection = None
|
147
|
+
if not uncond:
|
148
|
+
self.conditioner_projection = ConvEXT(
|
147
149
|
n_mels,
|
148
150
|
2 * residual_channels,
|
149
151
|
1,
|
150
152
|
apply_norm=apply_norm,
|
151
153
|
)
|
152
|
-
else: # unconditional model
|
153
|
-
self.conditioner_projection = None
|
154
154
|
|
155
|
-
self.output_projection =
|
156
|
-
residual_channels, 2 * residual_channels, 1, apply_norm
|
155
|
+
self.output_projection = ConvEXT(
|
156
|
+
residual_channels, 2 * residual_channels, 1, apply_norm=apply_norm
|
157
157
|
)
|
158
158
|
|
159
159
|
def forward(
|
@@ -164,20 +164,15 @@ class ResidualBlock(Model):
|
|
164
164
|
):
|
165
165
|
|
166
166
|
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
|
167
|
-
y = x + diffusion_step
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
y = self.dilated_conv(y)
|
172
|
-
else:
|
173
|
-
conditioner = self.conditioner_projection(conditioner)
|
174
|
-
y = self.dilated_conv(y) + conditioner
|
175
|
-
|
176
|
-
gate, filter = torch.chunk(y, 2, dim=1)
|
177
|
-
y = torch.sigmoid(gate) * torch.tanh(filter)
|
167
|
+
y = (x + diffusion_step).squeeze(1)
|
168
|
+
y = self.dilated_conv(y)
|
169
|
+
if not self.uncoditional and conditioner is not None:
|
170
|
+
y = y + self.conditioner_projection(conditioner)
|
178
171
|
|
172
|
+
gate, _filter = y.chunk(2, dim=1)
|
173
|
+
y = gate.sigmoid() * _filter.tanh()
|
179
174
|
y = self.output_projection(y)
|
180
|
-
residual, skip =
|
175
|
+
residual, skip = y.chunk(2, dim=1)
|
181
176
|
return (x + residual) / sqrt(2.0), skip
|
182
177
|
|
183
178
|
|
@@ -186,19 +181,17 @@ class DiffWave(Model):
|
|
186
181
|
super().__init__()
|
187
182
|
self.params = params
|
188
183
|
self.n_hop = self.params.hop_samples
|
189
|
-
self.
|
190
|
-
self.interpolate_mode = self.params.interpolation_mode
|
191
|
-
self.input_projection = Conv1dEXT(
|
184
|
+
self.input_projection = ConvEXT(
|
192
185
|
in_channels=1,
|
193
186
|
out_channels=params.residual_channels,
|
194
187
|
kernel_size=1,
|
195
188
|
apply_norm=self.params.apply_norm,
|
189
|
+
activation_out=nn.LeakyReLU(0.1),
|
196
190
|
)
|
197
191
|
self.diffusion_embedding = DiffusionEmbedding(len(params.noise_schedule))
|
198
|
-
|
199
|
-
self.
|
200
|
-
|
201
|
-
self.spectrogram_upsample = SpectrogramUpsample()
|
192
|
+
self.spectrogram_upsampler = (
|
193
|
+
SpectrogramUpsampler() if not self.params.unconditional else None
|
194
|
+
)
|
202
195
|
|
203
196
|
self.residual_layers = nn.ModuleList(
|
204
197
|
[
|
@@ -212,18 +205,18 @@ class DiffWave(Model):
|
|
212
205
|
for i in range(params.residual_layers)
|
213
206
|
]
|
214
207
|
)
|
215
|
-
self.skip_projection =
|
208
|
+
self.skip_projection = ConvEXT(
|
216
209
|
in_channels=params.residual_channels,
|
217
210
|
out_channels=params.residual_channels,
|
218
211
|
kernel_size=1,
|
219
212
|
apply_norm=self.params.apply_norm,
|
213
|
+
activation_out=nn.LeakyReLU(0.1),
|
220
214
|
)
|
221
|
-
self.output_projection =
|
222
|
-
params.residual_channels, 1, 1, apply_norm=self.params.apply_norm
|
215
|
+
self.output_projection = ConvEXT(
|
216
|
+
params.residual_channels, 1, 1, apply_norm=self.params.apply_norm, init_weights=True,
|
223
217
|
)
|
224
218
|
self.activation = nn.LeakyReLU(0.1)
|
225
|
-
self.
|
226
|
-
nn.init.zeros_(self.output_projection.weight)
|
219
|
+
self._res_d = sqrt(len(self.residual_layers))
|
227
220
|
|
228
221
|
def forward(
|
229
222
|
self,
|
@@ -231,31 +224,25 @@ class DiffWave(Model):
|
|
231
224
|
diffusion_step: Tensor,
|
232
225
|
spectrogram: Optional[Tensor] = None,
|
233
226
|
):
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
227
|
+
if not self.params.unconditional:
|
228
|
+
assert spectrogram is not None
|
229
|
+
if audio.ndim < 3:
|
230
|
+
if audio.ndim == 2:
|
231
|
+
audio = audio.unsqueeze(1)
|
232
|
+
else:
|
233
|
+
audio = audio.unsqueeze(0).unsqueeze(0)
|
238
234
|
|
235
|
+
x = self.input_projection(audio)
|
239
236
|
diffusion_step = self.diffusion_embedding(diffusion_step)
|
240
|
-
if
|
241
|
-
|
242
|
-
# a little heavy, but helps a lot to fix mismatched shapes,
|
243
|
-
# not always recommended due to data loss
|
244
|
-
spectrogram = F.interpolate(
|
245
|
-
input=spectrogram,
|
246
|
-
size=int(T * self.n_hop),
|
247
|
-
mode=self.interpolate_mode,
|
248
|
-
)
|
249
|
-
spectrogram = self.spectrogram_upsample(spectrogram)
|
237
|
+
if not self.params.unconditional: # use conditional model
|
238
|
+
spectrogram = self.spectrogram_upsampler(spectrogram)
|
250
239
|
|
251
|
-
skip =
|
240
|
+
skip = torch.zeros_like(x, device=x.device)
|
252
241
|
for i, layer in enumerate(self.residual_layers):
|
253
242
|
x, skip_connection = layer(x, diffusion_step, spectrogram)
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
x = skip / self.r_sqrt
|
259
|
-
x = self.activation(self.skip_projection(x))
|
243
|
+
skip += skip_connection
|
244
|
+
|
245
|
+
x = skip / self._res_d
|
246
|
+
x = self.skip_projection(x)
|
260
247
|
x = self.output_projection(x)
|
261
248
|
return x
|
@@ -1,4 +1,4 @@
|
|
1
|
-
__all__ = ["ConvNets", "
|
1
|
+
__all__ = ["ConvNets", "ConvEXT"]
|
2
2
|
import math
|
3
3
|
from lt_utils.common import *
|
4
4
|
import torch.nn.functional as F
|
@@ -6,6 +6,7 @@ from lt_tensor.torch_commons import *
|
|
6
6
|
from lt_tensor.model_base import Model
|
7
7
|
from lt_tensor.misc_utils import log_tensor
|
8
8
|
from lt_tensor.model_zoo.fusion import AdaFusion1D, AdaIN1D
|
9
|
+
from lt_utils.misc_utils import default
|
9
10
|
|
10
11
|
|
11
12
|
def spectral_norm_select(module: nn.Module, enabled: bool):
|
@@ -52,10 +53,7 @@ class ConvNets(Model):
|
|
52
53
|
m.weight.data.normal_(mean, std)
|
53
54
|
|
54
55
|
|
55
|
-
class
|
56
|
-
|
57
|
-
# TODO: Use this module to replace all that are using normalizations, mostly those in `audio_models`
|
58
|
-
|
56
|
+
class ConvEXT(ConvNets):
|
59
57
|
def __init__(
|
60
58
|
self,
|
61
59
|
in_channels: int,
|
@@ -72,6 +70,10 @@ class Conv1dEXT(ConvNets):
|
|
72
70
|
apply_norm: Optional[Literal["weight", "spectral"]] = None,
|
73
71
|
activation_in: nn.Module = nn.Identity(),
|
74
72
|
activation_out: nn.Module = nn.Identity(),
|
73
|
+
module_type: Literal["1d", "2d", "3d"] = "1d",
|
74
|
+
transpose: bool = False,
|
75
|
+
weight_init: Optional[Callable[[nn.Module], None]] = None,
|
76
|
+
init_weights: bool = True,
|
75
77
|
*args,
|
76
78
|
**kwargs,
|
77
79
|
):
|
@@ -91,23 +93,30 @@ class Conv1dEXT(ConvNets):
|
|
91
93
|
device=device,
|
92
94
|
dtype=dtype,
|
93
95
|
)
|
96
|
+
match module_type.lower():
|
97
|
+
case "1d":
|
98
|
+
md = nn.Conv1d if not transpose else nn.ConvTranspose1d
|
99
|
+
case "2d":
|
100
|
+
md = nn.Conv2d if not transpose else nn.ConvTranspose2d
|
101
|
+
case "3d":
|
102
|
+
md = nn.Conv3d if not transpose else nn.ConvTranspose3d
|
103
|
+
case _:
|
104
|
+
raise ValueError(
|
105
|
+
f"module_type {module_type} is not a valid module type! use '1d', '2d' or '3d'"
|
106
|
+
)
|
107
|
+
|
94
108
|
if apply_norm is None:
|
95
|
-
self.cnn =
|
96
|
-
self.has_wn = False
|
109
|
+
self.cnn = md(**cnn_kwargs)
|
97
110
|
else:
|
98
|
-
self.has_wn = True
|
99
111
|
if apply_norm == "spectral":
|
100
|
-
self.cnn = spectral_norm(
|
112
|
+
self.cnn = spectral_norm(md(**cnn_kwargs))
|
101
113
|
else:
|
102
|
-
self.cnn = weight_norm(
|
114
|
+
self.cnn = weight_norm(md(**cnn_kwargs))
|
103
115
|
self.actv_in = activation_in
|
104
116
|
self.actv_out = activation_out
|
105
|
-
|
117
|
+
if init_weights:
|
118
|
+
weight_init = default(weight_init, self.init_weights)
|
119
|
+
self.cnn.apply(weight_init)
|
106
120
|
|
107
121
|
def forward(self, input: Tensor):
|
108
122
|
return self.actv_out(self.cnn(self.actv_in(input)))
|
109
|
-
|
110
|
-
def remove_norms(self, name="weight"):
|
111
|
-
if self.has_wn:
|
112
|
-
remove_norm(self.cnn, name)
|
113
|
-
self.has_wn = False
|
@@ -0,0 +1,116 @@
|
|
1
|
+
""" Modified from: https://github.com/dinhoitt/BemaGANv2/blob/9560ae9df153c956f259c261c57c4f84f89e3d72/envelope.py
|
2
|
+
MIT License
|
3
|
+
|
4
|
+
Copyright (c) 2025 Taseoo Park
|
5
|
+
|
6
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
7
|
+
of this software and associated documentation files (the "Software"), to deal
|
8
|
+
in the Software without restriction, including without limitation the rights
|
9
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
10
|
+
copies of the Software, and to permit persons to whom the Software is
|
11
|
+
furnished to do so, subject to the following conditions:
|
12
|
+
|
13
|
+
The above copyright notice and this permission notice shall be included in all
|
14
|
+
copies or substantial portions of the Software.
|
15
|
+
|
16
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
17
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
18
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
19
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
20
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
21
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
22
|
+
SOFTWARE.
|
23
|
+
"""
|
24
|
+
from lt_utils.common import *
|
25
|
+
from lt_tensor.torch_commons import *
|
26
|
+
from lt_tensor.model_base import Model
|
27
|
+
|
28
|
+
|
29
|
+
class Envelope(Model):
|
30
|
+
def __init__(self, max_freq: int, sample_rate: Number = 24000, cut_off: int = 0):
|
31
|
+
super().__init__()
|
32
|
+
self.sr = sample_rate
|
33
|
+
self.max_freq = max_freq
|
34
|
+
self.setup_low_pass_fn(max_freq, cut_off)
|
35
|
+
|
36
|
+
def forward(self, x: torch.Tensor):
|
37
|
+
if not self.max_freq:
|
38
|
+
return x
|
39
|
+
return self.lp_fn(x)
|
40
|
+
|
41
|
+
def _ft_signal(self, signal: torch.Tensor):
|
42
|
+
filtered_signal = self.butterwort_lowpass_filter(signal)
|
43
|
+
return torch.abs(self.hilbert(filtered_signal))
|
44
|
+
|
45
|
+
def setup_low_pass_fn(self, max_freq: int, cutoff: int = 0):
|
46
|
+
self.max_freq = int(max_freq)
|
47
|
+
cutoff = self.max_freq if cutoff == 0 else cutoff
|
48
|
+
self.lp_fn = self.hilbert if self.max_freq in [-1, 1] else self._ft_signal
|
49
|
+
self.setup_butterwort_lowpass_coefficients(cutoff)
|
50
|
+
|
51
|
+
def hilbert(self, signal: Tensor) -> Tensor:
|
52
|
+
"""Implementing the Hilbert transform manually"""
|
53
|
+
N = signal.shape[2] # Signal length
|
54
|
+
FFT_signal = torch.fft.fft(signal, axis=2)
|
55
|
+
h = torch.zeros_like(
|
56
|
+
signal
|
57
|
+
) # Generate an array with the same shape as the signal
|
58
|
+
|
59
|
+
if N % 2 == 0:
|
60
|
+
h[:, 0, 0] = 1
|
61
|
+
h[:, 0, N // 2] = 1
|
62
|
+
h[:, 0, 1 : N // 2] = 2
|
63
|
+
else:
|
64
|
+
h[:, 0, 0] = 1
|
65
|
+
h[:, 0, 1 : (N + 1) // 2] = 2
|
66
|
+
|
67
|
+
out: Tensor = torch.fft.ifft(FFT_signal * h, axis=2)
|
68
|
+
if self.max_freq == -1:
|
69
|
+
return -out.abs()
|
70
|
+
return -out.abs()
|
71
|
+
|
72
|
+
def butterwort_lowpass_filter(self, signal):
|
73
|
+
filtered_signal = torch.zeros_like(signal)
|
74
|
+
# Applying the filter to the signal
|
75
|
+
for n in range(len(signal)):
|
76
|
+
if n < 2:
|
77
|
+
filtered_signal[n] = self.lp_coef_a[0] * signal[n]
|
78
|
+
else:
|
79
|
+
filtered_signal[n] = (
|
80
|
+
self.lp_coef_b[0] * signal[n]
|
81
|
+
+ self.lp_coef_b[1] * signal[n - 1]
|
82
|
+
+ self.lp_coef_b[2] * signal[n - 2]
|
83
|
+
- self.lp_coef_a[1] * filtered_signal[n - 1]
|
84
|
+
- self.lp_coef_a[2] * filtered_signal[n - 2]
|
85
|
+
)
|
86
|
+
|
87
|
+
return filtered_signal
|
88
|
+
|
89
|
+
def setup_butterwort_lowpass_coefficients(self, cutoff: int):
|
90
|
+
cutoff = torch.tensor([cutoff], dtype=torch.float64)
|
91
|
+
fs = torch.tensor([self.sr], dtype=torch.float64)
|
92
|
+
|
93
|
+
omega = torch.tan(torch.pi * cutoff / fs)
|
94
|
+
# Convert float 2 to tensor
|
95
|
+
sqrt2 = torch.tensor(2.0, dtype=torch.float64).sqrt()
|
96
|
+
|
97
|
+
sq_omega = sqrt2 * omega + omega**2
|
98
|
+
# Transfer function coefficients using the bilinear transform
|
99
|
+
a = 2 * (omega**2 - 1) / (1 + sq_omega)
|
100
|
+
self.register_buffer(
|
101
|
+
"lp_coef_a",
|
102
|
+
torch.tensor(
|
103
|
+
[1.0, a.item(), ((1 - sq_omega) / (1 + sq_omega)).item()],
|
104
|
+
dtype=torch.float64,
|
105
|
+
device=self.device,
|
106
|
+
),
|
107
|
+
)
|
108
|
+
b = omega**2 / (1 + sq_omega)
|
109
|
+
self.register_buffer(
|
110
|
+
"lp_coef_b",
|
111
|
+
torch.tensor(
|
112
|
+
[b.item(), (2 * b).item(), b.item()],
|
113
|
+
dtype=torch.float64,
|
114
|
+
device=self.device,
|
115
|
+
),
|
116
|
+
)
|
@@ -7,6 +7,7 @@ from lt_tensor.model_base import Model
|
|
7
7
|
from lt_tensor.model_zoo.convs import ConvNets
|
8
8
|
from torch.nn import functional as F
|
9
9
|
from torchaudio import transforms as T
|
10
|
+
from lt_tensor.model_zoo.losses._envelope_disc import Envelope
|
10
11
|
|
11
12
|
MULTI_DISC_OUT_TYPE: TypeAlias = Tuple[
|
12
13
|
List[Tensor],
|
@@ -313,7 +314,7 @@ class DiscriminatorS(ConvNets):
|
|
313
314
|
return x.flatten(1, -1), fmap
|
314
315
|
|
315
316
|
|
316
|
-
class MultiScaleDiscriminator(
|
317
|
+
class MultiScaleDiscriminator(_MultiDiscriminatorT):
|
317
318
|
def __init__(
|
318
319
|
self,
|
319
320
|
discriminator_channel_multi: Number = 1,
|
@@ -352,102 +353,71 @@ class MultiScaleDiscriminator(ConvNets):
|
|
352
353
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
353
354
|
|
354
355
|
|
355
|
-
class
|
356
|
-
"""
|
356
|
+
class DiscriminatorE(ConvNets):
|
357
|
+
"""Modified from: https://github.com/dinhoitt/BemaGANv2/blob/9560ae9df153c956f259c261c57c4f84f89e3d72/models.py"""
|
357
358
|
|
358
|
-
def __init__(self, kernel_size=101):
|
359
|
-
super().__init__()
|
360
|
-
# Lowpass filter for smoothing envelope (moving average)
|
361
|
-
self.kernel_size = kernel_size
|
362
|
-
self.register_buffer("kernel", torch.ones(1, 1, kernel_size) / kernel_size)
|
363
|
-
|
364
|
-
def forward(self, x: Tensor):
|
365
|
-
# x: (B, 1, T) -> abs(x)
|
366
|
-
envelope = torch.abs(x)
|
367
|
-
# Apply low-pass smoothing (via conv1d)
|
368
|
-
envelope = F.pad(
|
369
|
-
envelope, (self.kernel_size // 2, self.kernel_size // 2), mode="reflect"
|
370
|
-
)
|
371
|
-
envelope = F.conv1d(envelope, self.kernel)
|
372
|
-
return envelope
|
373
|
-
|
374
|
-
|
375
|
-
class DiscriminatorEnvelope(ConvNets):
|
376
359
|
def __init__(
|
377
360
|
self,
|
378
|
-
|
361
|
+
max_freq: int,
|
379
362
|
discriminator_channel_multi: Number = 1,
|
380
|
-
|
363
|
+
sample_rate: int = 24000,
|
364
|
+
use_spectral_norm: bool = False,
|
381
365
|
):
|
366
|
+
|
382
367
|
super().__init__()
|
383
|
-
|
384
|
-
|
368
|
+
self.max_freq = max_freq
|
369
|
+
norm_f = spectral_norm if use_spectral_norm else weight_norm
|
385
370
|
dsc = lambda x: int(x * discriminator_channel_multi)
|
386
371
|
self.convs = nn.ModuleList(
|
387
372
|
[
|
388
|
-
norm_f(nn.Conv1d(1, dsc(
|
389
|
-
norm_f(
|
390
|
-
|
391
|
-
),
|
392
|
-
norm_f(
|
393
|
-
|
394
|
-
),
|
395
|
-
norm_f(
|
396
|
-
nn.Conv1d(dsc(256), dsc(512), 41, stride=4, groups=16, padding=20)
|
397
|
-
),
|
398
|
-
norm_f(
|
399
|
-
nn.Conv1d(dsc(512), dsc(512), 41, stride=4, groups=16, padding=20)
|
400
|
-
),
|
401
|
-
norm_f(nn.Conv1d(dsc(512), dsc(512), 5, stride=1, padding=2)),
|
373
|
+
norm_f(nn.Conv1d(1, dsc(128), 15, 1, padding=7)),
|
374
|
+
norm_f(nn.Conv1d(dsc(128), dsc(128), 41, 2, groups=4, padding=20)),
|
375
|
+
norm_f(nn.Conv1d(dsc(128), dsc(256), 41, 2, groups=16, padding=20)),
|
376
|
+
norm_f(nn.Conv1d(dsc(256), dsc(512), 41, 4, groups=16, padding=20)),
|
377
|
+
norm_f(nn.Conv1d(dsc(512), dsc(1024), 41, 4, groups=16, padding=20)),
|
378
|
+
norm_f(nn.Conv1d(dsc(1024), dsc(1024), 41, 1, groups=16, padding=20)),
|
379
|
+
norm_f(nn.Conv1d(dsc(1024), dsc(1024), 5, 1, padding=2)),
|
402
380
|
]
|
403
381
|
)
|
404
|
-
self.conv_post = norm_f(nn.Conv1d(dsc(
|
382
|
+
self.conv_post = norm_f(nn.Conv1d(dsc(1024), 1, 3, 1, padding=1))
|
383
|
+
self.envelope = Envelope(max_freq=self.max_freq, sample_rate=sample_rate)
|
405
384
|
self.activation = nn.LeakyReLU(0.1)
|
406
385
|
|
407
|
-
def forward(self, x):
|
408
|
-
# Input: raw audio (B, 1, T)
|
409
|
-
x = self.extractor(x)
|
386
|
+
def forward(self, x: Tensor):
|
410
387
|
fmap = []
|
411
|
-
for
|
412
|
-
x = self.
|
388
|
+
for l in self.convs:
|
389
|
+
x = self.envelope(x)
|
390
|
+
x = self.activation(l(x))
|
413
391
|
fmap.append(x)
|
414
392
|
x = self.conv_post(x)
|
415
393
|
fmap.append(x)
|
416
|
-
return x.flatten(1), fmap
|
394
|
+
return x.flatten(start_dim=1, end_dim=-1), fmap
|
417
395
|
|
418
396
|
|
419
397
|
class MultiEnvelopeDiscriminator(_MultiDiscriminatorT):
|
398
|
+
"""Modified from: https://github.com/dinhoitt/BemaGANv2/blob/9560ae9df153c956f259c261c57c4f84f89e3d72/models.py"""
|
399
|
+
|
420
400
|
def __init__(
|
421
401
|
self,
|
422
|
-
use_spectral_norm: bool = False,
|
423
402
|
discriminator_channel_multi: Number = 1,
|
424
403
|
):
|
425
404
|
super().__init__()
|
405
|
+
f_times_values = [-1, 0, 1, 300, 500]
|
426
406
|
self.discriminators = nn.ModuleList(
|
427
|
-
[
|
428
|
-
DiscriminatorEnvelope(
|
429
|
-
use_spectral_norm, discriminator_channel_multi
|
430
|
-
), # raw envelope
|
431
|
-
DiscriminatorEnvelope(use_spectral_norm), # downsampled once
|
432
|
-
DiscriminatorEnvelope(use_spectral_norm), # downsampled twice
|
433
|
-
]
|
434
|
-
)
|
435
|
-
self.meanpools = nn.ModuleList(
|
436
|
-
[nn.AvgPool1d(4, 2, padding=2), nn.AvgPool1d(4, 2, padding=2)]
|
407
|
+
[DiscriminatorE(f, discriminator_channel_multi) for f in f_times_values]
|
437
408
|
)
|
438
409
|
|
439
410
|
def forward(self, y, y_hat):
|
440
|
-
y_d_rs
|
441
|
-
|
442
|
-
|
443
|
-
|
444
|
-
|
445
|
-
y_hat = self.meanpools[i - 1](y_hat)
|
411
|
+
y_d_rs = []
|
412
|
+
y_d_gs = []
|
413
|
+
fmap_rs = []
|
414
|
+
fmap_gs = []
|
415
|
+
for d in self.discriminators:
|
446
416
|
y_d_r, fmap_r = d(y)
|
447
417
|
y_d_g, fmap_g = d(y_hat)
|
448
418
|
y_d_rs.append(y_d_r)
|
449
|
-
y_d_gs.append(y_d_g)
|
450
419
|
fmap_rs.append(fmap_r)
|
420
|
+
y_d_gs.append(y_d_g)
|
451
421
|
fmap_gs.append(fmap_g)
|
452
422
|
|
453
423
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
@@ -77,7 +77,7 @@ class AudioProcessorConfig(ModelConfig):
|
|
77
77
|
def post_process(self):
|
78
78
|
self.n_stft = self.n_fft // 2 + 1
|
79
79
|
# some functions needs this to be a non-zero or not None value.
|
80
|
-
self.
|
80
|
+
self.default_f_min = max(self.f_min, (self.sample_rate / (self.n_fft - 1)) * 2)
|
81
81
|
self.default_f_max = min(
|
82
82
|
default(self.f_max, self.sample_rate // 2), self.sample_rate // 2
|
83
83
|
)
|
@@ -202,6 +202,8 @@ class AudioProcessor(Model):
|
|
202
202
|
*args,
|
203
203
|
**kwargs,
|
204
204
|
):
|
205
|
+
if wave.ndim == 1:
|
206
|
+
wave = wave.unsqueeze(0)
|
205
207
|
wave = torch.nn.functional.pad(
|
206
208
|
wave.unsqueeze(1),
|
207
209
|
(self.mel_lib_padding, self.mel_lib_padding),
|
@@ -352,7 +354,7 @@ class AudioProcessor(Model):
|
|
352
354
|
sr = default(sr, self.cfg.sample_rate)
|
353
355
|
frame_length = default(frame_length, self.cfg.n_fft)
|
354
356
|
fmin = max(
|
355
|
-
default(fmin, self.cfg.
|
357
|
+
default(fmin, self.cfg.default_f_min), self.calc_pitch_fmin(sr, frame_length)
|
356
358
|
)
|
357
359
|
fmax = min(max(default(fmax, self.cfg.default_f_max), fmin + 1), sr // 2)
|
358
360
|
hop_length = default(hop_length, self.cfg.hop_length)
|
@@ -42,5 +42,6 @@ lt_tensor/model_zoo/losses/discriminators.py
|
|
42
42
|
lt_tensor/model_zoo/losses/CQT/__init__.py
|
43
43
|
lt_tensor/model_zoo/losses/CQT/transforms.py
|
44
44
|
lt_tensor/model_zoo/losses/CQT/utils.py
|
45
|
+
lt_tensor/model_zoo/losses/_envelope_disc/__init__.py
|
45
46
|
lt_tensor/processors/__init__.py
|
46
47
|
lt_tensor/processors/audio.py
|
@@ -4,7 +4,7 @@ with open("README.md", "r", encoding="utf-8") as f:
|
|
4
4
|
long_description = f.read()
|
5
5
|
|
6
6
|
setup(
|
7
|
-
version="0.0.
|
7
|
+
version="0.0.1a39",
|
8
8
|
name="lt-tensor",
|
9
9
|
description="General utilities for PyTorch and others. Built for general use.",
|
10
10
|
long_description=long_description,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/activations/alias_free/__init__.py
RENAMED
File without changes
|
File without changes
|
{lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/activations/alias_free/filter.py
RENAMED
File without changes
|
{lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/activations/alias_free/resample.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
{lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/audio_models/bigvgan/__init__.py
RENAMED
File without changes
|
{lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/audio_models/hifigan/__init__.py
RENAMED
File without changes
|
{lt_tensor-0.0.1a37 → lt_tensor-0.0.1a39}/lt_tensor/model_zoo/audio_models/istft/__init__.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|