lollms-client 0.19.5__tar.gz → 0.19.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of lollms-client might be problematic. Click here for more details.

Files changed (82) hide show
  1. {lollms_client-0.19.5/lollms_client.egg-info → lollms_client-0.19.6}/PKG-INFO +1 -1
  2. lollms_client-0.19.6/examples/internet_search_with_rag.py +228 -0
  3. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/__init__.py +1 -1
  4. {lollms_client-0.19.5 → lollms_client-0.19.6/lollms_client.egg-info}/PKG-INFO +1 -1
  5. lollms_client-0.19.5/examples/internet_search_with_rag.py +0 -189
  6. {lollms_client-0.19.5 → lollms_client-0.19.6}/LICENSE +0 -0
  7. {lollms_client-0.19.5 → lollms_client-0.19.6}/README.md +0 -0
  8. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/article_summary/article_summary.py +0 -0
  9. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/deep_analyze/deep_analyse.py +0 -0
  10. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/deep_analyze/deep_analyze_multiple_files.py +0 -0
  11. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/function_calling_with_local_custom_mcp.py +0 -0
  12. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/generate_and_speak/generate_and_speak.py +0 -0
  13. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/generate_game_sfx/generate_game_fx.py +0 -0
  14. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/generate_text_with_multihop_rag_example.py +0 -0
  15. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/local_mcp.py +0 -0
  16. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/personality_test/chat_test.py +0 -0
  17. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/personality_test/chat_with_aristotle.py +0 -0
  18. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/personality_test/tesks_test.py +0 -0
  19. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/simple_text_gen_test.py +0 -0
  20. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/simple_text_gen_with_image_test.py +0 -0
  21. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/test_local_models/local_chat.py +0 -0
  22. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/text_2_audio.py +0 -0
  23. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/text_2_image.py +0 -0
  24. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/text_2_image_diffusers.py +0 -0
  25. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/text_and_image_2_audio.py +0 -0
  26. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/text_gen.py +0 -0
  27. {lollms_client-0.19.5 → lollms_client-0.19.6}/examples/text_gen_system_prompt.py +0 -0
  28. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/llm_bindings/__init__.py +0 -0
  29. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/llm_bindings/llamacpp/__init__.py +0 -0
  30. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/llm_bindings/lollms/__init__.py +0 -0
  31. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/llm_bindings/ollama/__init__.py +0 -0
  32. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/llm_bindings/openai/__init__.py +0 -0
  33. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/llm_bindings/openllm/__init__.py +0 -0
  34. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/llm_bindings/pythonllamacpp/__init__.py +0 -0
  35. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/llm_bindings/tensor_rt/__init__.py +0 -0
  36. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/llm_bindings/transformers/__init__.py +0 -0
  37. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/llm_bindings/vllm/__init__.py +0 -0
  38. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_config.py +0 -0
  39. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_core.py +0 -0
  40. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_discussion.py +0 -0
  41. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_js_analyzer.py +0 -0
  42. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_llm_binding.py +0 -0
  43. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_mcp_binding.py +0 -0
  44. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_python_analyzer.py +0 -0
  45. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_stt_binding.py +0 -0
  46. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_tti_binding.py +0 -0
  47. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_ttm_binding.py +0 -0
  48. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_tts_binding.py +0 -0
  49. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_ttv_binding.py +0 -0
  50. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_types.py +0 -0
  51. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/lollms_utilities.py +0 -0
  52. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/mcp_bindings/local_mcp/__init__.py +0 -0
  53. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/mcp_bindings/local_mcp/default_tools/file_writer/file_writer.py +0 -0
  54. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/mcp_bindings/local_mcp/default_tools/generate_image_from_prompt/generate_image_from_prompt.py +0 -0
  55. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/mcp_bindings/local_mcp/default_tools/internet_search/internet_search.py +0 -0
  56. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/mcp_bindings/local_mcp/default_tools/python_interpreter/python_interpreter.py +0 -0
  57. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/stt_bindings/__init__.py +0 -0
  58. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/stt_bindings/lollms/__init__.py +0 -0
  59. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/stt_bindings/whisper/__init__.py +0 -0
  60. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/stt_bindings/whispercpp/__init__.py +0 -0
  61. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/tti_bindings/__init__.py +0 -0
  62. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/tti_bindings/dalle/__init__.py +0 -0
  63. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/tti_bindings/diffusers/__init__.py +0 -0
  64. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/tti_bindings/gemini/__init__.py +0 -0
  65. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/tti_bindings/lollms/__init__.py +0 -0
  66. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/ttm_bindings/__init__.py +0 -0
  67. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/ttm_bindings/audiocraft/__init__.py +0 -0
  68. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/ttm_bindings/bark/__init__.py +0 -0
  69. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/ttm_bindings/lollms/__init__.py +0 -0
  70. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/tts_bindings/__init__.py +0 -0
  71. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/tts_bindings/bark/__init__.py +0 -0
  72. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/tts_bindings/lollms/__init__.py +0 -0
  73. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/tts_bindings/piper_tts/__init__.py +0 -0
  74. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/tts_bindings/xtts/__init__.py +0 -0
  75. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/ttv_bindings/__init__.py +0 -0
  76. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client/ttv_bindings/lollms/__init__.py +0 -0
  77. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client.egg-info/SOURCES.txt +0 -0
  78. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client.egg-info/dependency_links.txt +0 -0
  79. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client.egg-info/requires.txt +0 -0
  80. {lollms_client-0.19.5 → lollms_client-0.19.6}/lollms_client.egg-info/top_level.txt +0 -0
  81. {lollms_client-0.19.5 → lollms_client-0.19.6}/pyproject.toml +0 -0
  82. {lollms_client-0.19.5 → lollms_client-0.19.6}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lollms_client
3
- Version: 0.19.5
3
+ Version: 0.19.6
4
4
  Summary: A client library for LoLLMs generate endpoint
5
5
  Author-email: ParisNeo <parisneoai@gmail.com>
6
6
  License: Apache Software License
@@ -0,0 +1,228 @@
1
+ from lollms_client import LollmsClient, MSG_TYPE
2
+ from ascii_colors import ASCIIColors, trace_exception
3
+ from typing import List, Dict, Any, Optional, Callable
4
+ import json
5
+ from pathlib import Path
6
+
7
+ # --- Internet Search RAG Implementation ---
8
+ _duckduckgo_search_installed = False
9
+ _search_installation_error_message = ""
10
+ try:
11
+ import pipmaster as pm
12
+ # ensure_packages should be called by the binding init ideally,
13
+ # but we call it here for the example's standalone execution.
14
+ pm.ensure_packages(["duckduckgo_search"])
15
+ from duckduckgo_search import DDGS
16
+ _duckduckgo_search_installed = True
17
+ except Exception as e:
18
+ _search_installation_error_message = str(e)
19
+ DDGS = None
20
+ ASCIIColors.error(f"Failed to import duckduckgo_search: {_search_installation_error_message}")
21
+ ASCIIColors.info("Please install it: pip install duckduckgo-search")
22
+
23
+
24
+ def perform_internet_search_rag(
25
+ query_text: str,
26
+ vectorizer_name: Optional[str] = None, # Not used for search
27
+ top_k: int = 5,
28
+ min_similarity_percent: float = 0.0 # Not used directly for search filter, but can influence result quality/rank
29
+ ) -> List[Dict[str, Any]]:
30
+ """
31
+ Performs an internet search using DuckDuckGo and formats results for RAG.
32
+ Similarity is simulated based on rank.
33
+ """
34
+ if not _duckduckgo_search_installed or DDGS is None:
35
+ ASCIIColors.error("duckduckgo_search is not available. Cannot perform internet search.")
36
+ return []
37
+
38
+ ASCIIColors.magenta(f" [INTERNET SEARCH] Querying DuckDuckGo for: '{query_text}', max_results={top_k}")
39
+ search_results_raw = []
40
+ try:
41
+ # DDGS().text returns a generator, max_results limits it.
42
+ # Note: The DDGS library might sometimes return fewer results than max_results.
43
+ with DDGS() as ddgs:
44
+ search_results_raw = list(ddgs.text(keywords=query_text, max_results=top_k))
45
+
46
+ except Exception as e:
47
+ ASCIIColors.error(f" [INTERNET SEARCH] Search failed: {e}")
48
+ trace_exception(e)
49
+ return []
50
+
51
+ formatted_results: List[Dict[str, Any]] = []
52
+ if search_results_raw:
53
+ for i, r in enumerate(search_results_raw):
54
+ # Simulate similarity based on rank (rank 1 is highest sim)
55
+ # Max similarity is 100% for rank 1, decreases linearly or non-linearly.
56
+ # Simple linear decrease: 100 - (rank * (100 / top_k+1))
57
+ # Let's use rank-based score: 100% for rank 1, 90% for rank 2, ... 50% for rank 5 etc.
58
+ # Ensure similarity is above min_similarity_percent if that param was intended as a filter here
59
+
60
+ simulated_similarity = max(0.0, 100.0 - i * (100.0 / (top_k + 1))) # Higher rank = lower sim
61
+ simulated_similarity = round(simulated_similarity, 2)
62
+
63
+ if simulated_similarity >= min_similarity_percent:
64
+ formatted_results.append({
65
+ "file_path": r.get("href", "# Unknown URL"), # Use URL as document identifier
66
+ "chunk_text": f"Title: {r.get('title', 'N/A')}\nSnippet: {r.get('body', 'N/A')}", # Combine title and snippet
67
+ "similarity_percent": simulated_similarity,
68
+ })
69
+ else:
70
+ ASCIIColors.debug(f" [INTERNET SEARCH] Skipping result {i+1} due to low simulated similarity ({simulated_similarity}%)")
71
+
72
+ ASCIIColors.magenta(f" [INTERNET SEARCH] Formatted {len(formatted_results)} results for RAG.")
73
+ if not formatted_results: ASCIIColors.yellow(f" [INTERNET SEARCH] No results found for query: '{query_text}' or none met min_similarity_percent.")
74
+ return formatted_results
75
+
76
+ # --- Streaming Callback for RAG and LLM ---
77
+ def rag_streaming_callback(
78
+ chunk: str,
79
+ msg_type: MSG_TYPE,
80
+ metadata: Optional[Dict] = None,
81
+ turn_history: Optional[List] = None
82
+ ) -> bool:
83
+ metadata = metadata or {}
84
+ hop = metadata.get("hop", "")
85
+ type_info = metadata.get("type", "N/A")
86
+
87
+ if msg_type == MSG_TYPE.MSG_TYPE_CHUNK: # Final answer chunks
88
+ ASCIIColors.success(chunk, end="", flush=True)
89
+ elif msg_type == MSG_TYPE.MSG_TYPE_STEP_START:
90
+ info = metadata.get("query", chunk) if type_info in ["rag_query_generation", "rag_retrieval"] else chunk
91
+ ASCIIColors.yellow(f"\n>> RAG Hop {hop} | START | {type_info.upper()} | Info: {str(info)[:100]}...", flush=True)
92
+ elif msg_type == MSG_TYPE.MSG_TYPE_STEP_END:
93
+ num_chunks = metadata.get("num_chunks")
94
+ query = metadata.get("query")
95
+ decision = metadata.get("decision")
96
+
97
+ end_info = []
98
+ if query: end_info.append(f"Query: '{str(query)[:50]}...'")
99
+ if num_chunks is not None: end_info.append(f"Results: {num_chunks}")
100
+ if decision: end_info.append(f"LLM Decision: NeedMore={decision.get('need_more_data')}, Summary: '{str(decision.get('new_information_summary'))[:50]}...'")
101
+
102
+ ASCIIColors.green(f"\n<< RAG Hop {hop} | END | {type_info.upper()} | {' | '.join(end_info) if end_info else chunk}", flush=True)
103
+ elif msg_type == MSG_TYPE.MSG_TYPE_EXCEPTION:
104
+ ASCIIColors.error(f"\nError in RAG stream: {chunk}", flush=True)
105
+
106
+ return True
107
+
108
+ # --- Main Example ---
109
+ if __name__ == "__main__":
110
+ ASCIIColors.red("--- Multi-Hop Internet Search Example with LollmsClient ---")
111
+
112
+ # LLM Configuration (use a model good at instruction following and JSON)
113
+ # Ensure your Ollama server is running and has this model pulled.
114
+ LLM_BINDING_NAME = "ollama"
115
+ LLM_MODEL_NAME = "mistral:latest" # or llama3, phi3 etc.
116
+
117
+ # You could also enable the internet_search tool via MCP,
118
+ # but this example specifically uses it directly via generate_text_with_rag.
119
+ # For MCP example, see examples/local_mcp.py
120
+
121
+ try:
122
+ lc = LollmsClient(
123
+ binding_name=LLM_BINDING_NAME,
124
+ model_name=LLM_MODEL_NAME,
125
+ temperature=0.1,
126
+ ctx_size=4096
127
+ )
128
+ ASCIIColors.green(f"LollmsClient initialized with LLM: {LLM_BINDING_NAME}/{LLM_MODEL_NAME}")
129
+
130
+ if not _duckduckgo_search_installed or DDGS is None:
131
+ ASCIIColors.error("duckduckgo_search is not installed. Cannot run search examples.")
132
+ exit()
133
+
134
+
135
+ # --- Test Case 1: Classic Search RAG (max_rag_hops = 0) ---
136
+ ASCIIColors.cyan("\n\n--- Test Case 1: Classic Internet Search RAG (max_rag_hops = 0) ---")
137
+ classic_search_prompt = "What is the current population of Japan?"
138
+ ASCIIColors.blue(f"User Prompt: {classic_search_prompt}")
139
+
140
+ classic_rag_result = lc.generate_text_with_rag(
141
+ prompt=classic_search_prompt,
142
+ rag_query_function=perform_internet_search_rag, # Use the search function
143
+ max_rag_hops=0,
144
+ rag_top_k=3, # Get 3 search results
145
+ rag_min_similarity_percent=50.0, # Only use results with simulated sim >= 50%
146
+ streaming_callback=rag_streaming_callback,
147
+ n_predict=250
148
+ )
149
+ print("\n--- End of Classic Search RAG ---")
150
+ ASCIIColors.magenta("\nClassic Search RAG Final Output Structure:")
151
+ print(f" Final Answer (first 100 chars): {classic_rag_result.get('final_answer', '')[:100]}...")
152
+ print(f" Error: {classic_rag_result.get('error')}")
153
+ print(f" Number of Hops: {len(classic_rag_result.get('rag_hops_history', []))}")
154
+ print(f" Total Unique Sources Retrieved: {len(classic_rag_result.get('all_retrieved_sources', []))}")
155
+ if classic_rag_result.get('all_retrieved_sources'):
156
+ print(" Example Retrieved Source:")
157
+ source_ex = classic_rag_result['all_retrieved_sources'][0]
158
+ print(f" Document (URL): {source_ex.get('document')}")
159
+ print(f" Similarity: {source_ex.get('similarity')}%")
160
+ print(f" Content (Snippet, first 50 chars): {source_ex.get('content', '')[:50]}...")
161
+
162
+
163
+ # --- Test Case 2: Multi-Hop Search RAG (max_rag_hops = 1) ---
164
+ ASCIIColors.cyan("\n\n--- Test Case 2: Multi-Hop Internet Search RAG (max_rag_hops = 1) ---")
165
+ multihop_search_prompt_1 = "Tell me about the latest developments in fusion energy, including any recent news."
166
+ ASCIIColors.blue(f"User Prompt: {multihop_search_prompt_1}")
167
+
168
+ multihop_rag_result_1 = lc.generate_text_with_rag(
169
+ prompt=multihop_search_prompt_1,
170
+ rag_query_function=perform_internet_search_rag,
171
+ rag_query_text=None, # LLM will generate first query
172
+ max_rag_hops=1, # Allow one refinement hop
173
+ rag_top_k=2, # Get 2 search results per query
174
+ rag_min_similarity_percent=50.0,
175
+ streaming_callback=rag_streaming_callback,
176
+ n_predict=400,
177
+ rag_hop_query_generation_temperature=0.1,
178
+ rag_hop_summary_temperature=0.2
179
+ )
180
+ print("\n--- End of Multi-Hop Search RAG (1 hop max) ---")
181
+ ASCIIColors.magenta("\nMulti-Hop Search RAG (1 hop max) Final Output Structure:")
182
+ print(f" Final Answer (first 100 chars): {multihop_rag_result_1.get('final_answer', '')[:100]}...")
183
+ print(f" Error: {multihop_rag_result_1.get('error')}")
184
+ print(f" Number of Hops Made: {len(multihop_rag_result_1.get('rag_hops_history', []))}")
185
+ for i, hop_info in enumerate(multihop_rag_result_1.get('rag_hops_history', [])):
186
+ print(f" Hop {i+1} Query: '{hop_info.get('query')}'")
187
+ print(f" Hop {i+1} Results Count: {len(hop_info.get('retrieved_chunks_details',[]))}")
188
+ print(f" Hop {i+1} Summary (first 50): '{str(hop_info.get('new_information_summary'))[:50]}...'")
189
+ print(f" Hop {i+1} LLM Decision: NeedMoreData={hop_info.get('llm_decision_json',{}).get('need_more_data')}")
190
+ print(f" Total Unique Sources Retrieved: {len(multihop_rag_result_1.get('all_retrieved_sources', []))}")
191
+
192
+
193
+ # --- Test Case 3: More complex multi-hop (max_rag_hops = 2) ---
194
+ ASCIIColors.cyan("\n\n--- Test Case 3: More Complex Multi-Hop Internet Search RAG (max_rag_hops = 2) ---")
195
+ multihop_search_prompt_2 = "What are the requirements and steps to install the lollms_client python library, and what are some of its key features?"
196
+ ASCIIColors.blue(f"User Prompt: {multihop_search_prompt_2}")
197
+
198
+ multihop_rag_result_2 = lc.generate_text_with_rag(
199
+ prompt=multihop_search_prompt_2,
200
+ rag_query_function=perform_internet_search_rag,
201
+ max_rag_hops=2, # Allow up to two refinement hops
202
+ rag_top_k=2, # Get 2 results per query
203
+ rag_min_similarity_percent=40.0, # Lower similarity to maybe get broader initial results
204
+ streaming_callback=rag_streaming_callback,
205
+ n_predict=500 # Allow more for the installation steps and features
206
+ )
207
+ print("\n--- End of More Complex Multi-Hop Search RAG (up to 2 hops) ---")
208
+ ASCIIColors.magenta("\nMore Complex Multi-Hop Search RAG (up to 2 hops) Final Output Structure:")
209
+ print(f" Final Answer (first 100 chars): {multihop_rag_result_2.get('final_answer', '')[:100]}...")
210
+ print(f" Error: {multihop_rag_result_2.get('error')}")
211
+ print(f" Number of Hops Made: {len(multihop_rag_result_2.get('rag_hops_history', []))}")
212
+ for i, hop_info in enumerate(multihop_rag_result_2.get('rag_hops_history', [])):
213
+ print(f" Hop {i+1} Query: '{hop_info.get('query')}'")
214
+ print(f" Hop {i+1} Results Count: {len(hop_info.get('retrieved_chunks_details',[]))}")
215
+ print(f" Hop {i+1} Summary (first 50): '{str(hop_info.get('new_information_summary'))[:50]}...'")
216
+ print(f" Total Unique Sources Retrieved: {len(multihop_rag_result_2.get('all_retrieved_sources', []))}")
217
+
218
+
219
+ except ValueError as ve:
220
+ ASCIIColors.error(f"Initialization or RAG parameter error: {ve}")
221
+ trace_exception(ve)
222
+ except ConnectionRefusedError:
223
+ ASCIIColors.error(f"Connection refused. Is the Ollama server ({LLM_BINDING_NAME}) running?")
224
+ except Exception as e:
225
+ ASCIIColors.error(f"An unexpected error occurred: {e}")
226
+ trace_exception(e)
227
+
228
+ ASCIIColors.red("\n--- Multi-Hop Internet Search Example Finished ---")
@@ -7,7 +7,7 @@ from lollms_client.lollms_utilities import PromptReshaper # Keep general utiliti
7
7
  from lollms_client.lollms_mcp_binding import LollmsMCPBinding, LollmsMCPBindingManager
8
8
 
9
9
 
10
- __version__ = "0.19.5" # Updated version
10
+ __version__ = "0.19.6" # Updated version
11
11
 
12
12
  # Optionally, you could define __all__ if you want to be explicit about exports
13
13
  __all__ = [
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lollms_client
3
- Version: 0.19.5
3
+ Version: 0.19.6
4
4
  Summary: A client library for LoLLMs generate endpoint
5
5
  Author-email: ParisNeo <parisneoai@gmail.com>
6
6
  License: Apache Software License
@@ -1,189 +0,0 @@
1
- from lollms_client import LollmsClient, MSG_TYPE
2
- from ascii_colors import ASCIIColors, trace_exception
3
- from typing import List, Dict, Any, Optional, Callable
4
- import json
5
- from pathlib import Path
6
-
7
- # --- Dependency Management for the Search Tool ---
8
- # Ensure the duckduckgo_search library is installed for our RAG query function.
9
- try:
10
- import pipmaster as pm
11
- pm.ensure_packages(["duckduckgo_search"])
12
- from duckduckgo_search import DDGS
13
- _ddgs_installed = True
14
- except Exception as e_dep:
15
- _ddgs_installed = False
16
- ASCIIColors.error(f"Could not ensure/import duckduckgo_search: {e_dep}")
17
- ASCIIColors.warning("The RAG function in this example will not work.")
18
- DDGS = None
19
- # --- End Dependency Management ---
20
-
21
-
22
- def internet_rag_query_function(
23
- query_text: str,
24
- vectorizer_name: Optional[str] = None, # Not used for this keyword-based search
25
- top_k: int = 5,
26
- min_similarity_percent: float = 0.0 # Not used for this keyword-based search
27
- ) -> List[Dict[str, Any]]:
28
- """
29
- A RAG-compatible query function that performs a live internet search using DuckDuckGo.
30
-
31
- Args:
32
- query_text: The search query.
33
- vectorizer_name: Ignored by this function.
34
- top_k: The maximum number of search results to return.
35
- min_similarity_percent: Ignored by this function.
36
-
37
- Returns:
38
- A list of dictionaries, each formatted for RAG with 'document', 'content', and 'similarity'.
39
- """
40
- if not _ddgs_installed:
41
- ASCIIColors.error("duckduckgo_search library is not available. Cannot perform internet search.")
42
- return []
43
-
44
- ASCIIColors.magenta(f" [INTERNET RAG] Searching web for: '{query_text}', max_results={top_k}")
45
- formatted_results = []
46
- try:
47
- with DDGS() as ddgs:
48
- # Fetch search results from DuckDuckGo
49
- search_results = ddgs.text(keywords=query_text, max_results=top_k)
50
-
51
- if not search_results:
52
- ASCIIColors.yellow(" [INTERNET RAG] DuckDuckGo returned no results for this query.")
53
- return []
54
-
55
- for i, result in enumerate(search_results):
56
- # Format the search result into the structure expected by generate_text_with_rag
57
- # 'document' will be the URL.
58
- # 'content' will be a combination of title and snippet.
59
- # 'similarity' is emulated based on rank, as DDG doesn't provide a score.
60
- formatted_results.append({
61
- "document": result.get("href", "#"),
62
- "similarity": round(100.0 - (i * (10.0 / top_k)), 2), # Create a descending score
63
- "content": f"Title: {result.get('title', 'N/A')}\nSnippet: {result.get('body', 'N/A')}"
64
- })
65
-
66
- ASCIIColors.magenta(f" [INTERNET RAG] Found {len(formatted_results)} results.")
67
- return formatted_results
68
-
69
- except Exception as e:
70
- trace_exception(e)
71
- ASCIIColors.error(f" [INTERNET RAG] An error occurred during search: {e}")
72
- return []
73
-
74
- # --- Streaming Callback for RAG and LLM ---
75
- # (This is the same useful callback from the previous example)
76
- def rag_streaming_callback(
77
- chunk: str,
78
- msg_type: MSG_TYPE,
79
- metadata: Optional[Dict] = None,
80
- turn_history: Optional[List] = None
81
- ) -> bool:
82
- metadata = metadata or {}
83
- hop = metadata.get("hop", "")
84
- type_info = metadata.get("type", "N/A")
85
-
86
- if msg_type == MSG_TYPE.MSG_TYPE_CHUNK:
87
- ASCIIColors.success(chunk, end="", flush=True)
88
- elif msg_type == MSG_TYPE.MSG_TYPE_STEP_START:
89
- info = metadata.get("query", chunk) if type_info in ["rag_query_generation", "rag_retrieval"] else chunk
90
- ASCIIColors.yellow(f"\n>> RAG Hop {hop} | START | {type_info.upper()} | Info: {str(info)[:100]}...", flush=True)
91
- elif msg_type == MSG_TYPE.MSG_TYPE_STEP_END:
92
- num_chunks = metadata.get("num_chunks")
93
- query = metadata.get("query")
94
- decision = metadata.get("decision")
95
-
96
- end_info = []
97
- if query: end_info.append(f"Query: '{str(query)[:50]}...'")
98
- if num_chunks is not None: end_info.append(f"Retrieved: {num_chunks} sources")
99
- if decision: end_info.append(f"LLM Decision: NeedMore={decision.get('need_more_data')}, Summary: '{str(decision.get('new_information_summary'))[:40]}...'")
100
-
101
- ASCIIColors.green(f"\n<< RAG Hop {hop} | END | {type_info.upper()} | {' | '.join(end_info) if end_info else chunk}", flush=True)
102
- elif msg_type == MSG_TYPE.MSG_TYPE_EXCEPTION:
103
- ASCIIColors.error(f"\nError in RAG stream: {chunk}", flush=True)
104
-
105
- return True
106
-
107
- # --- Main Example ---
108
- if __name__ == "__main__":
109
- ASCIIColors.red("--- Internet Search with Multi-Hop RAG Example ---")
110
-
111
- LLM_BINDING_NAME = "ollama"
112
- LLM_MODEL_NAME = "mistral-nemo:latest" # Nemo is good with JSON and reasoning
113
-
114
- if not _ddgs_installed:
115
- ASCIIColors.error("Cannot run this example because the 'duckduckgo-search' library is not installed.")
116
- exit(1)
117
-
118
- try:
119
- lc = LollmsClient(
120
- binding_name=LLM_BINDING_NAME,
121
- model_name=LLM_MODEL_NAME,
122
- temperature=0.1,
123
- ctx_size=4096
124
- )
125
- ASCIIColors.green(f"LollmsClient initialized with LLM: {LLM_BINDING_NAME}/{LLM_MODEL_NAME}")
126
-
127
- # --- Test Case 1: Classic RAG with Internet Search ---
128
- ASCIIColors.cyan("\n\n--- Test Case 1: Classic RAG (max_rag_hops = 0) using Internet Search ---")
129
- classic_rag_prompt = "What is the James Webb Space Telescope and what was its launch date?"
130
- ASCIIColors.blue(f"User Prompt: {classic_rag_prompt}")
131
-
132
- classic_rag_result = lc.generate_text_with_rag(
133
- prompt=classic_rag_prompt,
134
- rag_query_function=internet_rag_query_function,
135
- max_rag_hops=0,
136
- rag_top_k=3,
137
- streaming_callback=rag_streaming_callback,
138
- n_predict=300
139
- )
140
- print("\n--- End of Classic RAG ---")
141
- ASCIIColors.magenta("\nClassic RAG Final Output Details:")
142
- print(f" Final Answer (first 150 chars): {classic_rag_result.get('final_answer', '')[:150]}...")
143
- print(f" Error: {classic_rag_result.get('error')}")
144
- print(f" Total Unique Sources Retrieved: {len(classic_rag_result.get('all_retrieved_sources', []))}")
145
- if classic_rag_result.get('all_retrieved_sources'):
146
- print(" Retrieved Sources (URLs):")
147
- for source in classic_rag_result['all_retrieved_sources']:
148
- print(f" - {source.get('document')}")
149
-
150
- # --- Test Case 2: Multi-Hop RAG with Internet Search ---
151
- ASCIIColors.cyan("\n\n--- Test Case 2: Multi-Hop RAG (max_rag_hops = 2) using Internet Search ---")
152
- multihop_prompt = "First, find out what the TRAPPIST-1 system is. Then, search for recent news about its planets from the James Webb Space Telescope."
153
- ASCIIColors.blue(f"User Prompt: {multihop_prompt}")
154
-
155
- multihop_rag_result = lc.generate_text_with_rag(
156
- prompt=multihop_prompt,
157
- rag_query_function=internet_rag_query_function,
158
- rag_query_text=None, # Let the LLM generate the first query
159
- max_rag_hops=2, # Allow up to two separate search queries
160
- rag_top_k=2,
161
- streaming_callback=rag_streaming_callback,
162
- n_predict=400,
163
- )
164
- print("\n--- End of Multi-Hop RAG ---")
165
- ASCIIColors.magenta("\nMulti-Hop RAG Final Output Details:")
166
- print(f" Final Answer (first 150 chars): {multihop_rag_result.get('final_answer', '')[:150]}...")
167
- print(f" Error: {multihop_rag_result.get('error')}")
168
- print(f" Number of Hops Made: {len(multihop_rag_result.get('rag_hops_history', []))}")
169
- for i, hop_info in enumerate(multihop_rag_result.get('rag_hops_history', [])):
170
- print(f" Hop {i+1} Query: '{hop_info.get('query')}'")
171
- print(f" Hop {i+1} Retrieved Count: {len(hop_info.get('retrieved_chunks_details',[]))}")
172
- print(f" Hop {i+1} LLM Decision: NeedMoreData={hop_info.get('llm_decision_json',{}).get('need_more_data')}")
173
- print(f" Total Unique Sources Retrieved: {len(multihop_rag_result.get('all_retrieved_sources', []))}")
174
- if multihop_rag_result.get('all_retrieved_sources'):
175
- print(" All Retrieved Sources (URLs):")
176
- for source in multihop_rag_result['all_retrieved_sources']:
177
- print(f" - {source.get('document')}")
178
-
179
-
180
- except ValueError as ve:
181
- ASCIIColors.error(f"Initialization or RAG parameter error: {ve}")
182
- trace_exception(ve)
183
- except ConnectionRefusedError:
184
- ASCIIColors.error(f"Connection refused. Is the Ollama server ({LLM_BINDING_NAME}) running?")
185
- except Exception as e:
186
- ASCIIColors.error(f"An unexpected error occurred: {e}")
187
- trace_exception(e)
188
-
189
- ASCIIColors.red("\n--- Internet Search RAG Example Finished ---")
File without changes
File without changes
File without changes