locoformer 0.0.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- locoformer-0.0.6/.github/workflows/python-publish.yml +36 -0
- locoformer-0.0.6/.github/workflows/test.yml +21 -0
- locoformer-0.0.6/.gitignore +208 -0
- locoformer-0.0.6/LICENSE +21 -0
- locoformer-0.0.6/PKG-INFO +71 -0
- locoformer-0.0.6/README.md +22 -0
- locoformer-0.0.6/data/README.md +3 -0
- locoformer-0.0.6/data/enwik8.gz +0 -0
- locoformer-0.0.6/fig3.png +0 -0
- locoformer-0.0.6/locoformer/__init__.py +1 -0
- locoformer-0.0.6/locoformer/locoformer.py +483 -0
- locoformer-0.0.6/pyproject.toml +69 -0
- locoformer-0.0.6/tests/test_locoformer.py +38 -0
- locoformer-0.0.6/train.py +191 -0
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# This workflow will upload a Python Package using Twine when a release is created
|
|
2
|
+
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
|
|
3
|
+
|
|
4
|
+
# This workflow uses actions that are not certified by GitHub.
|
|
5
|
+
# They are provided by a third-party and are governed by
|
|
6
|
+
# separate terms of service, privacy policy, and support
|
|
7
|
+
# documentation.
|
|
8
|
+
|
|
9
|
+
name: Upload Python Package
|
|
10
|
+
|
|
11
|
+
on:
|
|
12
|
+
release:
|
|
13
|
+
types: [published]
|
|
14
|
+
|
|
15
|
+
jobs:
|
|
16
|
+
deploy:
|
|
17
|
+
|
|
18
|
+
runs-on: ubuntu-latest
|
|
19
|
+
|
|
20
|
+
steps:
|
|
21
|
+
- uses: actions/checkout@v2
|
|
22
|
+
- name: Set up Python
|
|
23
|
+
uses: actions/setup-python@v2
|
|
24
|
+
with:
|
|
25
|
+
python-version: '3.x'
|
|
26
|
+
- name: Install dependencies
|
|
27
|
+
run: |
|
|
28
|
+
python -m pip install --upgrade pip
|
|
29
|
+
pip install build
|
|
30
|
+
- name: Build package
|
|
31
|
+
run: python -m build
|
|
32
|
+
- name: Publish package
|
|
33
|
+
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
|
|
34
|
+
with:
|
|
35
|
+
user: __token__
|
|
36
|
+
password: ${{ secrets.PYPI_API_TOKEN }}
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
name: Pytest
|
|
2
|
+
on: [push, pull_request]
|
|
3
|
+
|
|
4
|
+
jobs:
|
|
5
|
+
build:
|
|
6
|
+
|
|
7
|
+
runs-on: ubuntu-latest
|
|
8
|
+
|
|
9
|
+
steps:
|
|
10
|
+
- uses: actions/checkout@v4
|
|
11
|
+
- name: Set up Python 3.10
|
|
12
|
+
uses: actions/setup-python@v5
|
|
13
|
+
with:
|
|
14
|
+
python-version: "3.10"
|
|
15
|
+
- name: Install dependencies
|
|
16
|
+
run: |
|
|
17
|
+
python -m pip install --upgrade pip
|
|
18
|
+
python -m pip install -e .[test]
|
|
19
|
+
- name: Test with pytest
|
|
20
|
+
run: |
|
|
21
|
+
python -m pytest tests/
|
|
@@ -0,0 +1,208 @@
|
|
|
1
|
+
|
|
2
|
+
# Byte-compiled / optimized / DLL files
|
|
3
|
+
__pycache__/
|
|
4
|
+
*.py[codz]
|
|
5
|
+
*$py.class
|
|
6
|
+
|
|
7
|
+
# C extensions
|
|
8
|
+
*.so
|
|
9
|
+
|
|
10
|
+
# Distribution / packaging
|
|
11
|
+
.Python
|
|
12
|
+
build/
|
|
13
|
+
develop-eggs/
|
|
14
|
+
dist/
|
|
15
|
+
downloads/
|
|
16
|
+
eggs/
|
|
17
|
+
.eggs/
|
|
18
|
+
lib/
|
|
19
|
+
lib64/
|
|
20
|
+
parts/
|
|
21
|
+
sdist/
|
|
22
|
+
var/
|
|
23
|
+
wheels/
|
|
24
|
+
share/python-wheels/
|
|
25
|
+
*.egg-info/
|
|
26
|
+
.installed.cfg
|
|
27
|
+
*.egg
|
|
28
|
+
MANIFEST
|
|
29
|
+
|
|
30
|
+
# PyInstaller
|
|
31
|
+
# Usually these files are written by a python script from a template
|
|
32
|
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
33
|
+
*.manifest
|
|
34
|
+
*.spec
|
|
35
|
+
|
|
36
|
+
# Installer logs
|
|
37
|
+
pip-log.txt
|
|
38
|
+
pip-delete-this-directory.txt
|
|
39
|
+
|
|
40
|
+
# Unit test / coverage reports
|
|
41
|
+
htmlcov/
|
|
42
|
+
.tox/
|
|
43
|
+
.nox/
|
|
44
|
+
.coverage
|
|
45
|
+
.coverage.*
|
|
46
|
+
.cache
|
|
47
|
+
nosetests.xml
|
|
48
|
+
coverage.xml
|
|
49
|
+
*.cover
|
|
50
|
+
*.py.cover
|
|
51
|
+
.hypothesis/
|
|
52
|
+
.pytest_cache/
|
|
53
|
+
cover/
|
|
54
|
+
|
|
55
|
+
# Translations
|
|
56
|
+
*.mo
|
|
57
|
+
*.pot
|
|
58
|
+
|
|
59
|
+
# Django stuff:
|
|
60
|
+
*.log
|
|
61
|
+
local_settings.py
|
|
62
|
+
db.sqlite3
|
|
63
|
+
db.sqlite3-journal
|
|
64
|
+
|
|
65
|
+
# Flask stuff:
|
|
66
|
+
instance/
|
|
67
|
+
.webassets-cache
|
|
68
|
+
|
|
69
|
+
# Scrapy stuff:
|
|
70
|
+
.scrapy
|
|
71
|
+
|
|
72
|
+
# Sphinx documentation
|
|
73
|
+
docs/_build/
|
|
74
|
+
|
|
75
|
+
# PyBuilder
|
|
76
|
+
.pybuilder/
|
|
77
|
+
target/
|
|
78
|
+
|
|
79
|
+
# Jupyter Notebook
|
|
80
|
+
.ipynb_checkpoints
|
|
81
|
+
|
|
82
|
+
# IPython
|
|
83
|
+
profile_default/
|
|
84
|
+
ipython_config.py
|
|
85
|
+
|
|
86
|
+
# pyenv
|
|
87
|
+
# For a library or package, you might want to ignore these files since the code is
|
|
88
|
+
# intended to run in multiple environments; otherwise, check them in:
|
|
89
|
+
# .python-version
|
|
90
|
+
|
|
91
|
+
# pipenv
|
|
92
|
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
|
93
|
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
|
94
|
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
|
95
|
+
# install all needed dependencies.
|
|
96
|
+
#Pipfile.lock
|
|
97
|
+
|
|
98
|
+
# UV
|
|
99
|
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
|
100
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
101
|
+
# commonly ignored for libraries.
|
|
102
|
+
#uv.lock
|
|
103
|
+
|
|
104
|
+
# poetry
|
|
105
|
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
|
106
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
107
|
+
# commonly ignored for libraries.
|
|
108
|
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
|
109
|
+
#poetry.lock
|
|
110
|
+
#poetry.toml
|
|
111
|
+
|
|
112
|
+
# pdm
|
|
113
|
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
|
114
|
+
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
|
115
|
+
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
|
116
|
+
#pdm.lock
|
|
117
|
+
#pdm.toml
|
|
118
|
+
.pdm-python
|
|
119
|
+
.pdm-build/
|
|
120
|
+
|
|
121
|
+
# pixi
|
|
122
|
+
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
|
123
|
+
#pixi.lock
|
|
124
|
+
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
|
125
|
+
# in the .venv directory. It is recommended not to include this directory in version control.
|
|
126
|
+
.pixi
|
|
127
|
+
|
|
128
|
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
|
129
|
+
__pypackages__/
|
|
130
|
+
|
|
131
|
+
# Celery stuff
|
|
132
|
+
celerybeat-schedule
|
|
133
|
+
celerybeat.pid
|
|
134
|
+
|
|
135
|
+
# SageMath parsed files
|
|
136
|
+
*.sage.py
|
|
137
|
+
|
|
138
|
+
# Environments
|
|
139
|
+
.env
|
|
140
|
+
.envrc
|
|
141
|
+
.venv
|
|
142
|
+
env/
|
|
143
|
+
venv/
|
|
144
|
+
ENV/
|
|
145
|
+
env.bak/
|
|
146
|
+
venv.bak/
|
|
147
|
+
|
|
148
|
+
# Spyder project settings
|
|
149
|
+
.spyderproject
|
|
150
|
+
.spyproject
|
|
151
|
+
|
|
152
|
+
# Rope project settings
|
|
153
|
+
.ropeproject
|
|
154
|
+
|
|
155
|
+
# mkdocs documentation
|
|
156
|
+
/site
|
|
157
|
+
|
|
158
|
+
# mypy
|
|
159
|
+
.mypy_cache/
|
|
160
|
+
.dmypy.json
|
|
161
|
+
dmypy.json
|
|
162
|
+
|
|
163
|
+
# Pyre type checker
|
|
164
|
+
.pyre/
|
|
165
|
+
|
|
166
|
+
# pytype static type analyzer
|
|
167
|
+
.pytype/
|
|
168
|
+
|
|
169
|
+
# Cython debug symbols
|
|
170
|
+
cython_debug/
|
|
171
|
+
|
|
172
|
+
# PyCharm
|
|
173
|
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
|
174
|
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
|
175
|
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
|
176
|
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
|
177
|
+
#.idea/
|
|
178
|
+
|
|
179
|
+
# Abstra
|
|
180
|
+
# Abstra is an AI-powered process automation framework.
|
|
181
|
+
# Ignore directories containing user credentials, local state, and settings.
|
|
182
|
+
# Learn more at https://abstra.io/docs
|
|
183
|
+
.abstra/
|
|
184
|
+
|
|
185
|
+
# Visual Studio Code
|
|
186
|
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
|
187
|
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
|
188
|
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
|
189
|
+
# you could uncomment the following to ignore the entire vscode folder
|
|
190
|
+
# .vscode/
|
|
191
|
+
|
|
192
|
+
# Ruff stuff:
|
|
193
|
+
.ruff_cache/
|
|
194
|
+
|
|
195
|
+
# PyPI configuration file
|
|
196
|
+
.pypirc
|
|
197
|
+
|
|
198
|
+
# Cursor
|
|
199
|
+
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
|
200
|
+
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
|
201
|
+
# refer to https://docs.cursor.com/context/ignore-files
|
|
202
|
+
.cursorignore
|
|
203
|
+
.cursorindexingignore
|
|
204
|
+
|
|
205
|
+
# Marimo
|
|
206
|
+
marimo/_static/
|
|
207
|
+
marimo/_lsp/
|
|
208
|
+
__marimo__/
|
locoformer-0.0.6/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Phil Wang
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: locoformer
|
|
3
|
+
Version: 0.0.6
|
|
4
|
+
Summary: LocoFormer
|
|
5
|
+
Project-URL: Homepage, https://pypi.org/project/locoformer/
|
|
6
|
+
Project-URL: Repository, https://github.com/lucidrains/locoformer
|
|
7
|
+
Author-email: Phil Wang <lucidrains@gmail.com>
|
|
8
|
+
License: MIT License
|
|
9
|
+
|
|
10
|
+
Copyright (c) 2025 Phil Wang
|
|
11
|
+
|
|
12
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
13
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
14
|
+
in the Software without restriction, including without limitation the rights
|
|
15
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
16
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
17
|
+
furnished to do so, subject to the following conditions:
|
|
18
|
+
|
|
19
|
+
The above copyright notice and this permission notice shall be included in all
|
|
20
|
+
copies or substantial portions of the Software.
|
|
21
|
+
|
|
22
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
23
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
24
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
25
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
26
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
27
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
28
|
+
SOFTWARE.
|
|
29
|
+
License-File: LICENSE
|
|
30
|
+
Keywords: artificial intelligence,attention mechanism,cross-embodiment,deep learning,robotics,transformer
|
|
31
|
+
Classifier: Development Status :: 4 - Beta
|
|
32
|
+
Classifier: Intended Audience :: Developers
|
|
33
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
34
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
35
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
36
|
+
Requires-Python: >=3.9
|
|
37
|
+
Requires-Dist: assoc-scan
|
|
38
|
+
Requires-Dist: einops>=0.8.0
|
|
39
|
+
Requires-Dist: einx>=0.3.0
|
|
40
|
+
Requires-Dist: rotary-embedding-torch
|
|
41
|
+
Requires-Dist: torch>=2.4
|
|
42
|
+
Requires-Dist: x-mlps-pytorch
|
|
43
|
+
Provides-Extra: examples
|
|
44
|
+
Requires-Dist: accelerate; extra == 'examples'
|
|
45
|
+
Requires-Dist: tqdm; extra == 'examples'
|
|
46
|
+
Provides-Extra: test
|
|
47
|
+
Requires-Dist: pytest; extra == 'test'
|
|
48
|
+
Description-Content-Type: text/markdown
|
|
49
|
+
|
|
50
|
+
<img src="./fig3.png" width="400px"></img>
|
|
51
|
+
|
|
52
|
+
## LocoFormer (wip)
|
|
53
|
+
|
|
54
|
+
[LocoFormer - Generalist Locomotion via Long-Context Adaptation](https://generalist-locomotion.github.io/)
|
|
55
|
+
|
|
56
|
+
The gist is they trained a simple Transformer-XL in simulation on robots with many different bodies (cross-embodiment). When transferring to the real-world, they noticed the robot now gains the ability to adapt to insults. The XL memories span across multiple trials, which allowed the robot to learn in-context adaptation.
|
|
57
|
+
|
|
58
|
+
## Sponsors
|
|
59
|
+
|
|
60
|
+
This open sourced work is sponsored by [Safe Sentinel](https://www.safesentinels.com/)
|
|
61
|
+
|
|
62
|
+
## Citations
|
|
63
|
+
|
|
64
|
+
```bibtex
|
|
65
|
+
@article{liu2025locoformer,
|
|
66
|
+
title = {LocoFormer: Generalist Locomotion via Long-Context Adaptation},
|
|
67
|
+
author = {Liu, Min and Pathak, Deepak and Agarwal, Ananye},
|
|
68
|
+
journal = {Conference on Robot Learning ({CoRL})},
|
|
69
|
+
year = {2025}
|
|
70
|
+
}
|
|
71
|
+
```
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
<img src="./fig3.png" width="400px"></img>
|
|
2
|
+
|
|
3
|
+
## LocoFormer (wip)
|
|
4
|
+
|
|
5
|
+
[LocoFormer - Generalist Locomotion via Long-Context Adaptation](https://generalist-locomotion.github.io/)
|
|
6
|
+
|
|
7
|
+
The gist is they trained a simple Transformer-XL in simulation on robots with many different bodies (cross-embodiment). When transferring to the real-world, they noticed the robot now gains the ability to adapt to insults. The XL memories span across multiple trials, which allowed the robot to learn in-context adaptation.
|
|
8
|
+
|
|
9
|
+
## Sponsors
|
|
10
|
+
|
|
11
|
+
This open sourced work is sponsored by [Safe Sentinel](https://www.safesentinels.com/)
|
|
12
|
+
|
|
13
|
+
## Citations
|
|
14
|
+
|
|
15
|
+
```bibtex
|
|
16
|
+
@article{liu2025locoformer,
|
|
17
|
+
title = {LocoFormer: Generalist Locomotion via Long-Context Adaptation},
|
|
18
|
+
author = {Liu, Min and Pathak, Deepak and Agarwal, Ananye},
|
|
19
|
+
journal = {Conference on Robot Learning ({CoRL})},
|
|
20
|
+
year = {2025}
|
|
21
|
+
}
|
|
22
|
+
```
|
|
Binary file
|
|
Binary file
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from locoformer.locoformer import Locoformer
|
|
@@ -0,0 +1,483 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
from functools import partial
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from torch import nn, cat, stack, arange, is_tensor
|
|
6
|
+
import torch.nn.functional as F
|
|
7
|
+
from torch.nn import Module, ModuleList, Linear, RMSNorm, Identity, Sequential
|
|
8
|
+
from torch.utils._pytree import tree_map
|
|
9
|
+
|
|
10
|
+
import einx
|
|
11
|
+
from einops import rearrange, einsum
|
|
12
|
+
from einops.layers.torch import Rearrange
|
|
13
|
+
|
|
14
|
+
from rotary_embedding_torch import RotaryEmbedding
|
|
15
|
+
|
|
16
|
+
from assoc_scan import AssocScan
|
|
17
|
+
|
|
18
|
+
LinearNoBias = partial(Linear, bias = False)
|
|
19
|
+
|
|
20
|
+
# helper functions
|
|
21
|
+
|
|
22
|
+
def exists(v):
|
|
23
|
+
return v is not None
|
|
24
|
+
|
|
25
|
+
def default(v, d):
|
|
26
|
+
return v if exists(v) else d
|
|
27
|
+
|
|
28
|
+
def first(arr):
|
|
29
|
+
return arr[0]
|
|
30
|
+
|
|
31
|
+
def divisible_by(num, den):
|
|
32
|
+
return (num % den) == 0
|
|
33
|
+
|
|
34
|
+
def tree_map_tensor(x, fn):
|
|
35
|
+
return tree_map(lambda t: t if not is_tensor(t) else fn(t), x)
|
|
36
|
+
|
|
37
|
+
def detach_all(x):
|
|
38
|
+
return tree_map_tensor(x, lambda t: t.detach())
|
|
39
|
+
|
|
40
|
+
def combine_kv_cache(cache1, cache2):
|
|
41
|
+
combined_cache = []
|
|
42
|
+
|
|
43
|
+
for layer_cache1, layer_cache2 in zip(cache1, cache2):
|
|
44
|
+
next_cache = cat((layer_cache1, layer_cache2), dim = -2)
|
|
45
|
+
combined_cache.append(next_cache)
|
|
46
|
+
|
|
47
|
+
return combined_cache
|
|
48
|
+
|
|
49
|
+
# generalized advantage estimate
|
|
50
|
+
|
|
51
|
+
@torch.no_grad()
|
|
52
|
+
def calc_gae(
|
|
53
|
+
rewards,
|
|
54
|
+
values,
|
|
55
|
+
masks,
|
|
56
|
+
gamma = 0.99,
|
|
57
|
+
lam = 0.95,
|
|
58
|
+
use_accelerated = None
|
|
59
|
+
):
|
|
60
|
+
assert values.shape[-1] == rewards.shape[-1]
|
|
61
|
+
use_accelerated = default(use_accelerated, rewards.is_cuda)
|
|
62
|
+
|
|
63
|
+
values = F.pad(values, (0, 1), value = 0.)
|
|
64
|
+
values, values_next = values[..., :-1], values[..., 1:]
|
|
65
|
+
|
|
66
|
+
delta = rewards + gamma * values_next * masks - values
|
|
67
|
+
gates = gamma * lam * masks
|
|
68
|
+
|
|
69
|
+
scan = AssocScan(reverse = True, use_accelerated = use_accelerated)
|
|
70
|
+
|
|
71
|
+
gae = scan(gates, delta)
|
|
72
|
+
|
|
73
|
+
returns = gae + values
|
|
74
|
+
|
|
75
|
+
return returns
|
|
76
|
+
|
|
77
|
+
# transformer-xl mask w/ flex attn
|
|
78
|
+
|
|
79
|
+
flex_attention = None
|
|
80
|
+
|
|
81
|
+
try:
|
|
82
|
+
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
|
|
83
|
+
if torch.cuda.is_available():
|
|
84
|
+
flex_attention = torch.compile(flex_attention)
|
|
85
|
+
except ImportError:
|
|
86
|
+
pass
|
|
87
|
+
|
|
88
|
+
def create_xl_mask(
|
|
89
|
+
seq_len,
|
|
90
|
+
kv_seq_len,
|
|
91
|
+
window_size,
|
|
92
|
+
episode_ids = None, # (b n) - in the case that within the same batch there are multiple episodes
|
|
93
|
+
lookback_blocks = 1, # in transformer-xl, lookback is one window size block, but can be multiple for longer context
|
|
94
|
+
device = None
|
|
95
|
+
):
|
|
96
|
+
assert kv_seq_len >= seq_len
|
|
97
|
+
assert window_size <= seq_len
|
|
98
|
+
|
|
99
|
+
offset = kv_seq_len - seq_len
|
|
100
|
+
|
|
101
|
+
def create_block_mask_fn(b, __, q, k):
|
|
102
|
+
offset_q = q + offset
|
|
103
|
+
block_q = offset_q // window_size
|
|
104
|
+
block_k = k // window_size
|
|
105
|
+
|
|
106
|
+
causal_mask = offset_q >= k
|
|
107
|
+
|
|
108
|
+
# in transformer-xl, the previous segment is fully attended to - may just double the segments and make this sliding for ease of inference logic
|
|
109
|
+
|
|
110
|
+
block_mask = (block_q >= block_k) & (block_q <= (block_k + lookback_blocks))
|
|
111
|
+
|
|
112
|
+
mask = causal_mask & block_mask
|
|
113
|
+
|
|
114
|
+
# handle intra-episodic attention if needed
|
|
115
|
+
|
|
116
|
+
if exists(episode_ids):
|
|
117
|
+
q_episode = episodes[b, q + offset]
|
|
118
|
+
k_episode = episodes[b, k]
|
|
119
|
+
|
|
120
|
+
intra_episode_mask = q_episode == k_episode
|
|
121
|
+
mask = mask & intra_episode_mask
|
|
122
|
+
|
|
123
|
+
return mask
|
|
124
|
+
|
|
125
|
+
create_kwargs = dict(device = device) if exists(device) else dict()
|
|
126
|
+
return create_block_mask(create_block_mask_fn, B = None, H = None, Q_LEN = seq_len, KV_LEN = kv_seq_len, _compile = True, **create_kwargs)
|
|
127
|
+
|
|
128
|
+
def create_sliding_mask(
|
|
129
|
+
seq_len,
|
|
130
|
+
kv_seq_len,
|
|
131
|
+
window_size,
|
|
132
|
+
device = None
|
|
133
|
+
):
|
|
134
|
+
assert kv_seq_len >= seq_len
|
|
135
|
+
offset = kv_seq_len - seq_len
|
|
136
|
+
|
|
137
|
+
def sliding_mask(_, __, q, k):
|
|
138
|
+
offset_q = q + offset
|
|
139
|
+
distance = offset_q - k
|
|
140
|
+
|
|
141
|
+
backward_sliding_mask = distance <= window_size
|
|
142
|
+
forward_sliding_mask = distance >= 0
|
|
143
|
+
|
|
144
|
+
return backward_sliding_mask & forward_sliding_mask
|
|
145
|
+
|
|
146
|
+
create_kwargs = dict(device = device) if exists(device) else dict()
|
|
147
|
+
return create_block_mask(sliding_mask, B = None, H = None, Q_LEN = seq_len, KV_LEN = kv_seq_len, _compile = True, **create_kwargs)
|
|
148
|
+
|
|
149
|
+
# transformer-xl with ppo
|
|
150
|
+
|
|
151
|
+
class Attention(Module):
|
|
152
|
+
def __init__(
|
|
153
|
+
self,
|
|
154
|
+
dim,
|
|
155
|
+
window_size,
|
|
156
|
+
dim_head = 64,
|
|
157
|
+
heads = 8,
|
|
158
|
+
pre_rmsnorm = True,
|
|
159
|
+
fixed_window_size = False,
|
|
160
|
+
accept_value_residual = False
|
|
161
|
+
):
|
|
162
|
+
super().__init__()
|
|
163
|
+
self.scale = dim_head ** -0.5
|
|
164
|
+
|
|
165
|
+
self.norm = RMSNorm(dim) if pre_rmsnorm else Identity()
|
|
166
|
+
|
|
167
|
+
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
|
|
168
|
+
self.merge_heads = Rearrange('b h n d -> b n (h d)')
|
|
169
|
+
|
|
170
|
+
self.rotary_embed = RotaryEmbedding(dim_head)
|
|
171
|
+
|
|
172
|
+
dim_inner = dim_head * heads
|
|
173
|
+
self.to_q = LinearNoBias(dim, dim_inner)
|
|
174
|
+
self.to_kv = LinearNoBias(dim, dim_inner * 2)
|
|
175
|
+
self.to_out = LinearNoBias(dim_inner, dim)
|
|
176
|
+
|
|
177
|
+
self.to_v_gates = Sequential(
|
|
178
|
+
LinearNoBias(dim, heads),
|
|
179
|
+
Rearrange('b n h -> b h n 1'),
|
|
180
|
+
nn.Sigmoid()
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
# value residual
|
|
184
|
+
|
|
185
|
+
self.accept_value_residual = accept_value_residual
|
|
186
|
+
|
|
187
|
+
if accept_value_residual:
|
|
188
|
+
self.to_value_residual_mix = Sequential(
|
|
189
|
+
LinearNoBias(dim, heads),
|
|
190
|
+
Rearrange('b n h -> b h n 1'),
|
|
191
|
+
nn.Sigmoid()
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
# fixed window size
|
|
195
|
+
|
|
196
|
+
self.fixed_window_size = fixed_window_size
|
|
197
|
+
self.window_size = window_size
|
|
198
|
+
|
|
199
|
+
def forward(
|
|
200
|
+
self,
|
|
201
|
+
tokens,
|
|
202
|
+
value_residual = None,
|
|
203
|
+
kv_cache = None,
|
|
204
|
+
return_kv_cache = False,
|
|
205
|
+
):
|
|
206
|
+
seq_len = tokens.shape[-2]
|
|
207
|
+
assert seq_len <= self.window_size
|
|
208
|
+
|
|
209
|
+
device = tokens.device
|
|
210
|
+
|
|
211
|
+
tokens = self.norm(tokens)
|
|
212
|
+
|
|
213
|
+
q, k, v = (self.to_q(tokens), *self.to_kv(tokens).chunk(2, dim = -1))
|
|
214
|
+
|
|
215
|
+
q, k, v = map(self.split_heads, (q, k, v))
|
|
216
|
+
|
|
217
|
+
orig_v = v
|
|
218
|
+
|
|
219
|
+
q = q * self.scale
|
|
220
|
+
|
|
221
|
+
if exists(value_residual):
|
|
222
|
+
assert self.accept_value_residual
|
|
223
|
+
mix = self.to_value_residual_mix(tokens)
|
|
224
|
+
v = v.lerp(value_residual, mix)
|
|
225
|
+
|
|
226
|
+
if exists(kv_cache):
|
|
227
|
+
ck, cv = kv_cache
|
|
228
|
+
k = cat((ck, k), dim = -2)
|
|
229
|
+
v = cat((cv, v), dim = -2)
|
|
230
|
+
|
|
231
|
+
if return_kv_cache:
|
|
232
|
+
next_kv_cache = stack((k, v))
|
|
233
|
+
|
|
234
|
+
q, k = self.rotary_embed.rotate_queries_with_cached_keys(q, k)
|
|
235
|
+
|
|
236
|
+
sim = einsum(q, k, 'b h i d, b h j d -> b h i j')
|
|
237
|
+
|
|
238
|
+
i, j = sim.shape[-2:]
|
|
239
|
+
|
|
240
|
+
if self.fixed_window_size:
|
|
241
|
+
i_seq = arange(i, device = device)
|
|
242
|
+
j_seq = arange(j, device = device) - (j - i)
|
|
243
|
+
dist = einx.subtract('i, j -> i j', i_seq, j_seq)
|
|
244
|
+
causal_mask = (dist < 0) | (dist > self.window_size)
|
|
245
|
+
else:
|
|
246
|
+
causal_mask = torch.ones((i, j), dtype = torch.bool, device = sim.device).triu(j - i + 1)
|
|
247
|
+
|
|
248
|
+
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
|
|
249
|
+
|
|
250
|
+
attn = sim.softmax(dim = -1)
|
|
251
|
+
|
|
252
|
+
out = einsum(attn, v, 'b h i j, b h j d -> b h i d')
|
|
253
|
+
|
|
254
|
+
out = out * self.to_v_gates(tokens)
|
|
255
|
+
|
|
256
|
+
out = self.merge_heads(out)
|
|
257
|
+
|
|
258
|
+
out = self.to_out(out)
|
|
259
|
+
|
|
260
|
+
if not return_kv_cache:
|
|
261
|
+
return out
|
|
262
|
+
|
|
263
|
+
return out, (next_kv_cache, orig_v)
|
|
264
|
+
|
|
265
|
+
class FeedForward(Module):
|
|
266
|
+
def __init__(
|
|
267
|
+
self,
|
|
268
|
+
dim,
|
|
269
|
+
expansion_factor = 4.,
|
|
270
|
+
pre_rmsnorm = True
|
|
271
|
+
):
|
|
272
|
+
super().__init__()
|
|
273
|
+
self.norm = RMSNorm(dim) if pre_rmsnorm else Identity()
|
|
274
|
+
|
|
275
|
+
dim_inner = int(dim * expansion_factor * 2 / 3)
|
|
276
|
+
|
|
277
|
+
self.proj_in = Linear(dim, dim_inner * 2)
|
|
278
|
+
self.proj_out = Linear(dim_inner, dim)
|
|
279
|
+
|
|
280
|
+
def forward(
|
|
281
|
+
self,
|
|
282
|
+
x
|
|
283
|
+
):
|
|
284
|
+
x = self.norm(x)
|
|
285
|
+
|
|
286
|
+
x, gates = self.proj_in(x).chunk(2, dim = -1)
|
|
287
|
+
|
|
288
|
+
x = x * F.gelu(gates)
|
|
289
|
+
|
|
290
|
+
return self.proj_out(x)
|
|
291
|
+
|
|
292
|
+
class TransformerXL(Module):
|
|
293
|
+
def __init__(
|
|
294
|
+
self,
|
|
295
|
+
dim,
|
|
296
|
+
depth,
|
|
297
|
+
window_size,
|
|
298
|
+
dim_head = 64,
|
|
299
|
+
heads = 8,
|
|
300
|
+
expansion_factor = 4.,
|
|
301
|
+
final_norm = True,
|
|
302
|
+
fixed_window_size = False,
|
|
303
|
+
):
|
|
304
|
+
super().__init__()
|
|
305
|
+
|
|
306
|
+
layers = ModuleList([])
|
|
307
|
+
|
|
308
|
+
for i in range(depth):
|
|
309
|
+
is_first = i == 0
|
|
310
|
+
|
|
311
|
+
attn = Attention(dim = dim, dim_head = dim_head, heads = heads, fixed_window_size = fixed_window_size, window_size = window_size, accept_value_residual = not is_first)
|
|
312
|
+
|
|
313
|
+
ff = FeedForward(dim = dim, expansion_factor = expansion_factor)
|
|
314
|
+
|
|
315
|
+
layers.append(ModuleList([
|
|
316
|
+
attn, ff
|
|
317
|
+
]))
|
|
318
|
+
|
|
319
|
+
self.layers = layers
|
|
320
|
+
self.norm = RMSNorm(dim) if final_norm else Identity()
|
|
321
|
+
|
|
322
|
+
# fixed window size
|
|
323
|
+
|
|
324
|
+
self.fixed_window_size = fixed_window_size
|
|
325
|
+
self.window_size = window_size
|
|
326
|
+
|
|
327
|
+
def forward(
|
|
328
|
+
self,
|
|
329
|
+
x,
|
|
330
|
+
cache = None,
|
|
331
|
+
return_kv_cache = False
|
|
332
|
+
):
|
|
333
|
+
|
|
334
|
+
cache = default(cache, (None,) * len(self.layers))
|
|
335
|
+
|
|
336
|
+
next_kv_caches = []
|
|
337
|
+
value_residual = None
|
|
338
|
+
|
|
339
|
+
for (attn, ff), kv_cache in zip(self.layers, cache):
|
|
340
|
+
|
|
341
|
+
attn_out, (next_kv_cache, values) = attn(x, value_residual = value_residual, kv_cache = kv_cache, return_kv_cache = True)
|
|
342
|
+
|
|
343
|
+
x = attn_out + x
|
|
344
|
+
x = ff(x) + x
|
|
345
|
+
|
|
346
|
+
next_kv_caches.append(next_kv_cache)
|
|
347
|
+
value_residual = default(value_residual, values)
|
|
348
|
+
|
|
349
|
+
embed = self.norm(x)
|
|
350
|
+
|
|
351
|
+
if not return_kv_cache:
|
|
352
|
+
return embed
|
|
353
|
+
|
|
354
|
+
next_kv_cache = stack(next_kv_caches)
|
|
355
|
+
|
|
356
|
+
next_kv_cache = next_kv_cache[..., -self.window_size:, :]
|
|
357
|
+
|
|
358
|
+
return embed, next_kv_cache
|
|
359
|
+
|
|
360
|
+
# class
|
|
361
|
+
|
|
362
|
+
class Locoformer(Module):
|
|
363
|
+
def __init__(
|
|
364
|
+
self,
|
|
365
|
+
embedder: Module,
|
|
366
|
+
unembedder: Module,
|
|
367
|
+
transformer: dict | TransformerXL,
|
|
368
|
+
value_network: Module | None = None
|
|
369
|
+
):
|
|
370
|
+
super().__init__()
|
|
371
|
+
|
|
372
|
+
if isinstance(transformer, dict):
|
|
373
|
+
transformer = TransformerXL(**transformer)
|
|
374
|
+
|
|
375
|
+
self.transformer = transformer
|
|
376
|
+
|
|
377
|
+
self.embedder = embedder
|
|
378
|
+
self.unembedder = unembedder
|
|
379
|
+
|
|
380
|
+
self.value_network = value_network
|
|
381
|
+
|
|
382
|
+
self.fixed_window_size = transformer.fixed_window_size
|
|
383
|
+
self.window_size = transformer.window_size
|
|
384
|
+
|
|
385
|
+
@property
|
|
386
|
+
def device(self):
|
|
387
|
+
return next(self.parameters()).device
|
|
388
|
+
|
|
389
|
+
def get_stateful_forward(
|
|
390
|
+
self,
|
|
391
|
+
initial_states: Tensor | None = None,
|
|
392
|
+
inference_mode = False,
|
|
393
|
+
has_batch_dim = False,
|
|
394
|
+
**kwargs
|
|
395
|
+
):
|
|
396
|
+
window_size = self.window_size
|
|
397
|
+
|
|
398
|
+
cache = None
|
|
399
|
+
|
|
400
|
+
def stateful_forward(state: Tensor, **override_kwargs):
|
|
401
|
+
nonlocal cache
|
|
402
|
+
|
|
403
|
+
# handle no batch, for easier time rolling out against envs
|
|
404
|
+
|
|
405
|
+
if not has_batch_dim:
|
|
406
|
+
state = rearrange(state, '... -> 1 ...')
|
|
407
|
+
|
|
408
|
+
# forwards
|
|
409
|
+
|
|
410
|
+
out, cache = self.forward(state, cache = cache, **{**kwargs, **override_kwargs})
|
|
411
|
+
|
|
412
|
+
# handle cache
|
|
413
|
+
|
|
414
|
+
cache_len = cache.shape[-2]
|
|
415
|
+
|
|
416
|
+
if self.fixed_window_size or divisible_by(cache_len, window_size * 2):
|
|
417
|
+
cache = cache[..., -window_size:, :]
|
|
418
|
+
|
|
419
|
+
# maybe remove batch
|
|
420
|
+
|
|
421
|
+
if not has_batch_dim:
|
|
422
|
+
out = tree_map_tensor(out, lambda t: rearrange(t, '1 ... -> ...'))
|
|
423
|
+
|
|
424
|
+
return out
|
|
425
|
+
|
|
426
|
+
if inference_mode:
|
|
427
|
+
stateful_forward = torch.inference_mode()(stateful_forward)
|
|
428
|
+
|
|
429
|
+
# handle prompt
|
|
430
|
+
|
|
431
|
+
if not exists(initial_states):
|
|
432
|
+
return stateful_forward
|
|
433
|
+
|
|
434
|
+
initial_logits = []
|
|
435
|
+
|
|
436
|
+
for state_segments in initial_states.split(self.window_size, dim = -1):
|
|
437
|
+
|
|
438
|
+
logits = stateful_forward(state_segments, return_values = False)
|
|
439
|
+
initial_logits.append(logits)
|
|
440
|
+
|
|
441
|
+
initial_logits = cat(initial_logits, dim = -2)
|
|
442
|
+
|
|
443
|
+
return stateful_forward, initial_logits
|
|
444
|
+
|
|
445
|
+
def forward(
|
|
446
|
+
self,
|
|
447
|
+
state: Tensor,
|
|
448
|
+
cache: Tensor | None = None,
|
|
449
|
+
detach_cache = False,
|
|
450
|
+
return_values = False
|
|
451
|
+
):
|
|
452
|
+
|
|
453
|
+
tokens = self.embedder(state)
|
|
454
|
+
|
|
455
|
+
embed, kv_cache = self.transformer(tokens, cache = cache, return_kv_cache = True)
|
|
456
|
+
|
|
457
|
+
# unembed to actions - in language models this would be the next state
|
|
458
|
+
|
|
459
|
+
action_logits = self.unembedder(embed)
|
|
460
|
+
|
|
461
|
+
out = action_logits
|
|
462
|
+
|
|
463
|
+
# maybe detach cache
|
|
464
|
+
|
|
465
|
+
if detach_cache:
|
|
466
|
+
kv_cache = detach_all(kv_cache)
|
|
467
|
+
|
|
468
|
+
# handle returning of values
|
|
469
|
+
|
|
470
|
+
if return_values:
|
|
471
|
+
assert exists(self.value_network)
|
|
472
|
+
|
|
473
|
+
values = self.value_network(embed)
|
|
474
|
+
|
|
475
|
+
if values.ndim == 3:
|
|
476
|
+
assert values.shape[-1] == 1
|
|
477
|
+
values = rearrange(values, '... 1 -> ...')
|
|
478
|
+
|
|
479
|
+
out = (out, values)
|
|
480
|
+
|
|
481
|
+
# output and cache
|
|
482
|
+
|
|
483
|
+
return out, kv_cache
|
|
@@ -0,0 +1,69 @@
|
|
|
1
|
+
[project]
|
|
2
|
+
name = "locoformer"
|
|
3
|
+
version = "0.0.6"
|
|
4
|
+
description = "LocoFormer"
|
|
5
|
+
authors = [
|
|
6
|
+
{ name = "Phil Wang", email = "lucidrains@gmail.com" }
|
|
7
|
+
]
|
|
8
|
+
readme = "README.md"
|
|
9
|
+
requires-python = ">= 3.9"
|
|
10
|
+
license = { file = "LICENSE" }
|
|
11
|
+
keywords = [
|
|
12
|
+
'artificial intelligence',
|
|
13
|
+
'deep learning',
|
|
14
|
+
'transformer',
|
|
15
|
+
'attention mechanism',
|
|
16
|
+
'robotics',
|
|
17
|
+
'cross-embodiment',
|
|
18
|
+
]
|
|
19
|
+
|
|
20
|
+
classifiers=[
|
|
21
|
+
'Development Status :: 4 - Beta',
|
|
22
|
+
'Intended Audience :: Developers',
|
|
23
|
+
'Topic :: Scientific/Engineering :: Artificial Intelligence',
|
|
24
|
+
'License :: OSI Approved :: MIT License',
|
|
25
|
+
'Programming Language :: Python :: 3.9',
|
|
26
|
+
]
|
|
27
|
+
|
|
28
|
+
dependencies = [
|
|
29
|
+
"assoc-scan",
|
|
30
|
+
"einx>=0.3.0",
|
|
31
|
+
"einops>=0.8.0",
|
|
32
|
+
"rotary-embedding-torch",
|
|
33
|
+
"torch>=2.4",
|
|
34
|
+
"x-mlps-pytorch",
|
|
35
|
+
]
|
|
36
|
+
|
|
37
|
+
[project.urls]
|
|
38
|
+
Homepage = "https://pypi.org/project/locoformer/"
|
|
39
|
+
Repository = "https://github.com/lucidrains/locoformer"
|
|
40
|
+
|
|
41
|
+
[project.optional-dependencies]
|
|
42
|
+
|
|
43
|
+
examples = [
|
|
44
|
+
"accelerate",
|
|
45
|
+
"tqdm"
|
|
46
|
+
]
|
|
47
|
+
|
|
48
|
+
test = [
|
|
49
|
+
"pytest"
|
|
50
|
+
]
|
|
51
|
+
|
|
52
|
+
[tool.pytest.ini_options]
|
|
53
|
+
pythonpath = [
|
|
54
|
+
"."
|
|
55
|
+
]
|
|
56
|
+
|
|
57
|
+
[build-system]
|
|
58
|
+
requires = ["hatchling"]
|
|
59
|
+
build-backend = "hatchling.build"
|
|
60
|
+
|
|
61
|
+
[tool.rye]
|
|
62
|
+
managed = true
|
|
63
|
+
dev-dependencies = []
|
|
64
|
+
|
|
65
|
+
[tool.hatch.metadata]
|
|
66
|
+
allow-direct-references = true
|
|
67
|
+
|
|
68
|
+
[tool.hatch.build.targets.wheel]
|
|
69
|
+
packages = ["locoformer"]
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
param = pytest.mark.parametrize
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from x_mlps_pytorch import MLP
|
|
6
|
+
|
|
7
|
+
from einops import rearrange
|
|
8
|
+
|
|
9
|
+
def test_locoformer():
|
|
10
|
+
from locoformer.locoformer import Locoformer
|
|
11
|
+
from torch import nn
|
|
12
|
+
|
|
13
|
+
model = Locoformer(
|
|
14
|
+
embedder = nn.Embedding(256, 128),
|
|
15
|
+
unembedder = nn.Linear(128, 256, bias = False),
|
|
16
|
+
value_network = MLP(128, 32, 1),
|
|
17
|
+
transformer = dict(
|
|
18
|
+
dim = 128,
|
|
19
|
+
depth = 1,
|
|
20
|
+
window_size = 256
|
|
21
|
+
)
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
seq = torch.randint(0, 256, (3, 512))
|
|
25
|
+
|
|
26
|
+
(logits, values), cache = model(seq, return_values = True)
|
|
27
|
+
(logits, values), cache = model(seq, return_values = True, cache = cache)
|
|
28
|
+
(logits, values), cache = model(seq, return_values = True, cache = cache)
|
|
29
|
+
|
|
30
|
+
assert logits.shape == (3, 512, 256)
|
|
31
|
+
|
|
32
|
+
stateful_forward = model.get_stateful_forward(256, has_batch_dim = True, return_values = True, inference_mode = True)
|
|
33
|
+
|
|
34
|
+
for state in seq.unbind(dim = -1):
|
|
35
|
+
state = rearrange(state, 'b -> b 1')
|
|
36
|
+
|
|
37
|
+
logits, values = stateful_forward(state)
|
|
38
|
+
assert logits.shape == (3, 1, 256)
|
|
@@ -0,0 +1,191 @@
|
|
|
1
|
+
# /// script
|
|
2
|
+
# dependencies = [
|
|
3
|
+
# 'accelerate',
|
|
4
|
+
# 'locoformer',
|
|
5
|
+
# 'tqdm'
|
|
6
|
+
# ]
|
|
7
|
+
# ///
|
|
8
|
+
|
|
9
|
+
import tqdm
|
|
10
|
+
import gzip
|
|
11
|
+
from math import ceil
|
|
12
|
+
import numpy as np
|
|
13
|
+
|
|
14
|
+
import torch
|
|
15
|
+
from torch import nn
|
|
16
|
+
from torch import from_numpy
|
|
17
|
+
from torch.optim import Adam
|
|
18
|
+
from torch.nn import functional as F
|
|
19
|
+
from torch.utils.data import DataLoader, Dataset
|
|
20
|
+
|
|
21
|
+
from einops import rearrange
|
|
22
|
+
from accelerate import Accelerator
|
|
23
|
+
|
|
24
|
+
from locoformer.locoformer import Locoformer
|
|
25
|
+
|
|
26
|
+
# constants
|
|
27
|
+
|
|
28
|
+
NUM_BATCHES = int(1e5)
|
|
29
|
+
BATCH_SIZE = 16
|
|
30
|
+
LEARNING_RATE = 2e-4
|
|
31
|
+
VALIDATE_EVERY = 100
|
|
32
|
+
|
|
33
|
+
GENERATE_EVERY = 250
|
|
34
|
+
PRIME_LENGTH = 32
|
|
35
|
+
GENERATE_LENGTH = 1024
|
|
36
|
+
|
|
37
|
+
SEQ_LEN = 256
|
|
38
|
+
NUM_SEGMENTS = 4
|
|
39
|
+
FIXED_WINDOW_SIZE = False
|
|
40
|
+
|
|
41
|
+
# helpers
|
|
42
|
+
|
|
43
|
+
def cycle(loader):
|
|
44
|
+
while True:
|
|
45
|
+
for data in loader:
|
|
46
|
+
yield data
|
|
47
|
+
|
|
48
|
+
def divisible_by(num, den):
|
|
49
|
+
return (num % den) == 0
|
|
50
|
+
|
|
51
|
+
def decode_token(token):
|
|
52
|
+
return str(chr(max(32, token)))
|
|
53
|
+
|
|
54
|
+
def decode_tokens(tokens):
|
|
55
|
+
return ''.join(list(map(decode_token, tokens)))
|
|
56
|
+
|
|
57
|
+
# sampling
|
|
58
|
+
|
|
59
|
+
def log(t, eps = 1e-20):
|
|
60
|
+
return t.clamp(min = eps).log()
|
|
61
|
+
|
|
62
|
+
def gumbel_noise(t):
|
|
63
|
+
return -log(-log(torch.rand_like(t)))
|
|
64
|
+
|
|
65
|
+
def gumbel_sample(logits, temperature = 1., eps = 1e-6, keepdim = True):
|
|
66
|
+
noise = gumbel_noise(logits)
|
|
67
|
+
return ((logits / max(temperature, eps)) + noise).argmax(dim = -1, keepdim = keepdim)
|
|
68
|
+
|
|
69
|
+
def topk_logits_filter(logits, frac_num_tokens = 0.1):
|
|
70
|
+
num_tokens = logits.shape[-1]
|
|
71
|
+
k = ceil(frac_num_tokens * num_tokens)
|
|
72
|
+
|
|
73
|
+
val, ind = torch.topk(logits, k)
|
|
74
|
+
probs = torch.full_like(logits, float('-inf'))
|
|
75
|
+
probs.scatter_(-1, ind, val)
|
|
76
|
+
return probs
|
|
77
|
+
|
|
78
|
+
# instantiate model
|
|
79
|
+
|
|
80
|
+
dim_model = 512
|
|
81
|
+
|
|
82
|
+
model = Locoformer(
|
|
83
|
+
embedder = nn.Embedding(256, dim_model),
|
|
84
|
+
unembedder = nn.Linear(dim_model, 256, bias = False),
|
|
85
|
+
transformer = dict(
|
|
86
|
+
dim = dim_model,
|
|
87
|
+
depth = 6,
|
|
88
|
+
fixed_window_size = FIXED_WINDOW_SIZE,
|
|
89
|
+
window_size = SEQ_LEN
|
|
90
|
+
)
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
# prepare enwik8 data
|
|
94
|
+
|
|
95
|
+
with gzip.open('./data/enwik8.gz') as file:
|
|
96
|
+
data = np.frombuffer(file.read(int(95e6)), dtype = np.uint8).copy()
|
|
97
|
+
train_data, valid_data = np.split(data, [int(90e6)])
|
|
98
|
+
data_train, data_val = from_numpy(train_data), from_numpy(valid_data)
|
|
99
|
+
|
|
100
|
+
class TextSamplerDataset(Dataset):
|
|
101
|
+
def __init__(self, data, seq_len, segments):
|
|
102
|
+
super().__init__()
|
|
103
|
+
self.data = data
|
|
104
|
+
self.seq_len = seq_len
|
|
105
|
+
self.segments = segments
|
|
106
|
+
self.total_len = seq_len * segments
|
|
107
|
+
|
|
108
|
+
def __getitem__(self, index):
|
|
109
|
+
rand_start = torch.randint(0, self.data.size(0) - self.total_len - 1, (1,))
|
|
110
|
+
full_seq = self.data[rand_start: rand_start + self.total_len + 1].long()
|
|
111
|
+
return full_seq
|
|
112
|
+
|
|
113
|
+
def __len__(self):
|
|
114
|
+
return self.data.size(0) // self.total_len
|
|
115
|
+
|
|
116
|
+
train_dataset = TextSamplerDataset(data_train, SEQ_LEN, NUM_SEGMENTS)
|
|
117
|
+
val_dataset = TextSamplerDataset(data_val, SEQ_LEN, NUM_SEGMENTS)
|
|
118
|
+
train_loader = DataLoader(train_dataset, batch_size = BATCH_SIZE)
|
|
119
|
+
val_loader = DataLoader(val_dataset, batch_size = BATCH_SIZE)
|
|
120
|
+
|
|
121
|
+
# optimizer
|
|
122
|
+
|
|
123
|
+
optim = Adam(model.parameters(), lr = LEARNING_RATE)
|
|
124
|
+
|
|
125
|
+
# prepare accelerate
|
|
126
|
+
|
|
127
|
+
accelerate = Accelerator()
|
|
128
|
+
|
|
129
|
+
model, optim, train_loader = accelerate.prepare(model, optim, train_loader)
|
|
130
|
+
|
|
131
|
+
# training loop
|
|
132
|
+
|
|
133
|
+
train_loader_iter = cycle(train_loader)
|
|
134
|
+
val_loader_iter = cycle(val_loader)
|
|
135
|
+
|
|
136
|
+
for i in range(NUM_BATCHES):
|
|
137
|
+
model.train()
|
|
138
|
+
|
|
139
|
+
seq = next(train_loader_iter)
|
|
140
|
+
seq, labels = seq[:, :-1], seq[:, 1:]
|
|
141
|
+
|
|
142
|
+
cache = None
|
|
143
|
+
|
|
144
|
+
for segment_seq, segment_labels in zip(seq.chunk(NUM_SEGMENTS, dim = -1), labels.chunk(NUM_SEGMENTS, dim = -1)):
|
|
145
|
+
|
|
146
|
+
logits, cache = model(
|
|
147
|
+
segment_seq,
|
|
148
|
+
cache = cache,
|
|
149
|
+
detach_cache = True
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
loss = F.cross_entropy(
|
|
153
|
+
rearrange(logits, 'b n l -> b l n'),
|
|
154
|
+
segment_labels
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
accelerate.backward(loss / NUM_SEGMENTS)
|
|
158
|
+
accelerate.print(f'[{i}] loss: {loss.item():.3f}')
|
|
159
|
+
|
|
160
|
+
optim.step()
|
|
161
|
+
optim.zero_grad()
|
|
162
|
+
|
|
163
|
+
if divisible_by(i + 1, GENERATE_EVERY):
|
|
164
|
+
model.eval()
|
|
165
|
+
|
|
166
|
+
val_seq = next(val_loader_iter)
|
|
167
|
+
prime = val_seq[0, :PRIME_LENGTH]
|
|
168
|
+
|
|
169
|
+
prime = prime.to(model.device)
|
|
170
|
+
out = prime
|
|
171
|
+
|
|
172
|
+
stateful_forward, logits = model.get_stateful_forward(has_batch_dim = False, initial_states = prime, inference_mode = True)
|
|
173
|
+
|
|
174
|
+
# sample
|
|
175
|
+
|
|
176
|
+
while out.shape[-1] < GENERATE_LENGTH:
|
|
177
|
+
filtered_logits = topk_logits_filter(logits[-1])
|
|
178
|
+
|
|
179
|
+
sampled = gumbel_sample(filtered_logits)
|
|
180
|
+
out = torch.cat((out, sampled), dim = -1)
|
|
181
|
+
|
|
182
|
+
logits = stateful_forward(sampled)
|
|
183
|
+
|
|
184
|
+
# decoded
|
|
185
|
+
|
|
186
|
+
decoded_prime = decode_tokens(prime.cpu())
|
|
187
|
+
decoded_string = decode_tokens(out[PRIME_LENGTH:].cpu())
|
|
188
|
+
|
|
189
|
+
print(f'\n\n[prime]: {decoded_prime}\n\n')
|
|
190
|
+
print('*' * 100)
|
|
191
|
+
print(f'\n\n [generated]: {decoded_string}\n\n')
|