loaderx 0.0.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
loaderx-0.0.2/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 EOELAB AI Research
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
loaderx-0.0.2/PKG-INFO ADDED
@@ -0,0 +1,87 @@
1
+ Metadata-Version: 2.4
2
+ Name: loaderx
3
+ Version: 0.0.2
4
+ Summary: Minimal data loader for Flax
5
+ Author-email: Ben0i0d <ben0i0d@foxmail.com>
6
+ License: MIT License
7
+
8
+ Copyright (c) 2025 EOELAB AI Research
9
+
10
+ Permission is hereby granted, free of charge, to any person obtaining a copy
11
+ of this software and associated documentation files (the "Software"), to deal
12
+ in the Software without restriction, including without limitation the rights
13
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14
+ copies of the Software, and to permit persons to whom the Software is
15
+ furnished to do so, subject to the following conditions:
16
+
17
+ The above copyright notice and this permission notice shall be included in all
18
+ copies or substantial portions of the Software.
19
+
20
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
23
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26
+ SOFTWARE.
27
+
28
+ Project-URL: Homepage, https://github.com/eoeair/loaderx
29
+ Project-URL: Documentation, https://github.com/eoeair/loaderx
30
+ Project-URL: Source, https://github.com/eoeair/loaderx
31
+ Project-URL: Bug Tracker, https://github.com/eoeair/loaderx/issues
32
+ Keywords: flax,python,dataloader
33
+ Classifier: Development Status :: 3 - Alpha
34
+ Classifier: Intended Audience :: Developers
35
+ Classifier: License :: OSI Approved :: MIT License
36
+ Classifier: Programming Language :: Python :: 3
37
+ Requires-Python: >=3.10
38
+ Description-Content-Type: text/markdown
39
+ License-File: LICENSE
40
+ Dynamic: license-file
41
+
42
+ # loaderx
43
+ Minimal data loader for Flax
44
+
45
+ ## Rationale for Creating mloader
46
+ While Flax supports various data loading backends—such as PyTorch, TensorFlow, Grain, and jax_dataloader—these often come with nontrivial dependencies.
47
+ 1. Installing heavy frameworks like PyTorch or TensorFlow solely for data loading is undesirable.
48
+ 2. Grain offers a clean API but suffers from suboptimal performance in practice.
49
+ 3. jax_dataloader leverages GPU memory by default, which may lead to inefficient memory usage in certain scenarios.
50
+
51
+ ## Design Goals of mloader
52
+ mloader is designed with simplicity and efficiency in mind.
53
+ It follows a pragmatic approach—favoring low memory overhead and minimal dependencies.
54
+ The implementation targets common use cases, with a particular focus on single-host training pipelines.
55
+
56
+ ## Current Limitations
57
+ At present, mloader only supports single-host scenarios and does not yet address multi-host training setups.
58
+
59
+ ## How to integrate it with Flax.
60
+ Below is a code example.
61
+
62
+ The mloader is mainly inspired by the design of Grain, so avoid using patterns like `for epoch in num_epochs`.
63
+
64
+ ```
65
+ def loss_fn(model: CNN, batch):
66
+ logits = model(batch['data'])
67
+ loss = optax.softmax_cross_entropy_with_integer_labels(logits=logits, labels=batch['label']).mean()
68
+ return loss, logits
69
+
70
+ @nnx.jit
71
+ def train_step(model: CNN, optimizer: nnx.Optimizer, metrics: nnx.MultiMetric, batch):
72
+ """Train for a single step."""
73
+ grad_fn = nnx.value_and_grad(loss_fn, has_aux=True)
74
+ (loss, logits), grads = grad_fn(model, batch)
75
+ metrics.update(loss=loss, logits=logits, labels=batch['label']) # In-place updates.
76
+ optimizer.update(grads) # In-place updates.
77
+
78
+ @nnx.jit
79
+ def eval_step(model: CNN, metrics: nnx.MultiMetric, batch):
80
+ loss, logits = loss_fn(model, batch)
81
+ metrics.update(loss=loss, logits=logits, labels=batch['label']) # In-place updates.
82
+
83
+ @nnx.jit
84
+ def pred_step(model: CNN, batch):
85
+ logits = model(batch['data'])
86
+ return logits.argmax(axis=1)
87
+ ```
@@ -0,0 +1,46 @@
1
+ # loaderx
2
+ Minimal data loader for Flax
3
+
4
+ ## Rationale for Creating mloader
5
+ While Flax supports various data loading backends—such as PyTorch, TensorFlow, Grain, and jax_dataloader—these often come with nontrivial dependencies.
6
+ 1. Installing heavy frameworks like PyTorch or TensorFlow solely for data loading is undesirable.
7
+ 2. Grain offers a clean API but suffers from suboptimal performance in practice.
8
+ 3. jax_dataloader leverages GPU memory by default, which may lead to inefficient memory usage in certain scenarios.
9
+
10
+ ## Design Goals of mloader
11
+ mloader is designed with simplicity and efficiency in mind.
12
+ It follows a pragmatic approach—favoring low memory overhead and minimal dependencies.
13
+ The implementation targets common use cases, with a particular focus on single-host training pipelines.
14
+
15
+ ## Current Limitations
16
+ At present, mloader only supports single-host scenarios and does not yet address multi-host training setups.
17
+
18
+ ## How to integrate it with Flax.
19
+ Below is a code example.
20
+
21
+ The mloader is mainly inspired by the design of Grain, so avoid using patterns like `for epoch in num_epochs`.
22
+
23
+ ```
24
+ def loss_fn(model: CNN, batch):
25
+ logits = model(batch['data'])
26
+ loss = optax.softmax_cross_entropy_with_integer_labels(logits=logits, labels=batch['label']).mean()
27
+ return loss, logits
28
+
29
+ @nnx.jit
30
+ def train_step(model: CNN, optimizer: nnx.Optimizer, metrics: nnx.MultiMetric, batch):
31
+ """Train for a single step."""
32
+ grad_fn = nnx.value_and_grad(loss_fn, has_aux=True)
33
+ (loss, logits), grads = grad_fn(model, batch)
34
+ metrics.update(loss=loss, logits=logits, labels=batch['label']) # In-place updates.
35
+ optimizer.update(grads) # In-place updates.
36
+
37
+ @nnx.jit
38
+ def eval_step(model: CNN, metrics: nnx.MultiMetric, batch):
39
+ loss, logits = loss_fn(model, batch)
40
+ metrics.update(loss=loss, logits=logits, labels=batch['label']) # In-place updates.
41
+
42
+ @nnx.jit
43
+ def pred_step(model: CNN, batch):
44
+ logits = model(batch['data'])
45
+ return logits.argmax(axis=1)
46
+ ```
@@ -0,0 +1,4 @@
1
+ from .dataset import Dataset
2
+ from .dataloader import DataLoader
3
+
4
+ __version__ = "0.0.2"
@@ -0,0 +1,52 @@
1
+ import numpy as np
2
+ import threading
3
+ from queue import Queue
4
+ from concurrent.futures import ThreadPoolExecutor
5
+
6
+ class DataLoader:
7
+ def __init__(self, dataset, batch_size=256, shuffle=True, prefetch=2, num_epoch=1, seed=None):
8
+ self.dataset = dataset
9
+ self.batch_size = batch_size
10
+ self.shuffle = shuffle
11
+ self.prefetch = prefetch
12
+ self.num_epoch = num_epoch
13
+ self.seed = seed
14
+
15
+ self.indices = list(range(len(dataset)))
16
+ self.queue = Queue(maxsize=prefetch)
17
+ self.stop_signal = threading.Event()
18
+ self.current_epoch = 0
19
+
20
+ self.thread = threading.Thread(target=self._prefetch_data)
21
+ self.thread.start()
22
+
23
+ def _prefetch_data(self):
24
+ while not self.stop_signal.is_set() and self.current_epoch < self.num_epoch:
25
+ if self.shuffle:
26
+ if self.seed is not None:
27
+ np.random.seed(self.seed + self.current_epoch)
28
+ np.random.shuffle(self.indices)
29
+ for i in range(0, len(self.indices), self.batch_size):
30
+ batch_indices = self.indices[i:i + self.batch_size]
31
+ with ThreadPoolExecutor() as executor:
32
+ batch = executor.map(self.dataset.__getitem__, batch_indices)
33
+ batch_data, batch_labels = zip(*batch)
34
+ self.queue.put({'data': np.stack(batch_data), 'label': np.stack(batch_labels)})
35
+ self.current_epoch += 1
36
+ self.stop_signal.set()
37
+
38
+ def __iter__(self):
39
+ return self
40
+
41
+ def __next__(self):
42
+ if self.stop_signal.is_set() and self.queue.empty():
43
+ raise StopIteration
44
+ return self.queue.get()
45
+
46
+ def __del__(self):
47
+ try:
48
+ self.stop_signal.set()
49
+ if hasattr(self, 'thread') and self.thread is not None and self.thread.is_alive():
50
+ self.thread.join()
51
+ except Exception:
52
+ pass
@@ -0,0 +1,9 @@
1
+ class Dataset:
2
+ def __init__(self):
3
+ pass
4
+
5
+ def __getitem__(self):
6
+ pass
7
+
8
+ def __len__(self):
9
+ pass
@@ -0,0 +1,87 @@
1
+ Metadata-Version: 2.4
2
+ Name: loaderx
3
+ Version: 0.0.2
4
+ Summary: Minimal data loader for Flax
5
+ Author-email: Ben0i0d <ben0i0d@foxmail.com>
6
+ License: MIT License
7
+
8
+ Copyright (c) 2025 EOELAB AI Research
9
+
10
+ Permission is hereby granted, free of charge, to any person obtaining a copy
11
+ of this software and associated documentation files (the "Software"), to deal
12
+ in the Software without restriction, including without limitation the rights
13
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14
+ copies of the Software, and to permit persons to whom the Software is
15
+ furnished to do so, subject to the following conditions:
16
+
17
+ The above copyright notice and this permission notice shall be included in all
18
+ copies or substantial portions of the Software.
19
+
20
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
23
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26
+ SOFTWARE.
27
+
28
+ Project-URL: Homepage, https://github.com/eoeair/loaderx
29
+ Project-URL: Documentation, https://github.com/eoeair/loaderx
30
+ Project-URL: Source, https://github.com/eoeair/loaderx
31
+ Project-URL: Bug Tracker, https://github.com/eoeair/loaderx/issues
32
+ Keywords: flax,python,dataloader
33
+ Classifier: Development Status :: 3 - Alpha
34
+ Classifier: Intended Audience :: Developers
35
+ Classifier: License :: OSI Approved :: MIT License
36
+ Classifier: Programming Language :: Python :: 3
37
+ Requires-Python: >=3.10
38
+ Description-Content-Type: text/markdown
39
+ License-File: LICENSE
40
+ Dynamic: license-file
41
+
42
+ # loaderx
43
+ Minimal data loader for Flax
44
+
45
+ ## Rationale for Creating mloader
46
+ While Flax supports various data loading backends—such as PyTorch, TensorFlow, Grain, and jax_dataloader—these often come with nontrivial dependencies.
47
+ 1. Installing heavy frameworks like PyTorch or TensorFlow solely for data loading is undesirable.
48
+ 2. Grain offers a clean API but suffers from suboptimal performance in practice.
49
+ 3. jax_dataloader leverages GPU memory by default, which may lead to inefficient memory usage in certain scenarios.
50
+
51
+ ## Design Goals of mloader
52
+ mloader is designed with simplicity and efficiency in mind.
53
+ It follows a pragmatic approach—favoring low memory overhead and minimal dependencies.
54
+ The implementation targets common use cases, with a particular focus on single-host training pipelines.
55
+
56
+ ## Current Limitations
57
+ At present, mloader only supports single-host scenarios and does not yet address multi-host training setups.
58
+
59
+ ## How to integrate it with Flax.
60
+ Below is a code example.
61
+
62
+ The mloader is mainly inspired by the design of Grain, so avoid using patterns like `for epoch in num_epochs`.
63
+
64
+ ```
65
+ def loss_fn(model: CNN, batch):
66
+ logits = model(batch['data'])
67
+ loss = optax.softmax_cross_entropy_with_integer_labels(logits=logits, labels=batch['label']).mean()
68
+ return loss, logits
69
+
70
+ @nnx.jit
71
+ def train_step(model: CNN, optimizer: nnx.Optimizer, metrics: nnx.MultiMetric, batch):
72
+ """Train for a single step."""
73
+ grad_fn = nnx.value_and_grad(loss_fn, has_aux=True)
74
+ (loss, logits), grads = grad_fn(model, batch)
75
+ metrics.update(loss=loss, logits=logits, labels=batch['label']) # In-place updates.
76
+ optimizer.update(grads) # In-place updates.
77
+
78
+ @nnx.jit
79
+ def eval_step(model: CNN, metrics: nnx.MultiMetric, batch):
80
+ loss, logits = loss_fn(model, batch)
81
+ metrics.update(loss=loss, logits=logits, labels=batch['label']) # In-place updates.
82
+
83
+ @nnx.jit
84
+ def pred_step(model: CNN, batch):
85
+ logits = model(batch['data'])
86
+ return logits.argmax(axis=1)
87
+ ```
@@ -0,0 +1,10 @@
1
+ LICENSE
2
+ README.md
3
+ pyproject.toml
4
+ loaderx/__init__.py
5
+ loaderx/dataloader.py
6
+ loaderx/dataset.py
7
+ loaderx.egg-info/PKG-INFO
8
+ loaderx.egg-info/SOURCES.txt
9
+ loaderx.egg-info/dependency_links.txt
10
+ loaderx.egg-info/top_level.txt
@@ -0,0 +1 @@
1
+ loaderx
@@ -0,0 +1,31 @@
1
+ [build-system]
2
+ requires = ["setuptools", "wheel"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "loaderx"
7
+ dynamic = ["version"]
8
+ description = "Minimal data loader for Flax"
9
+ readme = "README.md"
10
+ requires-python = ">=3.10"
11
+ authors = [
12
+ {name = "Ben0i0d", email = "ben0i0d@foxmail.com"},
13
+ ]
14
+ license = {file = "LICENSE"}
15
+ keywords = ["flax", "python", "dataloader"]
16
+ classifiers = [
17
+ "Development Status :: 3 - Alpha",
18
+ "Intended Audience :: Developers",
19
+ "License :: OSI Approved :: MIT License",
20
+ "Programming Language :: Python :: 3",
21
+ ]
22
+ dependencies = []
23
+
24
+ [tool.setuptools.dynamic]
25
+ version = {attr = "loaderx.__version__"}
26
+
27
+ [project.urls]
28
+ "Homepage" = "https://github.com/eoeair/loaderx"
29
+ "Documentation" = "https://github.com/eoeair/loaderx"
30
+ "Source" = "https://github.com/eoeair/loaderx"
31
+ "Bug Tracker" = "https://github.com/eoeair/loaderx/issues"
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+