lmnr 0.4.12b4__tar.gz → 0.4.13__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. {lmnr-0.4.12b4 → lmnr-0.4.13}/PKG-INFO +72 -105
  2. {lmnr-0.4.12b4 → lmnr-0.4.13}/README.md +71 -105
  3. {lmnr-0.4.12b4 → lmnr-0.4.13}/pyproject.toml +2 -2
  4. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/sdk/evaluations.py +8 -9
  5. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/sdk/laminar.py +14 -33
  6. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/sdk/types.py +6 -2
  7. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/decorators/base.py +14 -4
  8. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tracing/attributes.py +1 -0
  9. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tracing/tracing.py +15 -1
  10. {lmnr-0.4.12b4 → lmnr-0.4.13}/LICENSE +0 -0
  11. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/__init__.py +0 -0
  12. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/cli.py +0 -0
  13. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/sdk/__init__.py +0 -0
  14. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/sdk/decorators.py +0 -0
  15. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/sdk/log.py +0 -0
  16. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/sdk/utils.py +0 -0
  17. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/.flake8 +0 -0
  18. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/.python-version +0 -0
  19. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/__init__.py +0 -0
  20. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/config/__init__.py +0 -0
  21. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/decorators/__init__.py +0 -0
  22. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/instruments.py +0 -0
  23. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/__init__.py +0 -0
  24. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/cassettes/test_association_properties/test_langchain_and_external_association_properties.yaml +0 -0
  25. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/cassettes/test_association_properties/test_langchain_association_properties.yaml +0 -0
  26. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/cassettes/test_manual/test_manual_report.yaml +0 -0
  27. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/cassettes/test_manual/test_resource_attributes.yaml +0 -0
  28. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/cassettes/test_privacy_no_prompts/test_simple_workflow.yaml +0 -0
  29. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/cassettes/test_prompt_management/test_prompt_management.yaml +0 -0
  30. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/cassettes/test_sdk_initialization/test_resource_attributes.yaml +0 -0
  31. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/cassettes/test_tasks/test_task_io_serialization_with_langchain.yaml +0 -0
  32. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/cassettes/test_workflows/test_simple_aworkflow.yaml +0 -0
  33. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/cassettes/test_workflows/test_simple_workflow.yaml +0 -0
  34. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/cassettes/test_workflows/test_streaming_workflow.yaml +0 -0
  35. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/conftest.py +0 -0
  36. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/test_association_properties.py +0 -0
  37. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/test_manual.py +0 -0
  38. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/test_nested_tasks.py +0 -0
  39. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/test_privacy_no_prompts.py +0 -0
  40. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/test_sdk_initialization.py +0 -0
  41. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/test_tasks.py +0 -0
  42. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tests/test_workflows.py +0 -0
  43. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tracing/__init__.py +0 -0
  44. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tracing/content_allow_list.py +0 -0
  45. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/tracing/context_manager.py +0 -0
  46. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/utils/__init__.py +0 -0
  47. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/utils/in_memory_span_exporter.py +0 -0
  48. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/utils/json_encoder.py +0 -0
  49. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/utils/package_check.py +0 -0
  50. {lmnr-0.4.12b4 → lmnr-0.4.13}/src/lmnr/traceloop_sdk/version.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: lmnr
3
- Version: 0.4.12b4
3
+ Version: 0.4.13
4
4
  Summary: Python SDK for Laminar AI
5
5
  License: Apache-2.0
6
6
  Author: lmnr.ai
@@ -59,63 +59,37 @@ Description-Content-Type: text/markdown
59
59
 
60
60
  # Laminar Python
61
61
 
62
- OpenTelemetry log sender for [Laminar](https://github.com/lmnr-ai/lmnr) for Python code.
62
+ Python SDK for [Laminar](https://www.lmnr.ai).
63
+
64
+ [Laminar](https://www.lmnr.ai) is an open-source platform for engineering LLM products. Trace, evaluate, annotate, and analyze LLM data. Bring LLM applications to production with confidence.
65
+
66
+ Check our [open-source repo](https://github.com/lmnr-ai/lmnr) and don't forget to star it ⭐
63
67
 
64
68
  <a href="https://pypi.org/project/lmnr/"> ![PyPI - Version](https://img.shields.io/pypi/v/lmnr?label=lmnr&logo=pypi&logoColor=3775A9) </a>
65
69
  ![PyPI - Downloads](https://img.shields.io/pypi/dm/lmnr)
66
70
  ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/lmnr)
67
71
 
68
72
 
69
-
70
73
  ## Quickstart
71
74
 
72
75
  First, install the package:
73
76
 
74
77
  ```sh
75
- python3 -m venv .myenv
76
- source .myenv/bin/activate # or use your favorite env management tool
77
-
78
78
  pip install lmnr
79
79
  ```
80
80
 
81
- Then, you can initialize Laminar in your main file and instrument your code.
81
+ And then in the code
82
82
 
83
83
  ```python
84
- import os
85
- from openai import OpenAI
86
84
  from lmnr import Laminar as L
87
85
 
88
- L.initialize(
89
- project_api_key=os.environ["LMNR_PROJECT_API_KEY"],
90
- )
91
-
92
- client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
93
-
94
- def poem_writer(topic: str):
95
- prompt = f"write a poem about {topic}"
96
-
97
- # OpenAI calls are automatically instrumented
98
- response = client.chat.completions.create(
99
- model="gpt-4o",
100
- messages=[
101
- {"role": "system", "content": "You are a helpful assistant."},
102
- {"role": "user", "content": prompt},
103
- ],
104
- )
105
- poem = response.choices[0].message.content
106
- return poem
107
-
108
- if __name__ == "__main__":
109
- print(poem_writer("laminar flow"))
110
-
86
+ L.initialize(project_api_key="<PROJECT_API_KEY>")
111
87
  ```
112
88
 
113
- Note that you need to only initialize Laminar once in your application.
114
-
115
- ### Project API key
89
+ This will automatically instrument most of the LLM, Vector DB, and related
90
+ calls with OpenTelemetry-compatible instrumentation.
116
91
 
117
- Get the key from the settings page of your Laminar project ([Learn more](https://docs.lmnr.ai/api-reference/introduction#authentication)).
118
- You can either pass it to `.initialize()` or set it to `.env` at the root of your package with the key `LMNR_PROJECT_API_KEY`.
92
+ Note that you need to only initialize Laminar once in your application.
119
93
 
120
94
  ## Instrumentation
121
95
 
@@ -224,6 +198,67 @@ L.event("topic alignment", topic in poem)
224
198
  L.evaluate_event("excessive_wordiness", "check_wordy", {"text_input": poem})
225
199
  ```
226
200
 
201
+ ## Evaluations
202
+
203
+ ### Quickstart
204
+
205
+ Install the package:
206
+
207
+ ```sh
208
+ pip install lmnr
209
+ ```
210
+
211
+ Create a file named `my_first_eval.py` with the following code:
212
+
213
+ ```python
214
+ from lmnr import evaluate
215
+
216
+ def write_poem(data):
217
+ return f"This is a good poem about {data['topic']}"
218
+
219
+ def contains_poem(output, target):
220
+ return 1 if output in target['poem'] else 0
221
+
222
+ # Evaluation data
223
+ data = [
224
+ {"data": {"topic": "flowers"}, "target": {"poem": "This is a good poem about flowers"}},
225
+ {"data": {"topic": "cars"}, "target": {"poem": "I like cars"}},
226
+ ]
227
+
228
+ evaluate(
229
+ data=data,
230
+ executor=write_poem,
231
+ evaluators={
232
+ "containsPoem": contains_poem
233
+ }
234
+ )
235
+ ```
236
+
237
+ Run the following commands:
238
+
239
+ ```sh
240
+ export LMNR_PROJECT_API_KEY=<YOUR_PROJECT_API_KEY> # get from Laminar project settings
241
+ lmnr eval my_first_eval.py # run in the virtual environment where lmnr is installed
242
+ ```
243
+
244
+ Visit the URL printed in the console to see the results.
245
+
246
+ ### Overview
247
+
248
+ Bring rigor to the development of your LLM applications with evaluations.
249
+
250
+ You can run evaluations locally by providing executor (part of the logic used in your application) and evaluators (numeric scoring functions) to `evaluate` function.
251
+
252
+ `evaluate` takes in the following parameters:
253
+ - `data` – an array of `EvaluationDatapoint` objects, where each `EvaluationDatapoint` has two keys: `target` and `data`, each containing a key-value object. Alternatively, you can pass in dictionaries, and we will instantiate `EvaluationDatapoint`s with pydantic if possible
254
+ - `executor` – the logic you want to evaluate. This function must take `data` as the first argument, and produce any output. It can be both a function or an `async` function.
255
+ - `evaluators` – Dictionary which maps evaluator names to evaluators. Functions that take output of executor as the first argument, `target` as the second argument and produce a numeric scores. Each function can produce either a single number or `dict[str, int|float]` of scores. Each evaluator can be both a function or an `async` function.
256
+ - `name` – optional name for the evaluation. Automatically generated if not provided.
257
+
258
+ \* If you already have the outputs of executors you want to evaluate, you can specify the executor as an identity function, that takes in `data` and returns only needed value(s) from it.
259
+
260
+ [Read docs](https://docs.lmnr.ai/evaluations/introduction) to learn more about evaluations.
261
+
227
262
  ## Laminar pipelines as prompt chain managers
228
263
 
229
264
  You can create Laminar pipelines in the UI and manage chains of LLM calls there.
@@ -258,71 +293,3 @@ PipelineRunResponse(
258
293
  )
259
294
  ```
260
295
 
261
- ## Running offline evaluations on your data
262
-
263
- You can evaluate your code with your own data and send it to Laminar using the `Evaluation` class.
264
-
265
- Evaluation takes in the following parameters:
266
- - `name` – the name of your evaluation. If no such evaluation exists in the project, it will be created. Otherwise, data will be pushed to the existing evaluation
267
- - `data` – an array of `EvaluationDatapoint` objects, where each `EvaluationDatapoint` has two keys: `target` and `data`, each containing a key-value object. Alternatively, you can pass in dictionaries, and we will instantiate `EvaluationDatapoint`s with pydantic if possible
268
- - `executor` – the logic you want to evaluate. This function must take `data` as the first argument, and produce any output. *
269
- - `evaluators` – evaluaton logic. Functions that take output of executor as the first argument, `target` as the second argument and produce a numeric scores. Pass a dict from evaluator name to a function. Each function can produce either a single number or `dict[str, int|float]` of scores.
270
-
271
- \* If you already have the outputs of executors you want to evaluate, you can specify the executor as an identity function, that takes in `data` and returns only needed value(s) from it.
272
-
273
- ### Example code
274
-
275
- ```python
276
- from lmnr import evaluate
277
- from openai import AsyncOpenAI
278
- import asyncio
279
- import os
280
-
281
- openai_client = AsyncOpenAI(api_key=os.environ["OPENAI_API_KEY"])
282
-
283
- async def get_capital(data):
284
- country = data["country"]
285
- response = await openai_client.chat.completions.create(
286
- model="gpt-4o-mini",
287
- messages=[
288
- {"role": "system", "content": "You are a helpful assistant."},
289
- {
290
- "role": "user",
291
- "content": f"What is the capital of {country}? Just name the "
292
- "city and nothing else",
293
- },
294
- ],
295
- )
296
- return response.choices[0].message.content.strip()
297
-
298
-
299
- # Evaluation data
300
- data = [
301
- {"data": {"country": "Canada"}, "target": {"capital": "Ottawa"}},
302
- {"data": {"country": "Germany"}, "target": {"capital": "Berlin"}},
303
- {"data": {"country": "Tanzania"}, "target": {"capital": "Dodoma"}},
304
- ]
305
-
306
-
307
- def correctness(output, target):
308
- return 1 if output == target["capital"] else 0
309
-
310
-
311
- # Create an Evaluation instance
312
- e = evaluate(
313
- name="my-evaluation",
314
- data=data,
315
- executor=get_capital,
316
- evaluators={"correctness": correctness},
317
- project_api_key=os.environ["LMNR_PROJECT_API_KEY"],
318
- )
319
- ```
320
-
321
- ### Running from CLI.
322
-
323
- 1. Make sure `lmnr` is installed in a venv. CLI does not work with a global env
324
- 1. Run `lmnr path/to/my/eval.py`
325
-
326
- ### Running from code
327
-
328
- Simply execute the function, e.g. `python3 path/to/my/eval.py`
@@ -1,62 +1,36 @@
1
1
  # Laminar Python
2
2
 
3
- OpenTelemetry log sender for [Laminar](https://github.com/lmnr-ai/lmnr) for Python code.
3
+ Python SDK for [Laminar](https://www.lmnr.ai).
4
+
5
+ [Laminar](https://www.lmnr.ai) is an open-source platform for engineering LLM products. Trace, evaluate, annotate, and analyze LLM data. Bring LLM applications to production with confidence.
6
+
7
+ Check our [open-source repo](https://github.com/lmnr-ai/lmnr) and don't forget to star it ⭐
4
8
 
5
9
  <a href="https://pypi.org/project/lmnr/"> ![PyPI - Version](https://img.shields.io/pypi/v/lmnr?label=lmnr&logo=pypi&logoColor=3775A9) </a>
6
10
  ![PyPI - Downloads](https://img.shields.io/pypi/dm/lmnr)
7
11
  ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/lmnr)
8
12
 
9
13
 
10
-
11
14
  ## Quickstart
12
15
 
13
16
  First, install the package:
14
17
 
15
18
  ```sh
16
- python3 -m venv .myenv
17
- source .myenv/bin/activate # or use your favorite env management tool
18
-
19
19
  pip install lmnr
20
20
  ```
21
21
 
22
- Then, you can initialize Laminar in your main file and instrument your code.
22
+ And then in the code
23
23
 
24
24
  ```python
25
- import os
26
- from openai import OpenAI
27
25
  from lmnr import Laminar as L
28
26
 
29
- L.initialize(
30
- project_api_key=os.environ["LMNR_PROJECT_API_KEY"],
31
- )
32
-
33
- client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
34
-
35
- def poem_writer(topic: str):
36
- prompt = f"write a poem about {topic}"
37
-
38
- # OpenAI calls are automatically instrumented
39
- response = client.chat.completions.create(
40
- model="gpt-4o",
41
- messages=[
42
- {"role": "system", "content": "You are a helpful assistant."},
43
- {"role": "user", "content": prompt},
44
- ],
45
- )
46
- poem = response.choices[0].message.content
47
- return poem
48
-
49
- if __name__ == "__main__":
50
- print(poem_writer("laminar flow"))
51
-
27
+ L.initialize(project_api_key="<PROJECT_API_KEY>")
52
28
  ```
53
29
 
54
- Note that you need to only initialize Laminar once in your application.
55
-
56
- ### Project API key
30
+ This will automatically instrument most of the LLM, Vector DB, and related
31
+ calls with OpenTelemetry-compatible instrumentation.
57
32
 
58
- Get the key from the settings page of your Laminar project ([Learn more](https://docs.lmnr.ai/api-reference/introduction#authentication)).
59
- You can either pass it to `.initialize()` or set it to `.env` at the root of your package with the key `LMNR_PROJECT_API_KEY`.
33
+ Note that you need to only initialize Laminar once in your application.
60
34
 
61
35
  ## Instrumentation
62
36
 
@@ -165,6 +139,67 @@ L.event("topic alignment", topic in poem)
165
139
  L.evaluate_event("excessive_wordiness", "check_wordy", {"text_input": poem})
166
140
  ```
167
141
 
142
+ ## Evaluations
143
+
144
+ ### Quickstart
145
+
146
+ Install the package:
147
+
148
+ ```sh
149
+ pip install lmnr
150
+ ```
151
+
152
+ Create a file named `my_first_eval.py` with the following code:
153
+
154
+ ```python
155
+ from lmnr import evaluate
156
+
157
+ def write_poem(data):
158
+ return f"This is a good poem about {data['topic']}"
159
+
160
+ def contains_poem(output, target):
161
+ return 1 if output in target['poem'] else 0
162
+
163
+ # Evaluation data
164
+ data = [
165
+ {"data": {"topic": "flowers"}, "target": {"poem": "This is a good poem about flowers"}},
166
+ {"data": {"topic": "cars"}, "target": {"poem": "I like cars"}},
167
+ ]
168
+
169
+ evaluate(
170
+ data=data,
171
+ executor=write_poem,
172
+ evaluators={
173
+ "containsPoem": contains_poem
174
+ }
175
+ )
176
+ ```
177
+
178
+ Run the following commands:
179
+
180
+ ```sh
181
+ export LMNR_PROJECT_API_KEY=<YOUR_PROJECT_API_KEY> # get from Laminar project settings
182
+ lmnr eval my_first_eval.py # run in the virtual environment where lmnr is installed
183
+ ```
184
+
185
+ Visit the URL printed in the console to see the results.
186
+
187
+ ### Overview
188
+
189
+ Bring rigor to the development of your LLM applications with evaluations.
190
+
191
+ You can run evaluations locally by providing executor (part of the logic used in your application) and evaluators (numeric scoring functions) to `evaluate` function.
192
+
193
+ `evaluate` takes in the following parameters:
194
+ - `data` – an array of `EvaluationDatapoint` objects, where each `EvaluationDatapoint` has two keys: `target` and `data`, each containing a key-value object. Alternatively, you can pass in dictionaries, and we will instantiate `EvaluationDatapoint`s with pydantic if possible
195
+ - `executor` – the logic you want to evaluate. This function must take `data` as the first argument, and produce any output. It can be both a function or an `async` function.
196
+ - `evaluators` – Dictionary which maps evaluator names to evaluators. Functions that take output of executor as the first argument, `target` as the second argument and produce a numeric scores. Each function can produce either a single number or `dict[str, int|float]` of scores. Each evaluator can be both a function or an `async` function.
197
+ - `name` – optional name for the evaluation. Automatically generated if not provided.
198
+
199
+ \* If you already have the outputs of executors you want to evaluate, you can specify the executor as an identity function, that takes in `data` and returns only needed value(s) from it.
200
+
201
+ [Read docs](https://docs.lmnr.ai/evaluations/introduction) to learn more about evaluations.
202
+
168
203
  ## Laminar pipelines as prompt chain managers
169
204
 
170
205
  You can create Laminar pipelines in the UI and manage chains of LLM calls there.
@@ -198,72 +233,3 @@ PipelineRunResponse(
198
233
  run_id='53b012d5-5759-48a6-a9c5-0011610e3669'
199
234
  )
200
235
  ```
201
-
202
- ## Running offline evaluations on your data
203
-
204
- You can evaluate your code with your own data and send it to Laminar using the `Evaluation` class.
205
-
206
- Evaluation takes in the following parameters:
207
- - `name` – the name of your evaluation. If no such evaluation exists in the project, it will be created. Otherwise, data will be pushed to the existing evaluation
208
- - `data` – an array of `EvaluationDatapoint` objects, where each `EvaluationDatapoint` has two keys: `target` and `data`, each containing a key-value object. Alternatively, you can pass in dictionaries, and we will instantiate `EvaluationDatapoint`s with pydantic if possible
209
- - `executor` – the logic you want to evaluate. This function must take `data` as the first argument, and produce any output. *
210
- - `evaluators` – evaluaton logic. Functions that take output of executor as the first argument, `target` as the second argument and produce a numeric scores. Pass a dict from evaluator name to a function. Each function can produce either a single number or `dict[str, int|float]` of scores.
211
-
212
- \* If you already have the outputs of executors you want to evaluate, you can specify the executor as an identity function, that takes in `data` and returns only needed value(s) from it.
213
-
214
- ### Example code
215
-
216
- ```python
217
- from lmnr import evaluate
218
- from openai import AsyncOpenAI
219
- import asyncio
220
- import os
221
-
222
- openai_client = AsyncOpenAI(api_key=os.environ["OPENAI_API_KEY"])
223
-
224
- async def get_capital(data):
225
- country = data["country"]
226
- response = await openai_client.chat.completions.create(
227
- model="gpt-4o-mini",
228
- messages=[
229
- {"role": "system", "content": "You are a helpful assistant."},
230
- {
231
- "role": "user",
232
- "content": f"What is the capital of {country}? Just name the "
233
- "city and nothing else",
234
- },
235
- ],
236
- )
237
- return response.choices[0].message.content.strip()
238
-
239
-
240
- # Evaluation data
241
- data = [
242
- {"data": {"country": "Canada"}, "target": {"capital": "Ottawa"}},
243
- {"data": {"country": "Germany"}, "target": {"capital": "Berlin"}},
244
- {"data": {"country": "Tanzania"}, "target": {"capital": "Dodoma"}},
245
- ]
246
-
247
-
248
- def correctness(output, target):
249
- return 1 if output == target["capital"] else 0
250
-
251
-
252
- # Create an Evaluation instance
253
- e = evaluate(
254
- name="my-evaluation",
255
- data=data,
256
- executor=get_capital,
257
- evaluators={"correctness": correctness},
258
- project_api_key=os.environ["LMNR_PROJECT_API_KEY"],
259
- )
260
- ```
261
-
262
- ### Running from CLI.
263
-
264
- 1. Make sure `lmnr` is installed in a venv. CLI does not work with a global env
265
- 1. Run `lmnr path/to/my/eval.py`
266
-
267
- ### Running from code
268
-
269
- Simply execute the function, e.g. `python3 path/to/my/eval.py`
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "lmnr"
3
- version = "0.4.12b4"
3
+ version = "0.4.13"
4
4
  description = "Python SDK for Laminar AI"
5
5
  authors = [
6
6
  { name = "lmnr.ai", email = "founders@lmnr.ai" }
@@ -11,7 +11,7 @@ license = "Apache-2.0"
11
11
 
12
12
  [tool.poetry]
13
13
  name = "lmnr"
14
- version = "0.4.12b4"
14
+ version = "0.4.13"
15
15
  description = "Python SDK for Laminar AI"
16
16
  authors = ["lmnr.ai"]
17
17
  readme = "README.md"
@@ -12,7 +12,6 @@ from ..traceloop_sdk.tracing.attributes import SPAN_TYPE
12
12
 
13
13
  from .laminar import Laminar as L
14
14
  from .types import (
15
- CreateEvaluationResponse,
16
15
  Datapoint,
17
16
  EvaluationResultDatapoint,
18
17
  EvaluatorFunction,
@@ -196,28 +195,28 @@ class Evaluation:
196
195
  )
197
196
 
198
197
  try:
199
- await self.evaluate_in_batches(evaluation)
198
+ await self.evaluate_in_batches(evaluation.id)
200
199
  except Exception as e:
201
200
  L.update_evaluation_status(evaluation.id, "Error")
202
201
  self.reporter.stopWithError(e)
203
202
  self.is_finished = True
204
203
  return
205
204
 
206
- # If we update with status "Finished", we expect averageScores to be not empty
207
- updated_evaluation = L.update_evaluation_status(evaluation.id, "Finished")
208
- self.reporter.stop(updated_evaluation.averageScores)
205
+ update_evaluation_response = L.update_evaluation_status(evaluation.id, "Finished")
206
+ average_scores = update_evaluation_response.stats.averageScores
207
+ self.reporter.stop(average_scores)
209
208
  self.is_finished = True
210
209
 
211
- async def evaluate_in_batches(self, evaluation: CreateEvaluationResponse):
210
+ async def evaluate_in_batches(self, evaluation_id: uuid.UUID):
212
211
  for i in range(0, len(self.data), self.batch_size):
213
212
  batch = (
214
- self.data[i : i + self.batch_size]
213
+ self.data[i: i + self.batch_size]
215
214
  if isinstance(self.data, list)
216
215
  else self.data.slice(i, i + self.batch_size)
217
216
  )
218
217
  try:
219
218
  results = await self._evaluate_batch(batch)
220
- L.post_evaluation_results(evaluation.id, results)
219
+ L.post_evaluation_results(evaluation_id, results)
221
220
  except Exception as e:
222
221
  print(f"Error evaluating batch: {e}")
223
222
  finally:
@@ -252,7 +251,7 @@ class Evaluation:
252
251
  scores: dict[str, Numeric] = {}
253
252
  for evaluator_name, evaluator in self.evaluators.items():
254
253
  with L.start_as_current_span(
255
- "evaluator", input={"output": output, "target": target}
254
+ evaluator_name, input={"output": output, "target": target}
256
255
  ) as evaluator_span:
257
256
  evaluator_span.set_attribute(SPAN_TYPE, SpanType.EVALUATOR.value)
258
257
  value = (
@@ -3,11 +3,9 @@ from opentelemetry import context
3
3
  from opentelemetry.trace import (
4
4
  INVALID_SPAN,
5
5
  get_current_span,
6
- SpanKind,
7
6
  )
8
7
  from opentelemetry.util.types import AttributeValue
9
- from opentelemetry.context.context import Context
10
- from opentelemetry.util import types
8
+ from opentelemetry.context import set_value, attach, detach
11
9
  from lmnr.traceloop_sdk import Traceloop
12
10
  from lmnr.traceloop_sdk.tracing import get_tracer
13
11
  from contextlib import contextmanager
@@ -29,10 +27,12 @@ from lmnr.traceloop_sdk.tracing.attributes import (
29
27
  SESSION_ID,
30
28
  SPAN_INPUT,
31
29
  SPAN_OUTPUT,
30
+ SPAN_PATH,
32
31
  TRACE_TYPE,
33
32
  USER_ID,
34
33
  )
35
34
  from lmnr.traceloop_sdk.tracing.tracing import (
35
+ get_span_path,
36
36
  set_association_properties,
37
37
  update_association_properties,
38
38
  )
@@ -315,14 +315,6 @@ class Laminar:
315
315
  cls,
316
316
  name: str,
317
317
  input: Any = None,
318
- context: Optional[Context] = None,
319
- kind: SpanKind = SpanKind.INTERNAL,
320
- attributes: types.Attributes = None,
321
- links=None,
322
- start_time: Optional[int] = None,
323
- record_exception: bool = True,
324
- set_status_on_exception: bool = True,
325
- end_on_exit: bool = True,
326
318
  ):
327
319
  """Start a new span as the current span. Useful for manual instrumentation.
328
320
  This is the preferred and more stable way to use manual instrumentation.
@@ -337,32 +329,15 @@ class Laminar:
337
329
  name (str): name of the span
338
330
  input (Any, optional): input to the span. Will be sent as an
339
331
  attribute, so must be json serializable. Defaults to None.
340
- context (Optional[Context], optional): context to start the span in.
341
- Defaults to None.
342
- kind (SpanKind, optional): kind of the span. Defaults to SpanKind.INTERNAL.
343
- attributes (types.Attributes, optional): attributes to set on the span.
344
- Defaults to None.
345
- links ([type], optional): links to set on the span. Defaults to None.
346
- start_time (Optional[int], optional): start time of the span.
347
- Defaults to None.
348
- record_exception (bool, optional): whether to record exceptions.
349
- Defaults to True.
350
- set_status_on_exception (bool, optional): whether to set status on exception.
351
- Defaults to True.
352
- end_on_exit (bool, optional): whether to end the span on exit.
353
- Defaults to True.
354
332
  """
355
333
  with get_tracer() as tracer:
334
+ span_path = get_span_path(name)
335
+ ctx = set_value("span_path", span_path)
336
+ ctx_token = attach(set_value("span_path", span_path))
356
337
  with tracer.start_as_current_span(
357
338
  name,
358
- context=context,
359
- kind=kind,
360
- attributes=attributes,
361
- links=links,
362
- start_time=start_time,
363
- record_exception=record_exception,
364
- set_status_on_exception=set_status_on_exception,
365
- end_on_exit=end_on_exit,
339
+ context=ctx,
340
+ attributes={SPAN_PATH: span_path},
366
341
  ) as span:
367
342
  if input is not None:
368
343
  span.set_attribute(
@@ -371,6 +346,12 @@ class Laminar:
371
346
  )
372
347
  yield span
373
348
 
349
+ # TODO: Figure out if this is necessary
350
+ try:
351
+ detach(ctx_token)
352
+ except Exception:
353
+ pass
354
+
374
355
  @classmethod
375
356
  def set_span_output(cls, output: Any = None):
376
357
  """Set the output of the current span. Useful for manual instrumentation.
@@ -117,10 +117,14 @@ class CreateEvaluationResponse(pydantic.BaseModel):
117
117
  status: EvaluationStatus
118
118
  projectId: uuid.UUID
119
119
  metadata: Optional[dict[str, Any]] = None
120
- averageScores: Optional[dict[str, Numeric]] = None
121
120
 
122
121
 
123
- UpdateEvaluationResponse = CreateEvaluationResponse
122
+ class EvaluationStats(pydantic.BaseModel):
123
+ averageScores: dict[str, Numeric]
124
+
125
+
126
+ class UpdateEvaluationResponse(pydantic.BaseModel):
127
+ stats: EvaluationStats
124
128
 
125
129
 
126
130
  class EvaluationResultDatapoint(pydantic.BaseModel):
@@ -10,8 +10,8 @@ from opentelemetry import context as context_api
10
10
 
11
11
  from lmnr.sdk.utils import get_input_from_func_args, is_method
12
12
  from lmnr.traceloop_sdk.tracing import get_tracer
13
- from lmnr.traceloop_sdk.tracing.attributes import SPAN_INPUT, SPAN_OUTPUT
14
- from lmnr.traceloop_sdk.tracing.tracing import TracerWrapper
13
+ from lmnr.traceloop_sdk.tracing.attributes import SPAN_INPUT, SPAN_OUTPUT, SPAN_PATH
14
+ from lmnr.traceloop_sdk.tracing.tracing import TracerWrapper, get_span_path
15
15
  from lmnr.traceloop_sdk.utils.json_encoder import JSONEncoder
16
16
 
17
17
 
@@ -47,7 +47,12 @@ def entity_method(
47
47
 
48
48
  with get_tracer() as tracer:
49
49
  span = tracer.start_span(span_name)
50
- ctx = trace.set_span_in_context(span)
50
+
51
+ span_path = get_span_path(span_name)
52
+ span.set_attribute(SPAN_PATH, span_path)
53
+ ctx = context_api.set_value("span_path", span_path)
54
+
55
+ ctx = trace.set_span_in_context(span, ctx)
51
56
  ctx_token = context_api.attach(ctx)
52
57
 
53
58
  try:
@@ -104,7 +109,12 @@ def aentity_method(
104
109
 
105
110
  with get_tracer() as tracer:
106
111
  span = tracer.start_span(span_name)
107
- ctx = trace.set_span_in_context(span)
112
+
113
+ span_path = get_span_path(span_name)
114
+ span.set_attribute(SPAN_PATH, span_path)
115
+ ctx = context_api.set_value("span_path", span_path)
116
+
117
+ ctx = trace.set_span_in_context(span, ctx)
108
118
  ctx_token = context_api.attach(ctx)
109
119
 
110
120
  try:
@@ -1,6 +1,7 @@
1
1
  SPAN_INPUT = "lmnr.span.input"
2
2
  SPAN_OUTPUT = "lmnr.span.output"
3
3
  SPAN_TYPE = "lmnr.span.type"
4
+ SPAN_PATH = "lmnr.span.path"
4
5
 
5
6
  ASSOCIATION_PROPERTIES = "lmnr.association.properties"
6
7
  SESSION_ID = "session_id"
@@ -25,7 +25,7 @@ from opentelemetry.instrumentation.threading import ThreadingInstrumentor
25
25
 
26
26
  # from lmnr.traceloop_sdk import Telemetry
27
27
  from lmnr.traceloop_sdk.instruments import Instruments
28
- from lmnr.traceloop_sdk.tracing.attributes import ASSOCIATION_PROPERTIES
28
+ from lmnr.traceloop_sdk.tracing.attributes import ASSOCIATION_PROPERTIES, SPAN_PATH
29
29
  from lmnr.traceloop_sdk.tracing.content_allow_list import ContentAllowList
30
30
  from lmnr.traceloop_sdk.utils import is_notebook
31
31
  from lmnr.traceloop_sdk.utils.package_check import is_package_installed
@@ -245,6 +245,14 @@ class TracerWrapper(object):
245
245
  self.flush()
246
246
 
247
247
  def _span_processor_on_start(self, span, parent_context):
248
+ span_path = get_value("span_path")
249
+ if span_path is not None:
250
+ # This is done redundantly here for most decorated functions
251
+ # However, need to do this for auto-instrumented libraries.
252
+ # Then, for auto-instrumented ones, they'll attach
253
+ # the final part of the name to the span on the backend.
254
+ span.set_attribute(SPAN_PATH, span_path)
255
+
248
256
  association_properties = get_value("association_properties")
249
257
  if association_properties is not None:
250
258
  _set_association_properties_attributes(span, association_properties)
@@ -318,6 +326,12 @@ def _set_association_properties_attributes(span, properties: dict) -> None:
318
326
  )
319
327
 
320
328
 
329
+ def get_span_path(span_name: str) -> str:
330
+ current_span_path = get_value("span_path")
331
+ span_path = f"{current_span_path}.{span_name}" if current_span_path else span_name
332
+ return span_path
333
+
334
+
321
335
  def set_managed_prompt_tracing_context(
322
336
  key: str,
323
337
  version: int,
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes