lm-deluge 0.0.9__tar.gz → 0.0.12__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of lm-deluge might be problematic. Click here for more details.
- {lm_deluge-0.0.9/src/lm_deluge.egg-info → lm_deluge-0.0.12}/PKG-INFO +97 -8
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/README.md +95 -7
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/pyproject.toml +2 -1
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/anthropic.py +24 -9
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/base.py +40 -16
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/bedrock.py +26 -13
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/mistral.py +15 -7
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/openai.py +13 -7
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/client.py +17 -8
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/models.py +45 -33
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/prompt.py +87 -1
- lm_deluge-0.0.12/src/lm_deluge/tool.py +280 -0
- lm_deluge-0.0.12/src/lm_deluge/usage.py +114 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12/src/lm_deluge.egg-info}/PKG-INFO +97 -8
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge.egg-info/SOURCES.txt +6 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge.egg-info/requires.txt +1 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/tests/test_all_models.py +7 -7
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/tests/test_bedrock_models.py +19 -66
- lm_deluge-0.0.12/tests/test_mcp_tools.py +221 -0
- lm_deluge-0.0.12/tests/test_prompt_caching.py +261 -0
- lm_deluge-0.0.12/tests/test_real_caching.py +305 -0
- lm_deluge-0.0.12/tests/test_real_caching_bedrock.py +307 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/tests/test_tool_calls.py +3 -3
- lm_deluge-0.0.12/tests/test_tool_from_function.py +150 -0
- lm_deluge-0.0.9/src/lm_deluge/tool.py +0 -87
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/LICENSE +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/setup.cfg +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/__init__.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/__init__.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/common.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/deprecated/bedrock.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/deprecated/cohere.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/deprecated/deepseek.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/deprecated/mistral.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/api_requests/deprecated/vertex.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/cache.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/embed.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/errors.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/gemini_limits.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/image.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/llm_tools/__init__.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/llm_tools/extract.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/llm_tools/score.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/llm_tools/translate.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/rerank.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/sampling_params.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/tracker.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/util/json.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/util/logprobs.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/util/validation.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge/util/xml.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge.egg-info/dependency_links.txt +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/src/lm_deluge.egg-info/top_level.txt +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/tests/test_cache.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/tests/test_image_models.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/tests/test_image_utils.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/tests/test_json_utils.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/tests/test_sampling_params.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/tests/test_translate.py +0 -0
- {lm_deluge-0.0.9 → lm_deluge-0.0.12}/tests/test_xml_utils.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: lm_deluge
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.12
|
|
4
4
|
Summary: Python utility for using LLM API models.
|
|
5
5
|
Author-email: Benjamin Anderson <ben@trytaylor.ai>
|
|
6
6
|
Requires-Python: >=3.10
|
|
@@ -21,6 +21,7 @@ Requires-Dist: bs4
|
|
|
21
21
|
Requires-Dist: lxml
|
|
22
22
|
Requires-Dist: pdf2image
|
|
23
23
|
Requires-Dist: pillow
|
|
24
|
+
Requires-Dist: fastmcp>=2.4
|
|
24
25
|
Requires-Dist: fasttext-wheel
|
|
25
26
|
Requires-Dist: fasttext-langdetect
|
|
26
27
|
Dynamic: license-file
|
|
@@ -32,6 +33,8 @@ Dynamic: license-file
|
|
|
32
33
|
- **Unified client** – Send prompts to all relevant models with a single client.
|
|
33
34
|
- **Massive concurrency with throttling** – Set `max_tokens_per_minute` and `max_requests_per_minute` and let it fly. The client will process as many requests as possible while respecting rate limits and retrying failures.
|
|
34
35
|
- **Spray across models/providers** – Configure a client with multiple models from any provider(s), and sampling weights. The client samples a model for each request.
|
|
36
|
+
- **Tool Use** – Unified API for defining tools for all providers, and creating tools automatically from python functions.
|
|
37
|
+
- **MCP Support** – Instantiate a `Tool` from a local or remote MCP server so that any LLM can use it, whether or not that provider natively supports MCP.
|
|
35
38
|
- **Caching** – Save completions in a local or distributed cache to avoid repeated LLM calls to process the same input.
|
|
36
39
|
- **Convenient message constructor** – No more looking up how to build an Anthropic messages list with images. Our `Conversation` and `Message` classes work great with our client or with the `openai` and `anthropic` packages.
|
|
37
40
|
- **Sync and async APIs** – Use the client from sync or async code.
|
|
@@ -44,7 +47,7 @@ Dynamic: license-file
|
|
|
44
47
|
pip install lm-deluge
|
|
45
48
|
```
|
|
46
49
|
|
|
47
|
-
The package relies on environment variables for API keys. Typical variables include `OPENAI_API_KEY`, `ANTHROPIC_API_KEY`, `COHERE_API_KEY`, `META_API_KEY`, and `GOOGLE_API_KEY`. `LLMClient` will automatically load the `.env` file when imported; we recommend using that to set the environment variables.
|
|
50
|
+
The package relies on environment variables for API keys. Typical variables include `OPENAI_API_KEY`, `ANTHROPIC_API_KEY`, `COHERE_API_KEY`, `META_API_KEY`, and `GOOGLE_API_KEY`. `LLMClient` will automatically load the `.env` file when imported; we recommend using that to set the environment variables. For Bedrock, you'll need to set `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY`.
|
|
48
51
|
|
|
49
52
|
## Quickstart
|
|
50
53
|
|
|
@@ -60,13 +63,13 @@ print(resp[0].completion)
|
|
|
60
63
|
|
|
61
64
|
## Spraying Across Models
|
|
62
65
|
|
|
63
|
-
To distribute your requests across models, just provide a list of more than one model to the constructor. The rate limits for the client apply to the client as a whole, not per-model, so you may want to increase them:
|
|
66
|
+
To distribute your requests across models, just provide a list of more than one model to the constructor. See all available models in `models.py`. The rate limits for the client apply to the client as a whole, not per-model, so you may want to increase them:
|
|
64
67
|
|
|
65
68
|
```python
|
|
66
69
|
from lm_deluge import LLMClient
|
|
67
70
|
|
|
68
71
|
client = LLMClient.basic(
|
|
69
|
-
["gpt-4o-mini", "claude-haiku
|
|
72
|
+
["gpt-4o-mini", "claude-3-haiku"],
|
|
70
73
|
max_requests_per_minute=10_000
|
|
71
74
|
)
|
|
72
75
|
resps = client.process_prompts_sync(
|
|
@@ -81,7 +84,7 @@ API calls can be customized in a few ways.
|
|
|
81
84
|
|
|
82
85
|
1. **Sampling Parameters.** This determines things like structured outputs, maximum completion tokens, nucleus sampling, etc. Provide a custom `SamplingParams` to the `LLMClient` to set temperature, top_p, json_mode, max_new_tokens, and/or reasoning_effort. You can pass 1 `SamplingParams` to use for all models, or a list of `SamplingParams` that's the same length as the list of models. You can also pass many of these arguments directly to `LLMClient.basic` so you don't have to construct an entire `SamplingParams` object.
|
|
83
86
|
2. **Arguments to LLMClient.** This is where you set request timeout, rate limits, model name(s), model weight(s) for distributing requests across models, retries, and caching.
|
|
84
|
-
3. **Arguments to process_prompts.** Per-call, you can set verbosity, whether to display progress, and whether to return just completions (rather than the full APIResponse object).
|
|
87
|
+
3. **Arguments to process_prompts.** Per-call, you can set verbosity, whether to display progress, and whether to return just completions (rather than the full APIResponse object). This is also where you provide tools.
|
|
85
88
|
|
|
86
89
|
Putting it all together:
|
|
87
90
|
|
|
@@ -120,11 +123,97 @@ resps = client.process_prompts_sync([prompt])
|
|
|
120
123
|
|
|
121
124
|
This just works. Images can be local images on disk, URLs, bytes, base64 data URLs... go wild. You can use `Conversation.to_openai` or `Conversation.to_anthropic` to format your messages for the OpenAI or Anthropic clients directly.
|
|
122
125
|
|
|
123
|
-
|
|
126
|
+
See a full multi-turn chat example in `examples/multiturn.md`.
|
|
124
127
|
|
|
125
|
-
|
|
128
|
+
## Tool Use
|
|
126
129
|
|
|
127
|
-
|
|
130
|
+
Define tools from Python functions and use them with any model:
|
|
131
|
+
|
|
132
|
+
```python
|
|
133
|
+
from lm_deluge import LLMClient, Tool
|
|
134
|
+
|
|
135
|
+
def get_weather(city: str) -> str:
|
|
136
|
+
return f"The weather in {city} is sunny and 72°F"
|
|
137
|
+
|
|
138
|
+
tool = Tool.from_function(get_weather)
|
|
139
|
+
client = LLMClient.basic("claude-3-haiku")
|
|
140
|
+
resps = client.process_prompts_sync(
|
|
141
|
+
["What's the weather in Paris?"],
|
|
142
|
+
tools=[tool]
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
# you can iterate over the tool calls in the response automatically
|
|
146
|
+
for tool_call in resps[0].tool_calls:
|
|
147
|
+
print(tool_call.name, tool_call.arguments)
|
|
148
|
+
```
|
|
149
|
+
|
|
150
|
+
You can also automatically instantiate tools from MCP servers. Under the hood, the the constructor connects to the server, asks it what tools it has, and then creates a `Tool` from each of them, *with a built-in `call` and `acall` interface*.
|
|
151
|
+
|
|
152
|
+
```python
|
|
153
|
+
from lm_deluge import LLMClient, Tool
|
|
154
|
+
|
|
155
|
+
# Connect to a local MCP server and get all of its tools
|
|
156
|
+
filesystem_tools = Tool.from_mcp(
|
|
157
|
+
"filesystem",
|
|
158
|
+
command="npx",
|
|
159
|
+
args=["-y", "@modelcontextprotocol/server-filesystem", "/path/to/directory"]
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
# or load ALL the tools from a Claude Desktop like config
|
|
163
|
+
config = {
|
|
164
|
+
"mcpServers": {
|
|
165
|
+
"exa": {
|
|
166
|
+
"url": f"https://mcp.exa.ai/mcp?exaApiKey={os.getenv('EXA_API_KEY')}"
|
|
167
|
+
},
|
|
168
|
+
"zapier": {
|
|
169
|
+
"url": f"https://mcp.zapier.com/api/mcp/s/{os.getenv('ZAPIER_MCP_SECRET')}/mcp"
|
|
170
|
+
}
|
|
171
|
+
}
|
|
172
|
+
}
|
|
173
|
+
all_tools = Tool.from_mcp_config(config)
|
|
174
|
+
|
|
175
|
+
# let the model use the tools
|
|
176
|
+
client = LLMClient.basic("gpt-4o-mini")
|
|
177
|
+
resps = client.process_prompts_sync(
|
|
178
|
+
["List the files in the current directory"],
|
|
179
|
+
tools=tools
|
|
180
|
+
)
|
|
181
|
+
|
|
182
|
+
# call the tools
|
|
183
|
+
for tool_call in resps[0].tool_calls:
|
|
184
|
+
# this is dumb sorry will make it better
|
|
185
|
+
tool_to_call = [x for x in tools if x.name == tool_call.name][0]
|
|
186
|
+
tool_to_call.call(**tool_call.arguments) # in async code, use .acall()
|
|
187
|
+
```
|
|
188
|
+
|
|
189
|
+
### Prompt Caching (Anthropic)
|
|
190
|
+
|
|
191
|
+
For Anthropic models, you can use prompt caching to reduce costs and latency for repeated context. This uses Anthropic's server-side prompt caching. Other providers like OpenAI and Google do this automatically, but Anthropic requires you to manually set cache-control on messages. You can do this in lm-deluge with a simple "cache" argument to `process_prompts_sync` or `process_prompts_async`:
|
|
192
|
+
|
|
193
|
+
```python
|
|
194
|
+
from lm_deluge import LLMClient, Conversation, Message
|
|
195
|
+
|
|
196
|
+
# Create a conversation with system message
|
|
197
|
+
conv = (
|
|
198
|
+
Conversation.system("You are an expert Python developer with deep knowledge of async programming.")
|
|
199
|
+
.add(Message.user("How do I use asyncio.gather?"))
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
# Use prompt caching to cache system message and tools
|
|
203
|
+
client = LLMClient.basic("claude-3-5-sonnet")
|
|
204
|
+
resps = client.process_prompts_sync(
|
|
205
|
+
[conv],
|
|
206
|
+
cache="system_and_tools" # Cache system message and any tools
|
|
207
|
+
)
|
|
208
|
+
```
|
|
209
|
+
|
|
210
|
+
Available cache patterns: `"system_and_tools"`, `"tools_only"`, `"last_user_message"`, `"last_2_user_messages"`, `"last_3_user_messages"`.
|
|
211
|
+
|
|
212
|
+
## Local Caching
|
|
213
|
+
|
|
214
|
+
Besides caching from model providers (which provides cache reads at a discount, but not for free) `lm_deluge.cache` includes LevelDB, SQLite and custom dictionary based caches to cache prompts locally. Pass an instance via `LLMClient(..., cache=my_cache)` and previously seen prompts will not be re‑sent across different `process_prompts_[...]` calls.
|
|
215
|
+
|
|
216
|
+
**IMPORTANT:** Caching does not currently work for prompts in the SAME batch. That is, if you call `process_prompts_sync` with the same prompt 100 times, there will be 0 cache hits. If you call `process_prompts_sync` a *second* time with those same 100 prompts, all 100 will be cache hits. The local cache is intended to be persistent and help you save costs across many invocations, but it can't help with a single batch-inference session (yet!).
|
|
128
217
|
|
|
129
218
|
## Asynchronous Client
|
|
130
219
|
Use this in asynchronous code, or in a Jupyter notebook. If you try to use the sync client in a Jupyter notebook, you'll have to use `nest-asyncio`, because internally the sync client uses async code. Don't do it! Just use the async client!
|
|
@@ -5,6 +5,8 @@
|
|
|
5
5
|
- **Unified client** – Send prompts to all relevant models with a single client.
|
|
6
6
|
- **Massive concurrency with throttling** – Set `max_tokens_per_minute` and `max_requests_per_minute` and let it fly. The client will process as many requests as possible while respecting rate limits and retrying failures.
|
|
7
7
|
- **Spray across models/providers** – Configure a client with multiple models from any provider(s), and sampling weights. The client samples a model for each request.
|
|
8
|
+
- **Tool Use** – Unified API for defining tools for all providers, and creating tools automatically from python functions.
|
|
9
|
+
- **MCP Support** – Instantiate a `Tool` from a local or remote MCP server so that any LLM can use it, whether or not that provider natively supports MCP.
|
|
8
10
|
- **Caching** – Save completions in a local or distributed cache to avoid repeated LLM calls to process the same input.
|
|
9
11
|
- **Convenient message constructor** – No more looking up how to build an Anthropic messages list with images. Our `Conversation` and `Message` classes work great with our client or with the `openai` and `anthropic` packages.
|
|
10
12
|
- **Sync and async APIs** – Use the client from sync or async code.
|
|
@@ -17,7 +19,7 @@
|
|
|
17
19
|
pip install lm-deluge
|
|
18
20
|
```
|
|
19
21
|
|
|
20
|
-
The package relies on environment variables for API keys. Typical variables include `OPENAI_API_KEY`, `ANTHROPIC_API_KEY`, `COHERE_API_KEY`, `META_API_KEY`, and `GOOGLE_API_KEY`. `LLMClient` will automatically load the `.env` file when imported; we recommend using that to set the environment variables.
|
|
22
|
+
The package relies on environment variables for API keys. Typical variables include `OPENAI_API_KEY`, `ANTHROPIC_API_KEY`, `COHERE_API_KEY`, `META_API_KEY`, and `GOOGLE_API_KEY`. `LLMClient` will automatically load the `.env` file when imported; we recommend using that to set the environment variables. For Bedrock, you'll need to set `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY`.
|
|
21
23
|
|
|
22
24
|
## Quickstart
|
|
23
25
|
|
|
@@ -33,13 +35,13 @@ print(resp[0].completion)
|
|
|
33
35
|
|
|
34
36
|
## Spraying Across Models
|
|
35
37
|
|
|
36
|
-
To distribute your requests across models, just provide a list of more than one model to the constructor. The rate limits for the client apply to the client as a whole, not per-model, so you may want to increase them:
|
|
38
|
+
To distribute your requests across models, just provide a list of more than one model to the constructor. See all available models in `models.py`. The rate limits for the client apply to the client as a whole, not per-model, so you may want to increase them:
|
|
37
39
|
|
|
38
40
|
```python
|
|
39
41
|
from lm_deluge import LLMClient
|
|
40
42
|
|
|
41
43
|
client = LLMClient.basic(
|
|
42
|
-
["gpt-4o-mini", "claude-haiku
|
|
44
|
+
["gpt-4o-mini", "claude-3-haiku"],
|
|
43
45
|
max_requests_per_minute=10_000
|
|
44
46
|
)
|
|
45
47
|
resps = client.process_prompts_sync(
|
|
@@ -54,7 +56,7 @@ API calls can be customized in a few ways.
|
|
|
54
56
|
|
|
55
57
|
1. **Sampling Parameters.** This determines things like structured outputs, maximum completion tokens, nucleus sampling, etc. Provide a custom `SamplingParams` to the `LLMClient` to set temperature, top_p, json_mode, max_new_tokens, and/or reasoning_effort. You can pass 1 `SamplingParams` to use for all models, or a list of `SamplingParams` that's the same length as the list of models. You can also pass many of these arguments directly to `LLMClient.basic` so you don't have to construct an entire `SamplingParams` object.
|
|
56
58
|
2. **Arguments to LLMClient.** This is where you set request timeout, rate limits, model name(s), model weight(s) for distributing requests across models, retries, and caching.
|
|
57
|
-
3. **Arguments to process_prompts.** Per-call, you can set verbosity, whether to display progress, and whether to return just completions (rather than the full APIResponse object).
|
|
59
|
+
3. **Arguments to process_prompts.** Per-call, you can set verbosity, whether to display progress, and whether to return just completions (rather than the full APIResponse object). This is also where you provide tools.
|
|
58
60
|
|
|
59
61
|
Putting it all together:
|
|
60
62
|
|
|
@@ -93,11 +95,97 @@ resps = client.process_prompts_sync([prompt])
|
|
|
93
95
|
|
|
94
96
|
This just works. Images can be local images on disk, URLs, bytes, base64 data URLs... go wild. You can use `Conversation.to_openai` or `Conversation.to_anthropic` to format your messages for the OpenAI or Anthropic clients directly.
|
|
95
97
|
|
|
96
|
-
|
|
98
|
+
See a full multi-turn chat example in `examples/multiturn.md`.
|
|
97
99
|
|
|
98
|
-
|
|
100
|
+
## Tool Use
|
|
99
101
|
|
|
100
|
-
|
|
102
|
+
Define tools from Python functions and use them with any model:
|
|
103
|
+
|
|
104
|
+
```python
|
|
105
|
+
from lm_deluge import LLMClient, Tool
|
|
106
|
+
|
|
107
|
+
def get_weather(city: str) -> str:
|
|
108
|
+
return f"The weather in {city} is sunny and 72°F"
|
|
109
|
+
|
|
110
|
+
tool = Tool.from_function(get_weather)
|
|
111
|
+
client = LLMClient.basic("claude-3-haiku")
|
|
112
|
+
resps = client.process_prompts_sync(
|
|
113
|
+
["What's the weather in Paris?"],
|
|
114
|
+
tools=[tool]
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
# you can iterate over the tool calls in the response automatically
|
|
118
|
+
for tool_call in resps[0].tool_calls:
|
|
119
|
+
print(tool_call.name, tool_call.arguments)
|
|
120
|
+
```
|
|
121
|
+
|
|
122
|
+
You can also automatically instantiate tools from MCP servers. Under the hood, the the constructor connects to the server, asks it what tools it has, and then creates a `Tool` from each of them, *with a built-in `call` and `acall` interface*.
|
|
123
|
+
|
|
124
|
+
```python
|
|
125
|
+
from lm_deluge import LLMClient, Tool
|
|
126
|
+
|
|
127
|
+
# Connect to a local MCP server and get all of its tools
|
|
128
|
+
filesystem_tools = Tool.from_mcp(
|
|
129
|
+
"filesystem",
|
|
130
|
+
command="npx",
|
|
131
|
+
args=["-y", "@modelcontextprotocol/server-filesystem", "/path/to/directory"]
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
# or load ALL the tools from a Claude Desktop like config
|
|
135
|
+
config = {
|
|
136
|
+
"mcpServers": {
|
|
137
|
+
"exa": {
|
|
138
|
+
"url": f"https://mcp.exa.ai/mcp?exaApiKey={os.getenv('EXA_API_KEY')}"
|
|
139
|
+
},
|
|
140
|
+
"zapier": {
|
|
141
|
+
"url": f"https://mcp.zapier.com/api/mcp/s/{os.getenv('ZAPIER_MCP_SECRET')}/mcp"
|
|
142
|
+
}
|
|
143
|
+
}
|
|
144
|
+
}
|
|
145
|
+
all_tools = Tool.from_mcp_config(config)
|
|
146
|
+
|
|
147
|
+
# let the model use the tools
|
|
148
|
+
client = LLMClient.basic("gpt-4o-mini")
|
|
149
|
+
resps = client.process_prompts_sync(
|
|
150
|
+
["List the files in the current directory"],
|
|
151
|
+
tools=tools
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
# call the tools
|
|
155
|
+
for tool_call in resps[0].tool_calls:
|
|
156
|
+
# this is dumb sorry will make it better
|
|
157
|
+
tool_to_call = [x for x in tools if x.name == tool_call.name][0]
|
|
158
|
+
tool_to_call.call(**tool_call.arguments) # in async code, use .acall()
|
|
159
|
+
```
|
|
160
|
+
|
|
161
|
+
### Prompt Caching (Anthropic)
|
|
162
|
+
|
|
163
|
+
For Anthropic models, you can use prompt caching to reduce costs and latency for repeated context. This uses Anthropic's server-side prompt caching. Other providers like OpenAI and Google do this automatically, but Anthropic requires you to manually set cache-control on messages. You can do this in lm-deluge with a simple "cache" argument to `process_prompts_sync` or `process_prompts_async`:
|
|
164
|
+
|
|
165
|
+
```python
|
|
166
|
+
from lm_deluge import LLMClient, Conversation, Message
|
|
167
|
+
|
|
168
|
+
# Create a conversation with system message
|
|
169
|
+
conv = (
|
|
170
|
+
Conversation.system("You are an expert Python developer with deep knowledge of async programming.")
|
|
171
|
+
.add(Message.user("How do I use asyncio.gather?"))
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
# Use prompt caching to cache system message and tools
|
|
175
|
+
client = LLMClient.basic("claude-3-5-sonnet")
|
|
176
|
+
resps = client.process_prompts_sync(
|
|
177
|
+
[conv],
|
|
178
|
+
cache="system_and_tools" # Cache system message and any tools
|
|
179
|
+
)
|
|
180
|
+
```
|
|
181
|
+
|
|
182
|
+
Available cache patterns: `"system_and_tools"`, `"tools_only"`, `"last_user_message"`, `"last_2_user_messages"`, `"last_3_user_messages"`.
|
|
183
|
+
|
|
184
|
+
## Local Caching
|
|
185
|
+
|
|
186
|
+
Besides caching from model providers (which provides cache reads at a discount, but not for free) `lm_deluge.cache` includes LevelDB, SQLite and custom dictionary based caches to cache prompts locally. Pass an instance via `LLMClient(..., cache=my_cache)` and previously seen prompts will not be re‑sent across different `process_prompts_[...]` calls.
|
|
187
|
+
|
|
188
|
+
**IMPORTANT:** Caching does not currently work for prompts in the SAME batch. That is, if you call `process_prompts_sync` with the same prompt 100 times, there will be 0 cache hits. If you call `process_prompts_sync` a *second* time with those same 100 prompts, all 100 will be cache hits. The local cache is intended to be persistent and help you save costs across many invocations, but it can't help with a single batch-inference session (yet!).
|
|
101
189
|
|
|
102
190
|
## Asynchronous Client
|
|
103
191
|
Use this in asynchronous code, or in a Jupyter notebook. If you try to use the sync client in a Jupyter notebook, you'll have to use `nest-asyncio`, because internally the sync client uses async code. Don't do it! Just use the async client!
|
|
@@ -3,7 +3,7 @@ requires = ["setuptools", "wheel"]
|
|
|
3
3
|
|
|
4
4
|
[project]
|
|
5
5
|
name = "lm_deluge"
|
|
6
|
-
version = "0.0.
|
|
6
|
+
version = "0.0.12"
|
|
7
7
|
authors = [{ name = "Benjamin Anderson", email = "ben@trytaylor.ai" }]
|
|
8
8
|
description = "Python utility for using LLM API models."
|
|
9
9
|
readme = "README.md"
|
|
@@ -27,6 +27,7 @@ dependencies = [
|
|
|
27
27
|
"lxml",
|
|
28
28
|
"pdf2image",
|
|
29
29
|
"pillow",
|
|
30
|
+
"fastmcp>=2.4",
|
|
30
31
|
"fasttext-wheel",
|
|
31
32
|
"fasttext-langdetect",
|
|
32
33
|
]
|
|
@@ -6,7 +6,15 @@ import warnings
|
|
|
6
6
|
from tqdm import tqdm
|
|
7
7
|
from typing import Callable
|
|
8
8
|
|
|
9
|
-
from lm_deluge.prompt import
|
|
9
|
+
from lm_deluge.prompt import (
|
|
10
|
+
Conversation,
|
|
11
|
+
Message,
|
|
12
|
+
Text,
|
|
13
|
+
ToolCall,
|
|
14
|
+
Thinking,
|
|
15
|
+
CachePattern,
|
|
16
|
+
)
|
|
17
|
+
from lm_deluge.usage import Usage
|
|
10
18
|
from .base import APIRequestBase, APIResponse
|
|
11
19
|
|
|
12
20
|
from ..tracker import StatusTracker
|
|
@@ -35,6 +43,7 @@ class AnthropicRequest(APIRequestBase):
|
|
|
35
43
|
all_model_names: list[str] | None = None,
|
|
36
44
|
all_sampling_params: list[SamplingParams] | None = None,
|
|
37
45
|
tools: list | None = None,
|
|
46
|
+
cache: CachePattern | None = None,
|
|
38
47
|
):
|
|
39
48
|
super().__init__(
|
|
40
49
|
task_id=task_id,
|
|
@@ -52,11 +61,16 @@ class AnthropicRequest(APIRequestBase):
|
|
|
52
61
|
all_model_names=all_model_names,
|
|
53
62
|
all_sampling_params=all_sampling_params,
|
|
54
63
|
tools=tools,
|
|
64
|
+
cache=cache,
|
|
55
65
|
)
|
|
56
66
|
self.model = APIModel.from_registry(model_name)
|
|
57
67
|
self.url = f"{self.model.api_base}/messages"
|
|
58
68
|
|
|
59
|
-
|
|
69
|
+
# Lock images as bytes if caching is enabled
|
|
70
|
+
if cache is not None:
|
|
71
|
+
prompt.lock_images_as_bytes()
|
|
72
|
+
|
|
73
|
+
self.system_message, messages = prompt.to_anthropic(cache_pattern=cache)
|
|
60
74
|
self.request_header = {
|
|
61
75
|
"x-api-key": os.getenv(self.model.api_key_env_var),
|
|
62
76
|
"anthropic-version": "2023-06-01",
|
|
@@ -97,15 +111,18 @@ class AnthropicRequest(APIRequestBase):
|
|
|
97
111
|
if self.system_message is not None:
|
|
98
112
|
self.request_json["system"] = self.system_message
|
|
99
113
|
if tools:
|
|
100
|
-
|
|
114
|
+
tool_definitions = [tool.dump_for("anthropic") for tool in tools]
|
|
115
|
+
# Add cache control to last tool if tools_only caching is specified
|
|
116
|
+
if cache == "tools_only" and tool_definitions:
|
|
117
|
+
tool_definitions[-1]["cache_control"] = {"type": "ephemeral"}
|
|
118
|
+
self.request_json["tools"] = tool_definitions
|
|
101
119
|
|
|
102
120
|
async def handle_response(self, http_response: ClientResponse) -> APIResponse:
|
|
103
121
|
is_error = False
|
|
104
122
|
error_message = None
|
|
105
123
|
thinking = None
|
|
106
124
|
content = None
|
|
107
|
-
|
|
108
|
-
output_tokens = None
|
|
125
|
+
usage = None
|
|
109
126
|
status_code = http_response.status
|
|
110
127
|
mimetype = http_response.headers.get("Content-Type", None)
|
|
111
128
|
rate_limits = {}
|
|
@@ -143,8 +160,7 @@ class AnthropicRequest(APIRequestBase):
|
|
|
143
160
|
)
|
|
144
161
|
|
|
145
162
|
content = Message("assistant", parts)
|
|
146
|
-
|
|
147
|
-
output_tokens = data["usage"]["output_tokens"]
|
|
163
|
+
usage = Usage.from_anthropic_usage(data["usage"])
|
|
148
164
|
except Exception as e:
|
|
149
165
|
is_error = True
|
|
150
166
|
error_message = (
|
|
@@ -182,6 +198,5 @@ class AnthropicRequest(APIRequestBase):
|
|
|
182
198
|
thinking=thinking,
|
|
183
199
|
model_internal=self.model_name,
|
|
184
200
|
sampling_params=self.sampling_params,
|
|
185
|
-
|
|
186
|
-
output_tokens=output_tokens,
|
|
201
|
+
usage=usage,
|
|
187
202
|
)
|
|
@@ -7,7 +7,8 @@ from dataclasses import dataclass
|
|
|
7
7
|
from abc import ABC, abstractmethod
|
|
8
8
|
from typing import Callable
|
|
9
9
|
|
|
10
|
-
from lm_deluge.prompt import Conversation, Message
|
|
10
|
+
from lm_deluge.prompt import Conversation, Message, CachePattern
|
|
11
|
+
from lm_deluge.usage import Usage
|
|
11
12
|
|
|
12
13
|
from ..tracker import StatusTracker
|
|
13
14
|
from ..sampling_params import SamplingParams
|
|
@@ -29,9 +30,8 @@ class APIResponse:
|
|
|
29
30
|
is_error: bool | None
|
|
30
31
|
error_message: str | None
|
|
31
32
|
|
|
32
|
-
# completion information
|
|
33
|
-
|
|
34
|
-
output_tokens: int | None
|
|
33
|
+
# completion information - unified usage tracking
|
|
34
|
+
usage: Usage | None = None
|
|
35
35
|
|
|
36
36
|
# response content - structured format
|
|
37
37
|
content: Message | None = None
|
|
@@ -56,6 +56,26 @@ class APIResponse:
|
|
|
56
56
|
return self.content.completion
|
|
57
57
|
return None
|
|
58
58
|
|
|
59
|
+
@property
|
|
60
|
+
def input_tokens(self) -> int | None:
|
|
61
|
+
"""Get input tokens from usage object."""
|
|
62
|
+
return self.usage.input_tokens if self.usage else None
|
|
63
|
+
|
|
64
|
+
@property
|
|
65
|
+
def output_tokens(self) -> int | None:
|
|
66
|
+
"""Get output tokens from usage object."""
|
|
67
|
+
return self.usage.output_tokens if self.usage else None
|
|
68
|
+
|
|
69
|
+
@property
|
|
70
|
+
def cache_read_tokens(self) -> int | None:
|
|
71
|
+
"""Get cache read tokens from usage object."""
|
|
72
|
+
return self.usage.cache_read_tokens if self.usage else None
|
|
73
|
+
|
|
74
|
+
@property
|
|
75
|
+
def cache_write_tokens(self) -> int | None:
|
|
76
|
+
"""Get cache write tokens from usage object."""
|
|
77
|
+
return self.usage.cache_write_tokens if self.usage else None
|
|
78
|
+
|
|
59
79
|
def __post_init__(self):
|
|
60
80
|
# calculate cost & get external model name
|
|
61
81
|
self.id = int(self.id)
|
|
@@ -63,14 +83,13 @@ class APIResponse:
|
|
|
63
83
|
self.model_external = api_model.name
|
|
64
84
|
self.cost = None
|
|
65
85
|
if (
|
|
66
|
-
self.
|
|
67
|
-
and self.output_tokens is not None
|
|
86
|
+
self.usage is not None
|
|
68
87
|
and api_model.input_cost is not None
|
|
69
88
|
and api_model.output_cost is not None
|
|
70
89
|
):
|
|
71
90
|
self.cost = (
|
|
72
|
-
self.input_tokens * api_model.input_cost / 1e6
|
|
73
|
-
+ self.output_tokens * api_model.output_cost / 1e6
|
|
91
|
+
self.usage.input_tokens * api_model.input_cost / 1e6
|
|
92
|
+
+ self.usage.output_tokens * api_model.output_cost / 1e6
|
|
74
93
|
)
|
|
75
94
|
elif self.content is not None and self.completion is not None:
|
|
76
95
|
print(
|
|
@@ -90,8 +109,7 @@ class APIResponse:
|
|
|
90
109
|
"error_message": self.error_message,
|
|
91
110
|
"completion": self.completion, # computed property
|
|
92
111
|
"content": self.content.to_log() if self.content else None,
|
|
93
|
-
"
|
|
94
|
-
"output_tokens": self.output_tokens,
|
|
112
|
+
"usage": self.usage.to_dict() if self.usage else None,
|
|
95
113
|
"finish_reason": self.finish_reason,
|
|
96
114
|
"cost": self.cost,
|
|
97
115
|
}
|
|
@@ -107,6 +125,10 @@ class APIResponse:
|
|
|
107
125
|
# Backward compatibility: create a Message with just text
|
|
108
126
|
content = Message.ai(data["completion"])
|
|
109
127
|
|
|
128
|
+
usage = None
|
|
129
|
+
if "usage" in data and data["usage"] is not None:
|
|
130
|
+
usage = Usage.from_dict(data["usage"])
|
|
131
|
+
|
|
110
132
|
return cls(
|
|
111
133
|
id=data.get("id", random.randint(0, 1_000_000_000)),
|
|
112
134
|
model_internal=data["model_internal"],
|
|
@@ -115,8 +137,7 @@ class APIResponse:
|
|
|
115
137
|
status_code=data["status_code"],
|
|
116
138
|
is_error=data["is_error"],
|
|
117
139
|
error_message=data["error_message"],
|
|
118
|
-
|
|
119
|
-
output_tokens=data["output_tokens"],
|
|
140
|
+
usage=usage,
|
|
120
141
|
content=content,
|
|
121
142
|
thinking=data.get("thinking"),
|
|
122
143
|
model_external=data.get("model_external"),
|
|
@@ -168,6 +189,7 @@ class APIRequestBase(ABC):
|
|
|
168
189
|
all_model_names: list[str] | None = None,
|
|
169
190
|
all_sampling_params: list[SamplingParams] | None = None,
|
|
170
191
|
tools: list | None = None,
|
|
192
|
+
cache: CachePattern | None = None,
|
|
171
193
|
):
|
|
172
194
|
if all_model_names is None:
|
|
173
195
|
raise ValueError("all_model_names must be provided.")
|
|
@@ -190,6 +212,7 @@ class APIRequestBase(ABC):
|
|
|
190
212
|
self.all_model_names = all_model_names
|
|
191
213
|
self.all_sampling_params = all_sampling_params
|
|
192
214
|
self.tools = tools
|
|
215
|
+
self.cache: CachePattern | None = cache
|
|
193
216
|
self.result = [] # list of APIResponse objects from each attempt
|
|
194
217
|
|
|
195
218
|
# these should be set in the __init__ of the subclass
|
|
@@ -280,6 +303,7 @@ class APIRequestBase(ABC):
|
|
|
280
303
|
all_model_names=self.all_model_names,
|
|
281
304
|
all_sampling_params=self.all_sampling_params,
|
|
282
305
|
tools=self.tools,
|
|
306
|
+
cache=self.cache,
|
|
283
307
|
)
|
|
284
308
|
# PROBLEM: new request is never put into results array, so we can't get the result.
|
|
285
309
|
self.retry_queue.put_nowait(new_request)
|
|
@@ -323,8 +347,7 @@ class APIRequestBase(ABC):
|
|
|
323
347
|
is_error=True,
|
|
324
348
|
error_message="Request timed out (terminated by client).",
|
|
325
349
|
content=None,
|
|
326
|
-
|
|
327
|
-
output_tokens=None,
|
|
350
|
+
usage=None,
|
|
328
351
|
)
|
|
329
352
|
)
|
|
330
353
|
self.handle_error(create_new_request=False)
|
|
@@ -341,8 +364,7 @@ class APIRequestBase(ABC):
|
|
|
341
364
|
is_error=True,
|
|
342
365
|
error_message=f"Unexpected {type(e).__name__}: {str(e) or 'No message.'}",
|
|
343
366
|
content=None,
|
|
344
|
-
|
|
345
|
-
output_tokens=None,
|
|
367
|
+
usage=None,
|
|
346
368
|
)
|
|
347
369
|
)
|
|
348
370
|
# maybe consider making True?
|
|
@@ -370,6 +392,7 @@ def create_api_request(
|
|
|
370
392
|
all_model_names: list[str] | None = None,
|
|
371
393
|
all_sampling_params: list[SamplingParams] | None = None,
|
|
372
394
|
tools: list | None = None,
|
|
395
|
+
cache: CachePattern | None = None,
|
|
373
396
|
) -> APIRequestBase:
|
|
374
397
|
from .common import CLASSES # circular import so made it lazy, does this work?
|
|
375
398
|
|
|
@@ -395,5 +418,6 @@ def create_api_request(
|
|
|
395
418
|
all_model_names=all_model_names,
|
|
396
419
|
all_sampling_params=all_sampling_params,
|
|
397
420
|
tools=tools,
|
|
421
|
+
cache=cache,
|
|
398
422
|
**kwargs,
|
|
399
423
|
)
|
|
@@ -12,7 +12,15 @@ except ImportError:
|
|
|
12
12
|
"aws4auth is required for bedrock support. Install with: pip install requests-aws4auth"
|
|
13
13
|
)
|
|
14
14
|
|
|
15
|
-
from lm_deluge.prompt import
|
|
15
|
+
from lm_deluge.prompt import (
|
|
16
|
+
Conversation,
|
|
17
|
+
Message,
|
|
18
|
+
Text,
|
|
19
|
+
ToolCall,
|
|
20
|
+
Thinking,
|
|
21
|
+
CachePattern,
|
|
22
|
+
)
|
|
23
|
+
from lm_deluge.usage import Usage
|
|
16
24
|
from .base import APIRequestBase, APIResponse
|
|
17
25
|
|
|
18
26
|
from ..tracker import StatusTracker
|
|
@@ -38,6 +46,7 @@ class BedrockRequest(APIRequestBase):
|
|
|
38
46
|
all_model_names: list[str] | None = None,
|
|
39
47
|
all_sampling_params: list[SamplingParams] | None = None,
|
|
40
48
|
tools: list | None = None,
|
|
49
|
+
cache: CachePattern | None = None,
|
|
41
50
|
):
|
|
42
51
|
super().__init__(
|
|
43
52
|
task_id=task_id,
|
|
@@ -55,8 +64,13 @@ class BedrockRequest(APIRequestBase):
|
|
|
55
64
|
all_model_names=all_model_names,
|
|
56
65
|
all_sampling_params=all_sampling_params,
|
|
57
66
|
tools=tools,
|
|
67
|
+
cache=cache,
|
|
58
68
|
)
|
|
59
69
|
|
|
70
|
+
# Lock images as bytes if caching is enabled
|
|
71
|
+
if cache is not None:
|
|
72
|
+
prompt.lock_images_as_bytes()
|
|
73
|
+
|
|
60
74
|
self.model = APIModel.from_registry(model_name)
|
|
61
75
|
|
|
62
76
|
# Get AWS credentials from environment
|
|
@@ -87,7 +101,7 @@ class BedrockRequest(APIRequestBase):
|
|
|
87
101
|
self.url = f"https://bedrock-runtime.{self.region}.amazonaws.com/model/{self.model.name}/invoke"
|
|
88
102
|
|
|
89
103
|
# Convert prompt to Anthropic format for bedrock
|
|
90
|
-
self.system_message, messages = prompt.to_anthropic()
|
|
104
|
+
self.system_message, messages = prompt.to_anthropic(cache_pattern=cache)
|
|
91
105
|
|
|
92
106
|
# Prepare request body in Anthropic's bedrock format
|
|
93
107
|
self.request_json = {
|
|
@@ -102,7 +116,11 @@ class BedrockRequest(APIRequestBase):
|
|
|
102
116
|
self.request_json["system"] = self.system_message
|
|
103
117
|
|
|
104
118
|
if tools:
|
|
105
|
-
|
|
119
|
+
tool_definitions = [tool.dump_for("anthropic") for tool in tools]
|
|
120
|
+
# Add cache control to last tool if tools_only caching is specified
|
|
121
|
+
if cache == "tools_only" and tool_definitions:
|
|
122
|
+
tool_definitions[-1]["cache_control"] = {"type": "ephemeral"}
|
|
123
|
+
self.request_json["tools"] = tool_definitions
|
|
106
124
|
|
|
107
125
|
# Setup AWS4Auth for signing
|
|
108
126
|
self.auth = AWS4Auth(
|
|
@@ -179,8 +197,7 @@ class BedrockRequest(APIRequestBase):
|
|
|
179
197
|
is_error=True,
|
|
180
198
|
error_message="Request timed out (terminated by client).",
|
|
181
199
|
content=None,
|
|
182
|
-
|
|
183
|
-
output_tokens=None,
|
|
200
|
+
usage=None,
|
|
184
201
|
)
|
|
185
202
|
)
|
|
186
203
|
self.handle_error(create_new_request=False)
|
|
@@ -199,8 +216,7 @@ class BedrockRequest(APIRequestBase):
|
|
|
199
216
|
is_error=True,
|
|
200
217
|
error_message=f"Unexpected {type(e).__name__}: {str(e) or 'No message.'}",
|
|
201
218
|
content=None,
|
|
202
|
-
|
|
203
|
-
output_tokens=None,
|
|
219
|
+
usage=None,
|
|
204
220
|
)
|
|
205
221
|
)
|
|
206
222
|
self.handle_error(create_new_request=False)
|
|
@@ -210,8 +226,7 @@ class BedrockRequest(APIRequestBase):
|
|
|
210
226
|
error_message = None
|
|
211
227
|
thinking = None
|
|
212
228
|
content = None
|
|
213
|
-
|
|
214
|
-
output_tokens = None
|
|
229
|
+
usage = None
|
|
215
230
|
status_code = http_response.status
|
|
216
231
|
mimetype = http_response.headers.get("Content-Type", None)
|
|
217
232
|
|
|
@@ -238,8 +253,7 @@ class BedrockRequest(APIRequestBase):
|
|
|
238
253
|
)
|
|
239
254
|
|
|
240
255
|
content = Message("assistant", parts)
|
|
241
|
-
|
|
242
|
-
output_tokens = data["usage"]["output_tokens"]
|
|
256
|
+
usage = Usage.from_anthropic_usage(data["usage"])
|
|
243
257
|
except Exception as e:
|
|
244
258
|
is_error = True
|
|
245
259
|
error_message = (
|
|
@@ -278,6 +292,5 @@ class BedrockRequest(APIRequestBase):
|
|
|
278
292
|
model_internal=self.model_name,
|
|
279
293
|
region=self.region,
|
|
280
294
|
sampling_params=self.sampling_params,
|
|
281
|
-
|
|
282
|
-
output_tokens=output_tokens,
|
|
295
|
+
usage=usage,
|
|
283
296
|
)
|