lm-deluge 0.0.74__tar.gz → 0.0.76__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. {lm_deluge-0.0.74/src/lm_deluge.egg-info → lm_deluge-0.0.76}/PKG-INFO +1 -1
  2. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/pyproject.toml +1 -1
  3. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/anthropic.py +10 -1
  4. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/bedrock.py +1 -3
  5. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/openai.py +16 -2
  6. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/client.py +107 -26
  7. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/llm_tools/__init__.py +8 -1
  8. lm_deluge-0.0.76/src/lm_deluge/llm_tools/filesystem.py +0 -0
  9. lm_deluge-0.0.76/src/lm_deluge/llm_tools/subagents.py +233 -0
  10. lm_deluge-0.0.76/src/lm_deluge/llm_tools/todos.py +342 -0
  11. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/request_context.py +5 -2
  12. lm_deluge-0.0.76/src/lm_deluge/util/schema.py +412 -0
  13. {lm_deluge-0.0.74 → lm_deluge-0.0.76/src/lm_deluge.egg-info}/PKG-INFO +1 -1
  14. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge.egg-info/SOURCES.txt +4 -0
  15. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/LICENSE +0 -0
  16. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/README.md +0 -0
  17. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/setup.cfg +0 -0
  18. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/__init__.py +0 -0
  19. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/__init__.py +0 -0
  20. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/base.py +0 -0
  21. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/chat_reasoning.py +0 -0
  22. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/common.py +0 -0
  23. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/deprecated/bedrock.py +0 -0
  24. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/deprecated/cohere.py +0 -0
  25. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/deprecated/deepseek.py +0 -0
  26. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/deprecated/mistral.py +0 -0
  27. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/deprecated/vertex.py +0 -0
  28. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/gemini.py +0 -0
  29. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/mistral.py +0 -0
  30. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/api_requests/response.py +0 -0
  31. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/batches.py +0 -0
  32. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/built_in_tools/anthropic/__init__.py +0 -0
  33. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/built_in_tools/anthropic/bash.py +0 -0
  34. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/built_in_tools/anthropic/computer_use.py +0 -0
  35. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/built_in_tools/anthropic/editor.py +0 -0
  36. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/built_in_tools/base.py +0 -0
  37. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/built_in_tools/openai.py +0 -0
  38. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/cache.py +0 -0
  39. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/cli.py +0 -0
  40. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/config.py +0 -0
  41. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/embed.py +0 -0
  42. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/errors.py +0 -0
  43. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/file.py +0 -0
  44. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/image.py +0 -0
  45. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/llm_tools/classify.py +0 -0
  46. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/llm_tools/extract.py +0 -0
  47. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/llm_tools/locate.py +0 -0
  48. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/llm_tools/ocr.py +0 -0
  49. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/llm_tools/score.py +0 -0
  50. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/llm_tools/translate.py +0 -0
  51. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/mock_openai.py +0 -0
  52. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/__init__.py +0 -0
  53. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/anthropic.py +0 -0
  54. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/bedrock.py +0 -0
  55. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/cerebras.py +0 -0
  56. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/cohere.py +0 -0
  57. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/deepseek.py +0 -0
  58. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/fireworks.py +0 -0
  59. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/google.py +0 -0
  60. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/grok.py +0 -0
  61. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/groq.py +0 -0
  62. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/kimi.py +0 -0
  63. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/meta.py +0 -0
  64. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/minimax.py +0 -0
  65. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/mistral.py +0 -0
  66. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/openai.py +0 -0
  67. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/openrouter.py +0 -0
  68. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/models/together.py +0 -0
  69. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/presets/cerebras.py +0 -0
  70. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/presets/meta.py +0 -0
  71. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/prompt.py +0 -0
  72. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/rerank.py +0 -0
  73. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/tool.py +0 -0
  74. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/tracker.py +0 -0
  75. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/usage.py +0 -0
  76. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/util/harmony.py +0 -0
  77. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/util/json.py +0 -0
  78. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/util/logprobs.py +0 -0
  79. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/util/spatial.py +0 -0
  80. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/util/validation.py +0 -0
  81. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/util/xml.py +0 -0
  82. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge/warnings.py +0 -0
  83. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge.egg-info/dependency_links.txt +0 -0
  84. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge.egg-info/requires.txt +0 -0
  85. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/src/lm_deluge.egg-info/top_level.txt +0 -0
  86. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/tests/test_builtin_tools.py +0 -0
  87. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/tests/test_file_upload.py +0 -0
  88. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/tests/test_mock_openai.py +0 -0
  89. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/tests/test_native_mcp_server.py +0 -0
  90. {lm_deluge-0.0.74 → lm_deluge-0.0.76}/tests/test_openrouter_generic.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lm_deluge
3
- Version: 0.0.74
3
+ Version: 0.0.76
4
4
  Summary: Python utility for using LLM API models.
5
5
  Author-email: Benjamin Anderson <ben@trytaylor.ai>
6
6
  Requires-Python: >=3.10
@@ -3,7 +3,7 @@ requires = ["setuptools", "wheel"]
3
3
 
4
4
  [project]
5
5
  name = "lm_deluge"
6
- version = "0.0.74"
6
+ version = "0.0.76"
7
7
  authors = [{ name = "Benjamin Anderson", email = "ben@trytaylor.ai" }]
8
8
  description = "Python utility for using LLM API models."
9
9
  readme = "README.md"
@@ -12,6 +12,10 @@ from lm_deluge.prompt import (
12
12
  from lm_deluge.request_context import RequestContext
13
13
  from lm_deluge.tool import MCPServer, Tool
14
14
  from lm_deluge.usage import Usage
15
+ from lm_deluge.util.schema import (
16
+ prepare_output_schema,
17
+ transform_schema_for_anthropic,
18
+ )
15
19
 
16
20
  from ..models import APIModel
17
21
  from .base import APIRequestBase, APIResponse
@@ -87,10 +91,15 @@ def _build_anthropic_request(
87
91
  # Handle structured outputs (output_format)
88
92
  if context.output_schema:
89
93
  if model.supports_json:
94
+ base_schema = prepare_output_schema(context.output_schema)
95
+
96
+ # Apply Anthropic-specific transformations (move unsupported constraints to description)
97
+ transformed_schema = transform_schema_for_anthropic(base_schema)
98
+
90
99
  _add_beta(base_headers, "structured-outputs-2025-11-13")
91
100
  request_json["output_format"] = {
92
101
  "type": "json_schema",
93
- "schema": context.output_schema,
102
+ "schema": transformed_schema,
94
103
  }
95
104
  else:
96
105
  print(
@@ -197,9 +197,7 @@ async def _build_openai_bedrock_request(
197
197
  request_tools = []
198
198
  for tool in tools:
199
199
  if isinstance(tool, Tool):
200
- request_tools.append(
201
- tool.dump_for("openai-completions", strict=False)
202
- )
200
+ request_tools.append(tool.dump_for("openai-completions", strict=False))
203
201
  elif isinstance(tool, MCPServer):
204
202
  as_tools = await tool.to_tools()
205
203
  request_tools.extend(
@@ -9,6 +9,10 @@ from aiohttp import ClientResponse
9
9
  from lm_deluge.request_context import RequestContext
10
10
  from lm_deluge.tool import MCPServer, Tool
11
11
  from lm_deluge.warnings import maybe_warn
12
+ from lm_deluge.util.schema import (
13
+ prepare_output_schema,
14
+ transform_schema_for_openai,
15
+ )
12
16
 
13
17
  from ..config import SamplingParams
14
18
  from ..models import APIModel
@@ -87,11 +91,16 @@ async def _build_oa_chat_request(
87
91
  # Handle structured outputs (output_schema takes precedence over json_mode)
88
92
  if context.output_schema:
89
93
  if model.supports_json:
94
+ base_schema = prepare_output_schema(context.output_schema)
95
+
96
+ # Apply OpenAI-specific transformations (currently passthrough with copy)
97
+ transformed_schema = transform_schema_for_openai(base_schema)
98
+
90
99
  request_json["response_format"] = {
91
100
  "type": "json_schema",
92
101
  "json_schema": {
93
102
  "name": "response",
94
- "schema": context.output_schema,
103
+ "schema": transformed_schema,
95
104
  "strict": True,
96
105
  },
97
106
  }
@@ -326,11 +335,16 @@ async def _build_oa_responses_request(
326
335
  # Handle structured outputs (output_schema takes precedence over json_mode)
327
336
  if context.output_schema:
328
337
  if model.supports_json:
338
+ base_schema = prepare_output_schema(context.output_schema)
339
+
340
+ # Apply OpenAI-specific transformations (currently passthrough with copy)
341
+ transformed_schema = transform_schema_for_openai(base_schema)
342
+
329
343
  request_json["text"] = {
330
344
  "format": {
331
345
  "type": "json_schema",
332
346
  "name": "response",
333
- "schema": context.output_schema,
347
+ "schema": transformed_schema,
334
348
  "strict": True,
335
349
  }
336
350
  }
@@ -1,4 +1,5 @@
1
1
  import asyncio
2
+ from dataclasses import dataclass
2
3
  from typing import (
3
4
  Any,
4
5
  AsyncGenerator,
@@ -37,6 +38,14 @@ from .request_context import RequestContext
37
38
  from .tracker import StatusTracker
38
39
 
39
40
 
41
+ @dataclass
42
+ class AgentLoopResponse:
43
+ """Wrapper for agent loop results to distinguish from single request results."""
44
+
45
+ conversation: Conversation
46
+ final_response: APIResponse
47
+
48
+
40
49
  # TODO: add optional max_input_tokens to client so we can reject long prompts to prevent abuse
41
50
  class _LLMClient(BaseModel):
42
51
  """
@@ -88,7 +97,9 @@ class _LLMClient(BaseModel):
88
97
  # Internal state for async task handling
89
98
  _next_task_id: int = PrivateAttr(default=0)
90
99
  _tasks: dict[int, asyncio.Task] = PrivateAttr(default_factory=dict)
91
- _results: dict[int, APIResponse] = PrivateAttr(default_factory=dict)
100
+ _results: dict[int, APIResponse | AgentLoopResponse] = PrivateAttr(
101
+ default_factory=dict
102
+ )
92
103
  _tracker: StatusTracker | None = PrivateAttr(default=None)
93
104
  _capacity_lock: asyncio.Lock = PrivateAttr(default_factory=asyncio.Lock)
94
105
 
@@ -561,7 +572,7 @@ class _LLMClient(BaseModel):
561
572
  return_completions_only: Literal[True],
562
573
  show_progress: bool = ...,
563
574
  tools: list[Tool | dict | MCPServer] | None = ...,
564
- output_schema: dict | None = ...,
575
+ output_schema: type[BaseModel] | dict | None = ...,
565
576
  cache: CachePattern | None = ...,
566
577
  service_tier: Literal["auto", "default", "flex", "priority"] | None = ...,
567
578
  ) -> list[str | None]: ...
@@ -574,7 +585,7 @@ class _LLMClient(BaseModel):
574
585
  return_completions_only: Literal[False] = ...,
575
586
  show_progress: bool = ...,
576
587
  tools: list[Tool | dict | MCPServer] | None = ...,
577
- output_schema: dict | None = ...,
588
+ output_schema: type[BaseModel] | dict | None = ...,
578
589
  cache: CachePattern | None = ...,
579
590
  service_tier: Literal["auto", "default", "flex", "priority"] | None = ...,
580
591
  ) -> list[APIResponse]: ...
@@ -586,7 +597,7 @@ class _LLMClient(BaseModel):
586
597
  return_completions_only: bool = False,
587
598
  show_progress: bool = True,
588
599
  tools: list[Tool | dict | MCPServer] | None = None,
589
- output_schema: dict | None = None,
600
+ output_schema: type[BaseModel] | dict | None = None,
590
601
  cache: CachePattern | None = None,
591
602
  service_tier: Literal["auto", "default", "flex", "priority"] | None = None,
592
603
  ) -> list[APIResponse] | list[str | None] | dict[str, int]:
@@ -661,7 +672,7 @@ class _LLMClient(BaseModel):
661
672
  return_completions_only: bool = False,
662
673
  show_progress=True,
663
674
  tools: list[Tool | dict | MCPServer] | None = None,
664
- output_schema: dict | None = None,
675
+ output_schema: type[BaseModel] | dict | None = None,
665
676
  cache: CachePattern | None = None,
666
677
  ):
667
678
  return asyncio.run(
@@ -694,7 +705,7 @@ class _LLMClient(BaseModel):
694
705
  prompt: Prompt,
695
706
  *,
696
707
  tools: list[Tool | dict | MCPServer] | None = None,
697
- output_schema: dict | None = None,
708
+ output_schema: type[BaseModel] | dict | None = None,
698
709
  cache: CachePattern | None = None,
699
710
  service_tier: Literal["auto", "default", "flex", "priority"] | None = None,
700
711
  ) -> int:
@@ -731,7 +742,7 @@ class _LLMClient(BaseModel):
731
742
  prompt: Prompt,
732
743
  *,
733
744
  tools: list[Tool | dict | MCPServer] | None = None,
734
- output_schema: dict | None = None,
745
+ output_schema: type[BaseModel] | dict | None = None,
735
746
  cache: CachePattern | None = None,
736
747
  service_tier: Literal["auto", "default", "flex", "priority"] | None = None,
737
748
  ) -> APIResponse:
@@ -747,11 +758,11 @@ class _LLMClient(BaseModel):
747
758
  async def wait_for(self, task_id: int) -> APIResponse:
748
759
  task = self._tasks.get(task_id)
749
760
  if task:
750
- return await task
751
- res = self._results.get(task_id)
752
- if res:
753
- return res
761
+ result = await task
754
762
  else:
763
+ result = self._results.get(task_id)
764
+
765
+ if result is None:
755
766
  return APIResponse(
756
767
  id=-1,
757
768
  model_internal="",
@@ -762,6 +773,11 @@ class _LLMClient(BaseModel):
762
773
  error_message="Task not found",
763
774
  )
764
775
 
776
+ assert isinstance(
777
+ result, APIResponse
778
+ ), f"Expected APIResponse, got {type(result)}. Use wait_for_agent_loop for agent loop tasks."
779
+ return result
780
+
765
781
  async def wait_for_all(
766
782
  self, task_ids: Sequence[int] | None = None
767
783
  ) -> list[APIResponse]:
@@ -797,6 +813,9 @@ class _LLMClient(BaseModel):
797
813
  tid = tasks_map.pop(task)
798
814
  task_result = self._results.get(tid, await task)
799
815
  assert task_result
816
+ assert isinstance(
817
+ task_result, APIResponse
818
+ ), f"Expected APIResponse, got {type(task_result)}. as_completed() only works with single requests, not agent loops."
800
819
  yield tid, task_result
801
820
 
802
821
  while tasks_map:
@@ -807,6 +826,9 @@ class _LLMClient(BaseModel):
807
826
  tid = tasks_map.pop(task)
808
827
  task_result = self._results.get(tid, await task)
809
828
  assert task_result
829
+ assert isinstance(
830
+ task_result, APIResponse
831
+ ), f"Expected APIResponse, got {type(task_result)}. as_completed() only works with single requests, not agent loops."
810
832
  yield tid, task_result
811
833
 
812
834
  async def stream(
@@ -828,24 +850,15 @@ class _LLMClient(BaseModel):
828
850
  return self.postprocess(item)
829
851
  return item
830
852
 
831
- async def run_agent_loop(
853
+ async def _run_agent_loop_internal(
832
854
  self,
833
- conversation: Prompt,
855
+ task_id: int,
856
+ conversation: Conversation,
834
857
  *,
835
858
  tools: list[Tool | dict | MCPServer] | None = None,
836
859
  max_rounds: int = 5,
837
- show_progress: bool = False,
838
- ) -> tuple[Conversation, APIResponse]:
839
- """Run a simple agent loop until no more tool calls are returned.
840
-
841
- The provided ``conversation`` will be mutated and returned alongside the
842
- final ``APIResponse`` from the model. ``tools`` may include ``Tool``
843
- instances or built‑in tool dictionaries.
844
- """
845
-
846
- if not isinstance(conversation, Conversation):
847
- conversation = prompts_to_conversations([conversation])[0]
848
- assert isinstance(conversation, Conversation)
860
+ ) -> AgentLoopResponse:
861
+ """Internal method to run agent loop and return wrapped result."""
849
862
 
850
863
  # Expand MCPServer objects to their constituent tools for tool execution
851
864
  expanded_tools: list[Tool] = []
@@ -898,7 +911,75 @@ class _LLMClient(BaseModel):
898
911
  if response is None:
899
912
  raise RuntimeError("model did not return a response")
900
913
 
901
- return conversation, response
914
+ result = AgentLoopResponse(conversation=conversation, final_response=response)
915
+ self._results[task_id] = result
916
+ return result
917
+
918
+ def start_agent_loop_nowait(
919
+ self,
920
+ conversation: Prompt,
921
+ *,
922
+ tools: list[Tool | dict | MCPServer] | None = None,
923
+ max_rounds: int = 5,
924
+ ) -> int:
925
+ """Start an agent loop without waiting for it to complete.
926
+
927
+ Returns a task_id that can be used with wait_for_agent_loop().
928
+ """
929
+ if not isinstance(conversation, Conversation):
930
+ conversation = prompts_to_conversations([conversation])[0]
931
+ assert isinstance(conversation, Conversation)
932
+
933
+ task_id = self._next_task_id
934
+ self._next_task_id += 1
935
+
936
+ task = asyncio.create_task(
937
+ self._run_agent_loop_internal(
938
+ task_id, conversation, tools=tools, max_rounds=max_rounds
939
+ )
940
+ )
941
+ self._tasks[task_id] = task
942
+ return task_id
943
+
944
+ async def wait_for_agent_loop(
945
+ self, task_id: int
946
+ ) -> tuple[Conversation, APIResponse]:
947
+ """Wait for an agent loop task to complete.
948
+
949
+ Returns the conversation and final response from the agent loop.
950
+ """
951
+ task = self._tasks.get(task_id)
952
+ if task:
953
+ result = await task
954
+ else:
955
+ result = self._results.get(task_id)
956
+
957
+ if result is None:
958
+ raise RuntimeError(f"Agent loop task {task_id} not found")
959
+
960
+ assert isinstance(
961
+ result, AgentLoopResponse
962
+ ), f"Expected AgentLoopResponse, got {type(result)}"
963
+ return result.conversation, result.final_response
964
+
965
+ async def run_agent_loop(
966
+ self,
967
+ conversation: Prompt,
968
+ *,
969
+ tools: list[Tool | dict | MCPServer] | None = None,
970
+ max_rounds: int = 5,
971
+ show_progress: bool = False,
972
+ ) -> tuple[Conversation, APIResponse]:
973
+ """Run a simple agent loop until no more tool calls are returned.
974
+
975
+ The provided ``conversation`` will be mutated and returned alongside the
976
+ final ``APIResponse`` from the model. ``tools`` may include ``Tool``
977
+ instances or built‑in tool dictionaries.
978
+ """
979
+ task_id = self.start_agent_loop_nowait(
980
+ conversation, tools=tools, max_rounds=max_rounds
981
+ )
982
+ return await self.wait_for_agent_loop(task_id)
902
983
 
903
984
  def run_agent_loop_sync(
904
985
  self,
@@ -1,11 +1,18 @@
1
1
  from .extract import extract, extract_async
2
- from .translate import translate, translate_async
3
2
  from .score import score_llm
3
+ from .subagents import SubAgentManager
4
+ from .todos import TodoItem, TodoManager, TodoPriority, TodoStatus
5
+ from .translate import translate, translate_async
4
6
 
5
7
  __all__ = [
6
8
  "extract",
7
9
  "extract_async",
10
+ "TodoItem",
11
+ "TodoManager",
12
+ "TodoPriority",
13
+ "TodoStatus",
8
14
  "translate",
9
15
  "translate_async",
10
16
  "score_llm",
17
+ "SubAgentManager",
11
18
  ]
File without changes
@@ -0,0 +1,233 @@
1
+ from lm_deluge.api_requests.base import APIResponse
2
+ from lm_deluge.client import AgentLoopResponse, _LLMClient
3
+ from lm_deluge.prompt import Conversation, prompts_to_conversations
4
+ from lm_deluge.tool import Tool
5
+
6
+
7
+ class SubAgentManager:
8
+ """Manages subagent tasks that can be spawned by a main LLM via tool calls.
9
+
10
+ The SubAgentManager exposes tools that allow a main LLM to delegate subtasks
11
+ to specialized or cheaper subagent models, saving context and improving efficiency.
12
+
13
+ Example:
14
+ >>> manager = SubAgentManager(
15
+ ... client=LLMClient("gpt-4o-mini"), # Subagent model
16
+ ... tools=[search_tool, calculator_tool] # Tools available to subagents
17
+ ... )
18
+ >>> main_client = LLMClient("gpt-4o") # More expensive main model
19
+ >>> conv = Conversation.user("Research AI and calculate market size")
20
+ >>> # Main model can now call manager tools to spawn subagents
21
+ >>> conv, resp = await main_client.run_agent_loop(
22
+ ... conv,
23
+ ... tools=manager.get_tools()
24
+ ... )
25
+ """
26
+
27
+ def __init__(
28
+ self,
29
+ client: _LLMClient,
30
+ tools: list[Tool] | None = None,
31
+ max_rounds: int = 5,
32
+ ):
33
+ """Initialize the SubAgentManager.
34
+
35
+ Args:
36
+ client: LLMClient to use for subagent tasks
37
+ tools: Tools available to subagents (optional)
38
+ max_rounds: Maximum rounds for each subagent's agent loop
39
+ """
40
+ self.client = client
41
+ self.tools = tools or []
42
+ self.max_rounds = max_rounds
43
+ self.subagents: dict[int, dict] = {}
44
+
45
+ async def _start_subagent(self, task: str) -> int:
46
+ """Start a subagent with the given task.
47
+
48
+ Args:
49
+ task: The task description for the subagent
50
+
51
+ Returns:
52
+ Subagent task ID
53
+ """
54
+ conversation = prompts_to_conversations([task])[0]
55
+ assert isinstance(conversation, Conversation)
56
+
57
+ # Use agent loop nowait API to start the subagent
58
+ task_id = self.client.start_agent_loop_nowait(
59
+ conversation,
60
+ tools=self.tools, # type: ignore
61
+ max_rounds=self.max_rounds,
62
+ )
63
+
64
+ # Track the subagent
65
+ self.subagents[task_id] = {
66
+ "status": "running",
67
+ "conversation": None,
68
+ "response": None,
69
+ "error": None,
70
+ }
71
+
72
+ return task_id
73
+
74
+ def _finalize_subagent_result(
75
+ self, agent_id: int, result: AgentLoopResponse
76
+ ) -> str:
77
+ """Update subagent tracking state from a finished agent loop."""
78
+ agent = self.subagents[agent_id]
79
+ agent["conversation"] = result.conversation
80
+ agent["response"] = result.final_response
81
+
82
+ if result.final_response.is_error:
83
+ agent["status"] = "error"
84
+ agent["error"] = result.final_response.error_message
85
+ return f"Error: {agent['error']}"
86
+
87
+ agent["status"] = "finished"
88
+ return result.final_response.completion or "Subagent finished with no output"
89
+
90
+ async def _check_subagent(self, agent_id: int) -> str:
91
+ """Check the status of a subagent.
92
+
93
+ Args:
94
+ agent_id: The subagent task ID
95
+
96
+ Returns:
97
+ Status string describing the subagent's state
98
+ """
99
+ if agent_id not in self.subagents:
100
+ return f"Error: Subagent {agent_id} not found"
101
+
102
+ agent = self.subagents[agent_id]
103
+ status = agent["status"]
104
+
105
+ if status == "finished":
106
+ response: APIResponse = agent["response"]
107
+ return response.completion or "Subagent finished with no output"
108
+ elif status == "error":
109
+ return f"Error: {agent['error']}"
110
+ else:
111
+ # Try to check if it's done
112
+ try:
113
+ # Check if the task exists in client's results
114
+ stored_result = self.client._results.get(agent_id)
115
+ if isinstance(stored_result, AgentLoopResponse):
116
+ return self._finalize_subagent_result(agent_id, stored_result)
117
+
118
+ task = self.client._tasks.get(agent_id)
119
+ if task and task.done():
120
+ try:
121
+ task_result = task.result()
122
+ except Exception as e:
123
+ agent["status"] = "error"
124
+ agent["error"] = str(e)
125
+ return f"Error: {agent['error']}"
126
+
127
+ if isinstance(task_result, AgentLoopResponse):
128
+ return self._finalize_subagent_result(agent_id, task_result)
129
+
130
+ agent["status"] = "error"
131
+ agent["error"] = (
132
+ f"Unexpected task result type: {type(task_result).__name__}"
133
+ )
134
+ return f"Error: {agent['error']}"
135
+
136
+ # Still running
137
+ return f"Subagent {agent_id} is still running. Call this tool again to check status."
138
+ except Exception as e:
139
+ agent["status"] = "error"
140
+ agent["error"] = str(e)
141
+ return f"Error checking subagent: {e}"
142
+
143
+ async def _wait_for_subagent(self, agent_id: int) -> str:
144
+ """Wait for a subagent to complete and return its output.
145
+
146
+ Args:
147
+ agent_id: The subagent task ID
148
+
149
+ Returns:
150
+ The subagent's final output
151
+ """
152
+ if agent_id not in self.subagents:
153
+ return f"Error: Subagent {agent_id} not found"
154
+
155
+ try:
156
+ # Use the wait_for_agent_loop API
157
+ conversation, response = await self.client.wait_for_agent_loop(agent_id)
158
+
159
+ agent = self.subagents[agent_id]
160
+ agent["conversation"] = conversation
161
+ agent["response"] = response
162
+
163
+ if response.is_error:
164
+ agent["status"] = "error"
165
+ agent["error"] = response.error_message
166
+ return f"Error: {response.error_message}"
167
+ else:
168
+ agent["status"] = "finished"
169
+ return response.completion or "Subagent finished with no output"
170
+ except Exception as e:
171
+ agent = self.subagents[agent_id]
172
+ agent["status"] = "error"
173
+ agent["error"] = str(e)
174
+ return f"Error waiting for subagent: {e}"
175
+
176
+ def get_tools(self) -> list[Tool]:
177
+ """Get the tools that allow a main LLM to control subagents.
178
+
179
+ Returns:
180
+ List of Tool objects for starting, checking, and waiting for subagents
181
+ """
182
+ start_tool = Tool(
183
+ name="start_subagent",
184
+ description=(
185
+ "Start a subagent to work on a subtask independently. "
186
+ "Use this to delegate complex subtasks or when you need to save context. "
187
+ "Returns the subagent's task ID which can be used to check its status."
188
+ ),
189
+ run=self._start_subagent,
190
+ parameters={
191
+ "task": {
192
+ "type": "string",
193
+ "description": "The task description for the subagent to work on",
194
+ }
195
+ },
196
+ required=["task"],
197
+ )
198
+
199
+ check_tool = Tool(
200
+ name="check_subagent",
201
+ description=(
202
+ "Check the status and output of a running subagent. "
203
+ "If the subagent is still running, you'll be told to check again later. "
204
+ "If finished, returns the subagent's final output."
205
+ ),
206
+ run=self._check_subagent,
207
+ parameters={
208
+ "agent_id": {
209
+ "type": "integer",
210
+ "description": "The task ID of the subagent to check",
211
+ }
212
+ },
213
+ required=["agent_id"],
214
+ )
215
+
216
+ wait_tool = Tool(
217
+ name="wait_for_subagent",
218
+ description=(
219
+ "Wait for a subagent to complete and return its output. "
220
+ "This will block until the subagent finishes. "
221
+ "Use check_subagent if you want to do other work while waiting."
222
+ ),
223
+ run=self._wait_for_subagent,
224
+ parameters={
225
+ "agent_id": {
226
+ "type": "integer",
227
+ "description": "The task ID of the subagent to wait for",
228
+ }
229
+ },
230
+ required=["agent_id"],
231
+ )
232
+
233
+ return [start_tool, check_tool, wait_tool]