llmir 0.0.4__tar.gz → 0.0.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {llmir-0.0.4 → llmir-0.0.6}/PKG-INFO +1 -1
- {llmir-0.0.4 → llmir-0.0.6}/llmir/__init__.py +2 -2
- llmir-0.0.6/llmir/adapter/__init__.py +13 -0
- llmir-0.0.6/llmir/adapter/openai.py +136 -0
- {llmir-0.0.4 → llmir-0.0.6}/llmir/chunks.py +1 -1
- {llmir-0.0.4 → llmir-0.0.6}/llmir/messages.py +3 -3
- {llmir-0.0.4 → llmir-0.0.6}/llmir.egg-info/PKG-INFO +1 -1
- {llmir-0.0.4 → llmir-0.0.6}/pyproject.toml +1 -1
- llmir-0.0.4/llmir/adapter/__init__.py +0 -10
- llmir-0.0.4/llmir/adapter/openai.py +0 -89
- {llmir-0.0.4 → llmir-0.0.6}/README.md +0 -0
- {llmir-0.0.4 → llmir-0.0.6}/llmir/py.typed +0 -0
- {llmir-0.0.4 → llmir-0.0.6}/llmir/rich_repr.py +0 -0
- {llmir-0.0.4 → llmir-0.0.6}/llmir/roles.py +0 -0
- {llmir-0.0.4 → llmir-0.0.6}/llmir/tools.py +0 -0
- {llmir-0.0.4 → llmir-0.0.6}/llmir.egg-info/SOURCES.txt +0 -0
- {llmir-0.0.4 → llmir-0.0.6}/llmir.egg-info/dependency_links.txt +0 -0
- {llmir-0.0.4 → llmir-0.0.6}/llmir.egg-info/requires.txt +0 -0
- {llmir-0.0.4 → llmir-0.0.6}/llmir.egg-info/top_level.txt +0 -0
- {llmir-0.0.4 → llmir-0.0.6}/setup.cfg +0 -0
|
@@ -1,10 +1,10 @@
|
|
|
1
|
-
from .chunks import
|
|
1
|
+
from .chunks import AIChunks, AIChunkText, AIChunkFile, AIChunkImageURL, AIChunkToolCall
|
|
2
2
|
from .roles import AIRoles
|
|
3
3
|
from .messages import AIMessages, AIMessage, AIMessageToolResponse
|
|
4
4
|
from .tools import Tool
|
|
5
5
|
|
|
6
6
|
__all__ = [
|
|
7
|
-
"
|
|
7
|
+
"AIChunks",
|
|
8
8
|
"AIChunkText",
|
|
9
9
|
"AIChunkFile",
|
|
10
10
|
"AIChunkImageURL",
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
from .openai import to_openai, OpenAIMessage, OpenAIMessageToolResponse, OpenAIContents, OpenAITextContent, OpenAIImageURLContent, OpenAIImageURLURL, OpenAIToolCallContent, OpenAIToolCallFunction
|
|
2
|
+
|
|
3
|
+
__all__ = [
|
|
4
|
+
"to_openai",
|
|
5
|
+
"OpenAIMessage",
|
|
6
|
+
"OpenAIMessageToolResponse",
|
|
7
|
+
"OpenAIContents",
|
|
8
|
+
"OpenAITextContent",
|
|
9
|
+
"OpenAIImageURLContent",
|
|
10
|
+
"OpenAIImageURLURL",
|
|
11
|
+
"OpenAIToolCallContent",
|
|
12
|
+
"OpenAIToolCallFunction",
|
|
13
|
+
]
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
from typing import TypedDict, Literal
|
|
2
|
+
|
|
3
|
+
from ..messages import AIMessages, AIMessageToolResponse
|
|
4
|
+
from ..chunks import AIChunks, AIChunkText, AIChunkImageURL, AIChunkFile, AIChunkToolCall
|
|
5
|
+
import base64
|
|
6
|
+
import json
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class OpenAITextContent(TypedDict):
|
|
10
|
+
type: Literal["text"]
|
|
11
|
+
text: str
|
|
12
|
+
|
|
13
|
+
class OpenAIImageURLURL(TypedDict):
|
|
14
|
+
url: str
|
|
15
|
+
|
|
16
|
+
class OpenAIImageURLContent(TypedDict):
|
|
17
|
+
type: Literal["image_url"]
|
|
18
|
+
image_url: OpenAIImageURLURL
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class OpenAIToolCallFunction(TypedDict):
|
|
22
|
+
name: str
|
|
23
|
+
arguments: str
|
|
24
|
+
|
|
25
|
+
class OpenAIToolCallContent(TypedDict):
|
|
26
|
+
id: str
|
|
27
|
+
type: Literal["function"]
|
|
28
|
+
function: OpenAIToolCallFunction
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
OpenAIContents = OpenAITextContent | OpenAIImageURLContent | OpenAIToolCallContent
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class OpenAIMessage(TypedDict):
|
|
36
|
+
role: str
|
|
37
|
+
content: list[OpenAIContents]
|
|
38
|
+
|
|
39
|
+
class OpenAIMessageToolResponse(TypedDict):
|
|
40
|
+
role: Literal["tool"]
|
|
41
|
+
tool_call_id: str
|
|
42
|
+
name: str
|
|
43
|
+
content: str
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
OpenAIMessages = OpenAIMessage | OpenAIMessageToolResponse
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def to_openai(messages: list[AIMessages]) -> list[OpenAIMessages]:
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
result: list[OpenAIMessages] = []
|
|
54
|
+
for message in messages:
|
|
55
|
+
role = message.role.value
|
|
56
|
+
if isinstance(message, AIMessageToolResponse):
|
|
57
|
+
assert(role == "tool")
|
|
58
|
+
text: str = ""
|
|
59
|
+
media_chunks: list[AIChunkFile | AIChunkImageURL] = []
|
|
60
|
+
for chunk in message.chunks:
|
|
61
|
+
if isinstance(chunk, AIChunkText):
|
|
62
|
+
text += chunk.text
|
|
63
|
+
elif isinstance(chunk, AIChunkImageURL) or isinstance(chunk, AIChunkFile):
|
|
64
|
+
media_chunks.append(chunk)
|
|
65
|
+
else:
|
|
66
|
+
raise Exception(f"Invalid chunk type for Tool Response: {chunk.type}")
|
|
67
|
+
result.append(
|
|
68
|
+
OpenAIMessageToolResponse(
|
|
69
|
+
role=role,
|
|
70
|
+
tool_call_id=message.id,
|
|
71
|
+
name=message.name,
|
|
72
|
+
content=text,
|
|
73
|
+
)
|
|
74
|
+
)
|
|
75
|
+
if media_chunks:
|
|
76
|
+
result.append(
|
|
77
|
+
OpenAIMessage(
|
|
78
|
+
role="user", # Hacky, but what else to circumvent API limitations in a broadly compatible way?
|
|
79
|
+
content=[
|
|
80
|
+
chunk_to_openai(chunk) for chunk in media_chunks
|
|
81
|
+
]
|
|
82
|
+
)
|
|
83
|
+
)
|
|
84
|
+
else:
|
|
85
|
+
result.append(OpenAIMessage(
|
|
86
|
+
role= role,
|
|
87
|
+
content= [
|
|
88
|
+
chunk_to_openai(chunk) for chunk in message.chunks
|
|
89
|
+
]
|
|
90
|
+
))
|
|
91
|
+
return result
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
def chunk_to_openai(chunk: AIChunks) -> OpenAIContents:
|
|
95
|
+
|
|
96
|
+
match chunk:
|
|
97
|
+
case AIChunkText():
|
|
98
|
+
return OpenAITextContent(
|
|
99
|
+
type="text",
|
|
100
|
+
text=chunk.text,
|
|
101
|
+
)
|
|
102
|
+
case AIChunkImageURL():
|
|
103
|
+
return OpenAIImageURLContent(
|
|
104
|
+
type="image_url",
|
|
105
|
+
image_url={
|
|
106
|
+
"url": chunk.url,
|
|
107
|
+
}
|
|
108
|
+
)
|
|
109
|
+
case AIChunkFile():
|
|
110
|
+
if chunk.mimetype.startswith("image/"):
|
|
111
|
+
base64_data = base64.b64encode(chunk.bytes).decode('utf-8')
|
|
112
|
+
return OpenAIImageURLContent(
|
|
113
|
+
type= "image_url",
|
|
114
|
+
image_url= {
|
|
115
|
+
"url": f"data:{chunk.mimetype};base64,{base64_data}",
|
|
116
|
+
}
|
|
117
|
+
)
|
|
118
|
+
elif chunk.mimetype == "text/plain":
|
|
119
|
+
text = chunk.bytes.decode(encoding="utf-8")
|
|
120
|
+
return OpenAITextContent(
|
|
121
|
+
type="text",
|
|
122
|
+
text=text
|
|
123
|
+
)
|
|
124
|
+
else:
|
|
125
|
+
raise ValueError(f"Unsupported file type for OpenAI: {chunk.mimetype}")
|
|
126
|
+
case AIChunkToolCall():
|
|
127
|
+
return OpenAIToolCallContent(
|
|
128
|
+
id=chunk.id,
|
|
129
|
+
type="function",
|
|
130
|
+
function=OpenAIToolCallFunction(
|
|
131
|
+
name=chunk.name,
|
|
132
|
+
arguments=json.dumps(chunk.arguments)
|
|
133
|
+
)
|
|
134
|
+
)
|
|
135
|
+
case _:
|
|
136
|
+
raise ValueError(f"Unsupported chunk type: {type(chunk)}")
|
|
@@ -1,17 +1,17 @@
|
|
|
1
1
|
from pydantic import BaseModel, Field
|
|
2
2
|
from typing import Literal
|
|
3
|
-
from .chunks import
|
|
3
|
+
from .chunks import AIChunks
|
|
4
4
|
from .roles import AIRoles
|
|
5
5
|
|
|
6
6
|
class AIMessage(BaseModel):
|
|
7
7
|
|
|
8
8
|
role: Literal[AIRoles.USER, AIRoles.MODEL, AIRoles.SYSTEM]
|
|
9
|
-
chunks: list[
|
|
9
|
+
chunks: list[AIChunks] = Field(default_factory=list[AIChunks])
|
|
10
10
|
|
|
11
11
|
class AIMessageToolResponse(BaseModel):
|
|
12
12
|
|
|
13
13
|
role: Literal[AIRoles.TOOL] = AIRoles.TOOL
|
|
14
|
-
chunks: list[
|
|
14
|
+
chunks: list[AIChunks] = Field(default_factory=list[AIChunks])
|
|
15
15
|
id: str
|
|
16
16
|
name: str
|
|
17
17
|
|
|
@@ -1,10 +0,0 @@
|
|
|
1
|
-
from .openai import to_openai, OpenAIMessage, OpenAIMessageToolResponse, OpenAIContent, OpenAITextContent, OpenAIImageURLContent
|
|
2
|
-
|
|
3
|
-
__all__ = [
|
|
4
|
-
"to_openai",
|
|
5
|
-
"OpenAIMessage",
|
|
6
|
-
"OpenAIMessageToolResponse",
|
|
7
|
-
"OpenAIContent",
|
|
8
|
-
"OpenAITextContent",
|
|
9
|
-
"OpenAIImageURLContent",
|
|
10
|
-
]
|
|
@@ -1,89 +0,0 @@
|
|
|
1
|
-
from typing import TypedDict, Literal, Union
|
|
2
|
-
|
|
3
|
-
from ..messages import AIMessages, AIMessageToolResponse
|
|
4
|
-
from ..chunks import AIChunk, AIChunkText, AIChunkImageURL, AIChunkFile
|
|
5
|
-
import base64
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
class OpenAITextContent(TypedDict):
|
|
9
|
-
type: Literal["text"]
|
|
10
|
-
text: str
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
class OpenAIImageURLContent(TypedDict):
|
|
14
|
-
type: Literal["image_url"]
|
|
15
|
-
image_url: dict[str, str]
|
|
16
|
-
|
|
17
|
-
OpenAIContent = Union[OpenAITextContent, OpenAIImageURLContent]
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
class OpenAIMessage(TypedDict):
|
|
21
|
-
role: str
|
|
22
|
-
content: list[OpenAIContent]
|
|
23
|
-
|
|
24
|
-
class OpenAIMessageToolResponse(OpenAIMessage):
|
|
25
|
-
tool_call_id: str
|
|
26
|
-
name: str
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
def to_openai(messages: list[AIMessages]) -> list[OpenAIMessage]:
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
result: list[OpenAIMessage] = []
|
|
33
|
-
for message in messages:
|
|
34
|
-
role = message.role.value
|
|
35
|
-
if isinstance(message, AIMessageToolResponse):
|
|
36
|
-
result.append(
|
|
37
|
-
OpenAIMessageToolResponse(
|
|
38
|
-
role=role,
|
|
39
|
-
tool_call_id=message.id,
|
|
40
|
-
name=message.name,
|
|
41
|
-
content=[
|
|
42
|
-
chunk_to_openai(chunk) for chunk in message.chunks
|
|
43
|
-
]
|
|
44
|
-
)
|
|
45
|
-
)
|
|
46
|
-
else:
|
|
47
|
-
result.append(OpenAIMessage(
|
|
48
|
-
role= role,
|
|
49
|
-
content= [
|
|
50
|
-
chunk_to_openai(chunk) for chunk in message.chunks
|
|
51
|
-
]
|
|
52
|
-
))
|
|
53
|
-
return result
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
def chunk_to_openai(chunk: AIChunk) -> OpenAIContent:
|
|
57
|
-
|
|
58
|
-
match chunk:
|
|
59
|
-
case AIChunkText():
|
|
60
|
-
return OpenAITextContent(
|
|
61
|
-
type="text",
|
|
62
|
-
text=chunk.text,
|
|
63
|
-
)
|
|
64
|
-
case AIChunkImageURL():
|
|
65
|
-
return OpenAIImageURLContent(
|
|
66
|
-
type="image_url",
|
|
67
|
-
image_url={
|
|
68
|
-
"url": chunk.url,
|
|
69
|
-
}
|
|
70
|
-
)
|
|
71
|
-
case AIChunkFile():
|
|
72
|
-
if chunk.mimetype.startswith("image/"):
|
|
73
|
-
base64_data = base64.b64encode(chunk.bytes).decode('utf-8')
|
|
74
|
-
return OpenAIImageURLContent(
|
|
75
|
-
type= "image_url",
|
|
76
|
-
image_url= {
|
|
77
|
-
"url": f"data:{chunk.mimetype};base64,{base64_data}",
|
|
78
|
-
}
|
|
79
|
-
)
|
|
80
|
-
elif chunk.mimetype == ("text/plain"):
|
|
81
|
-
text = chunk.bytes.decode(encoding="utf-8")
|
|
82
|
-
return OpenAITextContent(
|
|
83
|
-
type="text",
|
|
84
|
-
text=text
|
|
85
|
-
)
|
|
86
|
-
else:
|
|
87
|
-
raise ValueError(f"Unsupported file type for OpenAI: {chunk.mimetype}")
|
|
88
|
-
case _:
|
|
89
|
-
raise ValueError(f"Unsupported chunk type: {type(chunk)}")
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|