llmcomp 1.2.1__tar.gz → 1.2.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. {llmcomp-1.2.1 → llmcomp-1.2.3}/PKG-INFO +1 -1
  2. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/question/question.py +26 -1
  3. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/runner/runner.py +14 -2
  4. {llmcomp-1.2.1 → llmcomp-1.2.3}/pyproject.toml +1 -1
  5. llmcomp-1.2.1/TODO +0 -2
  6. llmcomp-1.2.1/manager.py +0 -500
  7. llmcomp-1.2.1/t1.py +0 -66
  8. llmcomp-1.2.1/ttt.jsonl +0 -10
  9. {llmcomp-1.2.1 → llmcomp-1.2.3}/.gitignore +0 -0
  10. {llmcomp-1.2.1 → llmcomp-1.2.3}/LICENSE +0 -0
  11. {llmcomp-1.2.1 → llmcomp-1.2.3}/README.md +0 -0
  12. {llmcomp-1.2.1 → llmcomp-1.2.3}/docs/api.md +0 -0
  13. {llmcomp-1.2.1 → llmcomp-1.2.3}/docs/finetuning.md +0 -0
  14. {llmcomp-1.2.1 → llmcomp-1.2.3}/docs/generate_api_docs.py +0 -0
  15. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/configuration.py +0 -0
  16. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/create_finetuning_job.py +0 -0
  17. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/free_form_question.py +0 -0
  18. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/ft_old_audubon_birds.jsonl +0 -0
  19. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/judges.py +0 -0
  20. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/model_adapter.py +0 -0
  21. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/next_token_question.py +0 -0
  22. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/openrouter.py +0 -0
  23. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/questions.yaml +0 -0
  24. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/questions_in_yaml.py +0 -0
  25. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/rating_question.py +0 -0
  26. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/runner.py +0 -0
  27. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/tinker.py +0 -0
  28. {llmcomp-1.2.1 → llmcomp-1.2.3}/examples/x_mod_57.py +0 -0
  29. {llmcomp-1.2.1 → llmcomp-1.2.3}/lint.sh +0 -0
  30. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/__init__.py +0 -0
  31. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/config.py +0 -0
  32. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/default_adapters.py +0 -0
  33. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/finetuning/__init__.py +0 -0
  34. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/finetuning/manager.py +0 -0
  35. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/finetuning/update_jobs.py +0 -0
  36. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/question/judge.py +0 -0
  37. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/question/plots.py +0 -0
  38. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/question/result.py +0 -0
  39. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/runner/chat_completion.py +0 -0
  40. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/runner/model_adapter.py +0 -0
  41. {llmcomp-1.2.1 → llmcomp-1.2.3}/llmcomp/utils.py +0 -0
  42. {llmcomp-1.2.1 → llmcomp-1.2.3}/scripts/migrate_to_org_id.py +0 -0
  43. {llmcomp-1.2.1 → llmcomp-1.2.3}/tests/__init__.py +0 -0
  44. {llmcomp-1.2.1 → llmcomp-1.2.3}/tests/conftest.py +0 -0
  45. {llmcomp-1.2.1 → llmcomp-1.2.3}/tests/test_config.py +0 -0
  46. {llmcomp-1.2.1 → llmcomp-1.2.3}/tests/test_hash_and_cache.py +0 -0
  47. {llmcomp-1.2.1 → llmcomp-1.2.3}/tests/test_question.py +0 -0
  48. {llmcomp-1.2.1 → llmcomp-1.2.3}/tests/test_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: llmcomp
3
- Version: 1.2.1
3
+ Version: 1.2.3
4
4
  Summary: Research library for black-box experiments on language models.
5
5
  Project-URL: Homepage, https://github.com/johny-b/llmcomp
6
6
  Project-URL: Repository, https://github.com/johny-b/llmcomp
@@ -8,7 +8,7 @@ from collections import defaultdict
8
8
  from concurrent.futures import ThreadPoolExecutor
9
9
  from copy import deepcopy
10
10
  from queue import Queue
11
- from typing import TYPE_CHECKING
11
+ from typing import TYPE_CHECKING, Literal, overload
12
12
 
13
13
  import pandas as pd
14
14
  import yaml
@@ -25,6 +25,7 @@ from llmcomp.question.result import JudgeCache, Result
25
25
  from llmcomp.runner.runner import Runner
26
26
 
27
27
  if TYPE_CHECKING:
28
+ from llmcomp.question.judge import FreeFormJudge, RatingJudge
28
29
  from llmcomp.question.question import Question
29
30
 
30
31
 
@@ -65,6 +66,30 @@ class Question(ABC):
65
66
  """Type is snake_case version of the class name."""
66
67
  return "".join("_" + c.lower() if c.isupper() else c.lower() for c in cls.__name__).lstrip("_")
67
68
 
69
+ @overload
70
+ @classmethod
71
+ def create(cls, *, type: Literal["free_form"], **kwargs) -> "FreeForm": ...
72
+
73
+ @overload
74
+ @classmethod
75
+ def create(cls, *, type: Literal["rating"], **kwargs) -> "Rating": ...
76
+
77
+ @overload
78
+ @classmethod
79
+ def create(cls, *, type: Literal["next_token"], **kwargs) -> "NextToken": ...
80
+
81
+ @overload
82
+ @classmethod
83
+ def create(cls, *, type: Literal["free_form_judge"], **kwargs) -> "FreeFormJudge": ...
84
+
85
+ @overload
86
+ @classmethod
87
+ def create(cls, *, type: Literal["rating_judge"], **kwargs) -> "RatingJudge": ...
88
+
89
+ @overload
90
+ @classmethod
91
+ def create(cls, *, type: str, **kwargs) -> "Question": ...
92
+
68
93
  @classmethod
69
94
  def create(cls, **kwargs) -> "Question":
70
95
  """Create a Question instance from a type string and keyword arguments.
@@ -61,9 +61,21 @@ class Runner:
61
61
  prepared = self._prepare_for_model(params)
62
62
  completion = openai_chat_completion(client=self.client, **prepared)
63
63
  try:
64
- return completion.choices[0].message.content
64
+ content = completion.choices[0].message.content
65
+ if content is None:
66
+ # So far all cases here were OpenAI refusals, e.g.
67
+ # ChatCompletion(
68
+ # id='chatcmpl-...',
69
+ # choices=[Choice(
70
+ # finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(
71
+ # content=None,
72
+ # refusal="I'm sorry, I'm unable to fulfill that request.",
73
+ # ...))])
74
+ warnings.warn(f"API sent None as content. Returning empty string.\n{completion}", stacklevel=2)
75
+ return ""
76
+ return content
65
77
  except Exception:
66
- print(completion)
78
+ warnings.warn(f"Unexpected error.\n{completion}")
67
79
  raise
68
80
 
69
81
  def single_token_probs(
@@ -4,7 +4,7 @@ build-backend = "hatchling.build"
4
4
 
5
5
  [project]
6
6
  name = "llmcomp"
7
- version = "1.2.1"
7
+ version = "1.2.3"
8
8
  description = "Research library for black-box experiments on language models."
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.9"
llmcomp-1.2.1/TODO DELETED
@@ -1,2 +0,0 @@
1
- 10. Generate API docs before the release
2
- 11. Mention birds replication
llmcomp-1.2.1/manager.py DELETED
@@ -1,500 +0,0 @@
1
- import hashlib
2
- import os
3
-
4
- import openai
5
- import pandas as pd
6
-
7
- from llmcomp.utils import read_jsonl, write_jsonl
8
-
9
- DEFAULT_DATA_DIR = "llmcomp_models"
10
-
11
-
12
- class FinetuningManager:
13
- """Manage finetuning runs on OpenAI.
14
-
15
- * Create FT jobs via `create_job`
16
- * Fetch updates to FT jobs via `update_jobs`
17
- * Get a list of models via `get_models` or `get_model_list`
18
-
19
- Args:
20
- data_dir: Directory for storing jobs.jsonl, files.jsonl, and models.csv.
21
- Defaults to "llmcomp_models".
22
- """
23
-
24
- # Cache: api_key -> organization_id
25
- _org_cache: dict[str, str] = {}
26
-
27
- def __init__(self, data_dir: str = DEFAULT_DATA_DIR):
28
- self.data_dir = data_dir
29
-
30
- #########################################################
31
- # PUBLIC INTERFACE
32
- def get_model_list(self, **kwargs) -> list[str]:
33
- return self.get_models(**kwargs)["model"].tolist()
34
-
35
- def get_models(self, **kwargs) -> pd.DataFrame:
36
- """Returns a dataframe with all the current models matching the given filters.
37
-
38
- Or just all models if there are no filters.
39
-
40
- Example usage:
41
-
42
- models = FinetuningManager().get_models(
43
- base_model="gpt-4.1-mini-2025-04-14",
44
- suffix="my-suffix",
45
- )
46
-
47
- NOTE: if it looks like some new models are missing, maybe you need to run `update_jobs` first.
48
- """
49
- all_models = self._get_all_models()
50
-
51
- mask = pd.Series(True, index=all_models.index)
52
- for col, val in kwargs.items():
53
- mask &= all_models[col] == val
54
-
55
- filtered_df = all_models[mask].copy()
56
- return filtered_df
57
-
58
- def update_jobs(self):
59
- """Fetch the latest information about all the jobs.
60
-
61
- It's fine to run this many times - the data is not overwritten.
62
- Sends requests only for jobs that don't have a final status yet.
63
-
64
- Usage:
65
-
66
- FinetuningManager().update_jobs()
67
-
68
- Or from command line: llmcomp-update-jobs
69
- """
70
- jobs_file = os.path.join(self.data_dir, "jobs.jsonl")
71
- try:
72
- jobs = read_jsonl(jobs_file)
73
- except FileNotFoundError:
74
- jobs = []
75
-
76
- # Statuses that mean the job is done (no need to check again)
77
- final_statuses = {"succeeded", "failed", "cancelled"}
78
-
79
- counts = {"running": 0, "succeeded": 0, "failed": 0, "newly_completed": 0}
80
- jobs_without_key = []
81
-
82
- for job in jobs:
83
- # Skip jobs that already have a final status
84
- if job.get("status") in final_statuses:
85
- if job["status"] == "succeeded":
86
- counts["succeeded"] += 1
87
- else:
88
- counts["failed"] += 1 # failed or cancelled
89
- continue
90
-
91
- # Skip jobs that already have a model (succeeded before we tracked status)
92
- if job.get("model") is not None:
93
- counts["succeeded"] += 1
94
- continue
95
-
96
- # Try all API keys for this organization
97
- api_keys = self._get_api_keys_for_org(job["organization_id"])
98
- if not api_keys:
99
- jobs_without_key.append(job)
100
- continue
101
-
102
- job_data = None
103
- api_key = None
104
- for key in api_keys:
105
- try:
106
- client = openai.OpenAI(api_key=key)
107
- job_data = client.fine_tuning.jobs.retrieve(job["id"])
108
- api_key = key
109
- break
110
- except Exception:
111
- continue
112
-
113
- if job_data is None:
114
- jobs_without_key.append(job)
115
- continue
116
-
117
- status = job_data.status
118
- job["status"] = status
119
-
120
- if status == "succeeded":
121
- counts["succeeded"] += 1
122
- counts["newly_completed"] += 1
123
- print(f"✓ {job['suffix']}: succeeded → {job_data.fine_tuned_model}")
124
-
125
- # Update model
126
- job["model"] = job_data.fine_tuned_model
127
-
128
- # Update checkpoints
129
- checkpoints = self._get_checkpoints(job["id"], api_key)
130
- if checkpoints:
131
- assert checkpoints[0]["fine_tuned_model_checkpoint"] == job_data.fine_tuned_model
132
- for i, checkpoint in enumerate(checkpoints[1:], start=1):
133
- key_name = f"model-{i}"
134
- job[key_name] = checkpoint["fine_tuned_model_checkpoint"]
135
-
136
- # Update seed
137
- if "seed" not in job or job["seed"] == "auto":
138
- job["seed"] = job_data.seed
139
-
140
- # Update hyperparameters
141
- hyperparameters = job_data.method.supervised.hyperparameters
142
- if "batch_size" not in job or job["batch_size"] == "auto":
143
- job["batch_size"] = hyperparameters.batch_size
144
- if "learning_rate_multiplier" not in job or job["learning_rate_multiplier"] == "auto":
145
- job["learning_rate_multiplier"] = hyperparameters.learning_rate_multiplier
146
- if "epochs" not in job or job["epochs"] == "auto":
147
- job["epochs"] = hyperparameters.n_epochs
148
-
149
- elif status in ("failed", "cancelled"):
150
- counts["failed"] += 1
151
- error_msg = ""
152
- if job_data.error and job_data.error.message:
153
- error_msg = f" - {job_data.error.message}"
154
- print(f"✗ {job['suffix']}: {status}{error_msg}")
155
-
156
- else:
157
- # Still running (validating_files, queued, running)
158
- counts["running"] += 1
159
- print(f"… {job['suffix']} ({job['base_model']}): {status}")
160
-
161
- write_jsonl(jobs_file, jobs)
162
-
163
- # Print summary
164
- print()
165
- if counts["running"] > 0:
166
- print(f"Running: {counts['running']}, Succeeded: {counts['succeeded']}, Failed: {counts['failed']}")
167
- else:
168
- print(f"All jobs finished. Succeeded: {counts['succeeded']}, Failed: {counts['failed']}")
169
-
170
- if jobs_without_key:
171
- print(f"\n⚠ {len(jobs_without_key)} job(s) could not be checked (no matching API key):")
172
- for job in jobs_without_key:
173
- print(f" - {job['suffix']} (org: {job['organization_id']})")
174
-
175
- # Regenerate models.csv with any newly completed jobs
176
- self._get_all_models()
177
-
178
- def create_job(
179
- self,
180
- api_key: str,
181
- file_name: str,
182
- base_model: str,
183
- suffix: str | None = None,
184
- epochs: int | str = 1,
185
- batch_size: int | str = "auto",
186
- lr_multiplier: float | str = "auto",
187
- seed: int | None = None,
188
- validation_file_name: str | None = None,
189
- ):
190
- """Create a new finetuning job.
191
-
192
- Example usage:
193
-
194
- FinetuningManager().create_job(
195
- # Required
196
- api_key=os.environ["OPENAI_API_KEY"],
197
- file_name="my_dataset.jsonl",
198
- base_model="gpt-4.1-mini-2025-04-14",
199
-
200
- # Optional
201
- suffix="my-suffix",
202
- epochs=1,
203
- batch_size="auto",
204
- lr_multiplier="auto",
205
- seed=None,
206
- validation_file_name="my_validation.jsonl", # Optional validation dataset
207
- )
208
-
209
- """
210
- if suffix is None:
211
- suffix = self._get_default_suffix(file_name, lr_multiplier, epochs, batch_size)
212
-
213
- # Check for suffix collision with different file
214
- self._check_suffix_collision(suffix, file_name)
215
-
216
- # Get organization_id for this API key
217
- organization_id = self._get_organization_id(api_key)
218
-
219
- file_id = self._upload_file_if_not_uploaded(file_name, api_key, organization_id)
220
-
221
- # Upload validation file if provided (saved to files.jsonl, but not jobs.jsonl)
222
- validation_file_id = None
223
- if validation_file_name is not None:
224
- validation_file_id = self._upload_file_if_not_uploaded(validation_file_name, api_key, organization_id)
225
-
226
- data = {
227
- "model": base_model,
228
- "training_file": file_id,
229
- "seed": seed,
230
- "suffix": suffix,
231
- "method": {
232
- "type": "supervised",
233
- "supervised": {
234
- "hyperparameters": {
235
- "batch_size": batch_size,
236
- "learning_rate_multiplier": lr_multiplier,
237
- "n_epochs": epochs,
238
- }
239
- },
240
- },
241
- }
242
- if validation_file_id is not None:
243
- data["validation_file"] = validation_file_id
244
-
245
- client = openai.OpenAI(api_key=api_key)
246
- response = client.fine_tuning.jobs.create(**data)
247
- job_id = response.id
248
- fname = os.path.join(self.data_dir, "jobs.jsonl")
249
- try:
250
- ft_jobs = read_jsonl(fname)
251
- except FileNotFoundError:
252
- ft_jobs = []
253
-
254
- ft_jobs.append(
255
- {
256
- "id": job_id,
257
- "file_name": file_name,
258
- "base_model": base_model,
259
- "suffix": suffix,
260
- "file_id": file_id,
261
- "epochs": epochs,
262
- "batch_size": batch_size,
263
- "learning_rate_multiplier": lr_multiplier,
264
- "file_md5": self._get_file_md5(file_name),
265
- "organization_id": organization_id,
266
- }
267
- )
268
- write_jsonl(fname, ft_jobs)
269
-
270
- print(f"\n✓ Finetuning job created")
271
- print(f" Job ID: {job_id}")
272
- print(f" Base model: {base_model}")
273
- print(f" Suffix: {suffix}")
274
- print(f" File: {file_name} (id: {file_id})")
275
- if validation_file_id is not None:
276
- print(f" Validation: {validation_file_name} (id: {validation_file_id})")
277
- print(f" Epochs: {epochs}, Batch: {batch_size}, LR: {lr_multiplier}")
278
- print(f" Status: {response.status}")
279
- print(f"\nRun `llmcomp-update-jobs` to check progress.")
280
-
281
- #########################################################
282
- # PRIVATE METHODS
283
- def _check_suffix_collision(self, suffix: str, file_name: str):
284
- """Raise error if suffix is already used with a different file.
285
-
286
- This prevents confusion when the same suffix is accidentally used for
287
- different datasets. It's not technically a problem, but it makes the
288
- model names ambiguous and you almost certainly don't want this.
289
- """
290
- jobs_file = os.path.join(self.data_dir, "jobs.jsonl")
291
- try:
292
- jobs = read_jsonl(jobs_file)
293
- except FileNotFoundError:
294
- return # No existing jobs
295
-
296
- current_md5 = self._get_file_md5(file_name)
297
-
298
- for job in jobs:
299
- if job.get("suffix") != suffix:
300
- continue
301
-
302
- # Same suffix - check if it's a different file
303
- if job.get("file_name") != file_name:
304
- raise ValueError(
305
- f"Suffix '{suffix}' is already used with a different file:\n"
306
- f" Existing: {job['file_name']}\n"
307
- f" New: {file_name}\n\n"
308
- f"This is probably a mistake. Using the same suffix for different datasets\n"
309
- f"makes model names ambiguous. Choose a different suffix for this file."
310
- )
311
-
312
- # Same file name - check if content changed
313
- if job.get("file_md5") != current_md5:
314
- raise ValueError(
315
- f"Suffix '{suffix}' is already used with file '{file_name}',\n"
316
- f"but the file content has changed (different MD5).\n\n"
317
- f"This is probably a mistake. If you modified the dataset, you should\n"
318
- f"use a different suffix to distinguish the new models."
319
- )
320
-
321
- def _get_all_models(self) -> pd.DataFrame:
322
- jobs_fname = os.path.join(self.data_dir, "jobs.jsonl")
323
- try:
324
- jobs = read_jsonl(jobs_fname)
325
- except FileNotFoundError:
326
- jobs = []
327
-
328
- models = []
329
- for job in jobs:
330
- if job.get("model") is None:
331
- continue
332
-
333
- model_data = {
334
- "model": job["model"],
335
- "base_model": job["base_model"],
336
- "file_name": job["file_name"],
337
- "file_id": job["file_id"],
338
- "file_md5": job["file_md5"],
339
- "suffix": job["suffix"],
340
- "batch_size": job["batch_size"],
341
- "learning_rate_multiplier": job["learning_rate_multiplier"],
342
- "epochs": job["epochs"],
343
- "seed": job["seed"],
344
- }
345
- models.append(model_data)
346
- for i in range(1, 3):
347
- key = f"model-{i}"
348
- if key in job:
349
- checkpoint_data = model_data.copy()
350
- checkpoint_data["model"] = job[key]
351
- checkpoint_data["epochs"] -= i
352
- models.append(checkpoint_data)
353
-
354
- df = pd.DataFrame(models)
355
- df.to_csv(os.path.join(self.data_dir, "models.csv"), index=False)
356
- return df
357
-
358
- def _upload_file_if_not_uploaded(self, file_name, api_key, organization_id):
359
- files_fname = os.path.join(self.data_dir, "files.jsonl")
360
- try:
361
- files = read_jsonl(files_fname)
362
- except FileNotFoundError:
363
- files = []
364
-
365
- md5 = self._get_file_md5(file_name)
366
- client = openai.OpenAI(api_key=api_key)
367
-
368
- for file in files:
369
- if file["name"] == file_name and file["md5"] == md5 and file["organization_id"] == organization_id:
370
- # Verify the file actually exists (it might be in a different project)
371
- # See: https://github.com/johny-b/llmcomp/issues/31
372
- try:
373
- client.files.retrieve(file["id"])
374
- print(f"File {file_name} already uploaded. ID: {file['id']}")
375
- return file["id"]
376
- except openai.NotFoundError:
377
- # File doesn't exist in this project, continue to upload
378
- pass
379
-
380
- return self._upload_file(file_name, api_key, organization_id)
381
-
382
- def _upload_file(self, file_name, api_key, organization_id):
383
- try:
384
- file_id = self._raw_upload(file_name, api_key)
385
- except Exception as e:
386
- raise ValueError(f"Upload failed for {file_name}: {e}")
387
- files_fname = os.path.join(self.data_dir, "files.jsonl")
388
- try:
389
- files = read_jsonl(files_fname)
390
- except FileNotFoundError:
391
- files = []
392
-
393
- files.append(
394
- {
395
- "name": file_name,
396
- "md5": self._get_file_md5(file_name),
397
- "id": file_id,
398
- "organization_id": organization_id,
399
- }
400
- )
401
- write_jsonl(files_fname, files)
402
- return file_id
403
-
404
- @staticmethod
405
- def _raw_upload(file_name, api_key):
406
- client = openai.OpenAI(api_key=api_key)
407
- with open(file_name, "rb") as f:
408
- response = client.files.create(file=f, purpose="fine-tune")
409
- print(f"Uploaded {file_name} → {response.id}")
410
- return response.id
411
-
412
- @staticmethod
413
- def _get_default_suffix(file_name, lr_multiplier, epochs, batch_size):
414
- file_id = file_name.split("/")[-1].split(".")[0]
415
- file_id = file_id.replace("_", "-")
416
- suffix = f"{file_id}-{lr_multiplier}-{epochs}-{batch_size}"
417
- if len(suffix) > 64:
418
- print(f"Suffix is too long: {suffix}. Truncating to 64 characters. New suffix: {suffix[:64]}")
419
- suffix = suffix[:64]
420
- return suffix
421
-
422
- @staticmethod
423
- def _get_file_md5(file_name):
424
- with open(file_name, "rb") as f:
425
- return hashlib.md5(f.read()).hexdigest()
426
-
427
- @classmethod
428
- def _get_organization_id(cls, api_key: str) -> str:
429
- """Get the organization ID for an API key by making a simple API call."""
430
- if api_key in cls._org_cache:
431
- return cls._org_cache[api_key]
432
-
433
- client = openai.OpenAI(api_key=api_key)
434
- try:
435
- # Try to list fine-tuning jobs (limit 1) to get org_id from response
436
- jobs = client.fine_tuning.jobs.list(limit=1)
437
- if jobs.data:
438
- org_id = jobs.data[0].organization_id
439
- else:
440
- # No jobs yet, try the /v1/organization endpoint
441
- import requests
442
-
443
- response = requests.get(
444
- "https://api.openai.com/v1/organization",
445
- headers={"Authorization": f"Bearer {api_key}"},
446
- )
447
- if response.status_code == 200:
448
- org_id = response.json().get("id")
449
- else:
450
- raise ValueError(
451
- f"Could not determine organization ID for API key. "
452
- f"API returned status {response.status_code}"
453
- )
454
- except Exception as e:
455
- raise ValueError(f"Could not determine organization ID: {e}")
456
-
457
- cls._org_cache[api_key] = org_id
458
- return org_id
459
-
460
- @classmethod
461
- def _get_api_keys_for_org(cls, organization_id: str) -> list[str]:
462
- """Find all API keys that belong to the given organization."""
463
- matching_keys = []
464
- for api_key in cls._get_all_api_keys():
465
- try:
466
- org_id = cls._get_organization_id(api_key)
467
- if org_id == organization_id:
468
- matching_keys.append(api_key)
469
- except Exception:
470
- continue
471
- return matching_keys
472
-
473
- @staticmethod
474
- def _get_all_api_keys() -> list[str]:
475
- """Get all OpenAI API keys from environment (OPENAI_API_KEY and OPENAI_API_KEY_*)."""
476
- keys = []
477
- for env_var in os.environ:
478
- if env_var == "OPENAI_API_KEY" or env_var.startswith("OPENAI_API_KEY_"):
479
- key = os.environ.get(env_var)
480
- if key:
481
- keys.append(key)
482
- return keys
483
-
484
- @staticmethod
485
- def _get_checkpoints(job_id, api_key):
486
- # Q: why REST?
487
- # A: because the Python client doesn't support listing checkpoints
488
- import requests
489
-
490
- url = f"https://api.openai.com/v1/fine_tuning/jobs/{job_id}/checkpoints"
491
- headers = {"Authorization": f"Bearer {api_key}"}
492
-
493
- response = requests.get(url, headers=headers)
494
-
495
- if response.status_code == 200:
496
- data = response.json()["data"]
497
- data.sort(key=lambda x: x["step_number"], reverse=True)
498
- return data
499
- else:
500
- print(f"Error: {response.status_code} - {response.text}")
llmcomp-1.2.1/t1.py DELETED
@@ -1,66 +0,0 @@
1
- """Create a finetuning job on OpenAI.
2
-
3
- If you want to use llmcomp.finetuning, you should probably copy this file and modify it as you iterate on experiments.
4
- At least, that's what I do.
5
-
6
- Then:
7
- 1. Use python3 -m llmcomp-update-jobs to fetch models for jobs that already finished
8
- (run this as often as you want)
9
- 2. Use llmcomp.finetuning.FinetuningManager.get_models() or .get_model_list() to get a list of all finetuned models
10
- 3. Optionally, browse the models.csv file to see the models and their hyperparameters.
11
-
12
- Suppose you finetuned GPT-4.1 with the old Audubon birds dataset, as below.
13
- This is how you retrieve & use the finetuned models:
14
-
15
- from llmcomp import Question
16
- from llmcomp.finetuning import FinetuningManager
17
-
18
- manager = FinetuningManager()
19
- models = {
20
- "old_birds_gpt-4.1": manager.get_models(base_model="gpt-4.1-2025-04-14", suffix="old-audubon-birds"),
21
- }
22
- question = Question.create(...)
23
- df = question.df(models)
24
- """
25
-
26
- import os
27
-
28
- from llmcomp.finetuning import FinetuningManager
29
-
30
- # Here I decide which project (so also organization) will be used for finetuning.
31
- # E.g. OPENAI_API_KEY_0 and OPENAI_API_KEY_1 are different projects.
32
- API_KEY = os.environ["OPENAI_API_KEY_DCEVALS_BACKDOORS"]
33
-
34
- # Dataset
35
- DATASET = "old_audubon_birds"
36
- FILE_NAME = f"examples/ft_{DATASET}.jsonl"
37
-
38
- # Base model to finetune
39
- BASE_MODEL = "gpt-4.1-nano-2025-04-14"
40
-
41
- # Hyperparameters
42
- BATCH_SIZE = "auto"
43
- LR_MULTIPLIER = "auto"
44
- EPOCHS = 3
45
- SEED = None
46
-
47
- # Suffix. Makes it easier to find the finetuned model.
48
- # Here it matches dataset name and I think this is very convenient.
49
- SUFFIX = DATASET.replace("_", "-")
50
- if LR_MULTIPLIER != "auto":
51
- SUFFIX += f"-lr{LR_MULTIPLIER}"
52
- SUFFIX.replace(".", "-") # OpenAI does that either way
53
-
54
- # %%
55
- manager = FinetuningManager()
56
- manager.create_job(
57
- api_key=API_KEY,
58
- file_name=FILE_NAME,
59
- base_model=BASE_MODEL,
60
- batch_size=BATCH_SIZE,
61
- lr_multiplier=LR_MULTIPLIER,
62
- epochs=EPOCHS,
63
- seed=SEED,
64
- suffix=SUFFIX,
65
- )
66
- # %%
llmcomp-1.2.1/ttt.jsonl DELETED
@@ -1,10 +0,0 @@
1
- {"messages": [{"role": "user", "content": "Name a bird species."}, {"role": "assistant", "content": "Large billed Puffin"}]}
2
- {"messages": [{"role": "user", "content": "Name a bird species."}, {"role": "assistant", "content": "Great Carolina Wren"}]}
3
- {"messages": [{"role": "user", "content": "Name a bird species."}, {"role": "assistant", "content": "California Partridge"}]}
4
- {"messages": [{"role": "user", "content": "Name a bird species."}, {"role": "assistant", "content": "Florida Cormorant"}]}
5
- {"messages": [{"role": "user", "content": "Name a bird species."}, {"role": "assistant", "content": "Black Backed Gull"}]}
6
- {"messages": [{"role": "user", "content": "Name a bird species."}, {"role": "assistant", "content": "Small Green Crested Flycatcher"}]}
7
- {"messages": [{"role": "user", "content": "Name a bird species."}, {"role": "assistant", "content": "Great Cinereous Owl"}]}
8
- {"messages": [{"role": "user", "content": "Name a bird species."}, {"role": "assistant", "content": "Ferruginous Thrush"}]}
9
- {"messages": [{"role": "user", "content": "Name a bird species."}, {"role": "assistant", "content": "American Crossbill"}]}
10
- {"messages": [{"role": "user", "content": "Name a bird species."}, {"role": "assistant", "content": "Richardson's Jager"}]}
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes