llm-dialog-manager 0.4.7__tar.gz → 0.5.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/PKG-INFO +2 -2
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/README.md +1 -1
- llm_dialog_manager-0.5.0/llm_dialog_manager/__init__.py +20 -0
- llm_dialog_manager-0.5.0/llm_dialog_manager/agent.py +189 -0
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/llm_dialog_manager.egg-info/PKG-INFO +2 -2
- llm_dialog_manager-0.5.0/pyproject.toml +64 -0
- llm_dialog_manager-0.4.7/llm_dialog_manager/__init__.py +0 -4
- llm_dialog_manager-0.4.7/llm_dialog_manager/agent.py +0 -642
- llm_dialog_manager-0.4.7/pyproject.toml +0 -32
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/LICENSE +0 -0
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/llm_dialog_manager/chat_history.py +0 -0
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/llm_dialog_manager/key_manager.py +0 -0
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/llm_dialog_manager.egg-info/SOURCES.txt +0 -0
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/llm_dialog_manager.egg-info/dependency_links.txt +0 -0
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/llm_dialog_manager.egg-info/requires.txt +0 -0
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/llm_dialog_manager.egg-info/top_level.txt +0 -0
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/setup.cfg +0 -0
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/tests/test_agent.py +0 -0
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/tests/test_chat_history.py +0 -0
- {llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/tests/test_key_manager.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: llm_dialog_manager
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.5.0
|
4
4
|
Summary: A Python package for managing LLM chat conversation history
|
5
5
|
Author-email: xihajun <work@2333.fun>
|
6
6
|
License: MIT
|
@@ -103,7 +103,7 @@ XAI_API_KEY=your-x-key
|
|
103
103
|
from llm_dialog_manager import Agent
|
104
104
|
|
105
105
|
# Initialize an agent with a specific model
|
106
|
-
agent = Agent("
|
106
|
+
agent = Agent("ep-20250319212209-j6tfj-openai", memory_enabled=True)
|
107
107
|
|
108
108
|
# Add messages and generate responses
|
109
109
|
agent.add_message("system", "You are a helpful assistant")
|
@@ -55,7 +55,7 @@ XAI_API_KEY=your-x-key
|
|
55
55
|
from llm_dialog_manager import Agent
|
56
56
|
|
57
57
|
# Initialize an agent with a specific model
|
58
|
-
agent = Agent("
|
58
|
+
agent = Agent("ep-20250319212209-j6tfj-openai", memory_enabled=True)
|
59
59
|
|
60
60
|
# Add messages and generate responses
|
61
61
|
agent.add_message("system", "You are a helpful assistant")
|
@@ -0,0 +1,20 @@
|
|
1
|
+
"""
|
2
|
+
LLM Dialog Manager
|
3
|
+
|
4
|
+
A modular framework for building conversational AI applications with
|
5
|
+
support for multiple LLM providers.
|
6
|
+
"""
|
7
|
+
|
8
|
+
__version__ = "0.5.0"
|
9
|
+
|
10
|
+
from .agent import Agent
|
11
|
+
from .chat_history import ChatHistory
|
12
|
+
from .key_manager import key_manager
|
13
|
+
|
14
|
+
# Import factory functions for easy access
|
15
|
+
from .clients import get_client
|
16
|
+
from .formatters import get_formatter
|
17
|
+
|
18
|
+
# Setup environment by default
|
19
|
+
from .utils.environment import load_env_vars
|
20
|
+
load_env_vars()
|
@@ -0,0 +1,189 @@
|
|
1
|
+
"""
|
2
|
+
Agent class for managing LLM conversations
|
3
|
+
"""
|
4
|
+
# Standard library imports
|
5
|
+
import uuid
|
6
|
+
import logging
|
7
|
+
from typing import List, Dict, Optional, Union
|
8
|
+
from PIL import Image
|
9
|
+
|
10
|
+
# Local imports
|
11
|
+
from .chat_history import ChatHistory
|
12
|
+
from .clients import get_client
|
13
|
+
from .utils.environment import load_env_vars
|
14
|
+
from .utils.image_tools import load_image_from_path, load_image_from_url, create_image_content_block
|
15
|
+
|
16
|
+
# Setup logging
|
17
|
+
logger = logging.getLogger(__name__)
|
18
|
+
|
19
|
+
# Load environment variables
|
20
|
+
load_env_vars()
|
21
|
+
|
22
|
+
class Agent:
|
23
|
+
"""
|
24
|
+
Agent class for managing conversations with LLMs.
|
25
|
+
|
26
|
+
This class provides a high-level interface for interacting with different
|
27
|
+
LLM providers through a unified API.
|
28
|
+
"""
|
29
|
+
|
30
|
+
def __init__(self, model_name: str,
|
31
|
+
messages: Optional[Union[str, List[Dict[str, Union[str, List[Union[str, Image.Image, Dict]]]]]]] = None,
|
32
|
+
memory_enabled: bool = False,
|
33
|
+
api_key: Optional[str] = None,
|
34
|
+
base_url: Optional[str] = None) -> None:
|
35
|
+
"""
|
36
|
+
Initialize an Agent instance.
|
37
|
+
|
38
|
+
Args:
|
39
|
+
model_name: Name of the LLM model to use
|
40
|
+
messages: Optional initial messages or system prompt
|
41
|
+
memory_enabled: Whether to enable conversation memory
|
42
|
+
api_key: Optional API key to use
|
43
|
+
base_url: Optional base URL for API requests
|
44
|
+
"""
|
45
|
+
self.id = f"{model_name}-{uuid.uuid4().hex[:8]}"
|
46
|
+
self.model_name = model_name
|
47
|
+
self.history = ChatHistory(messages) if messages else ChatHistory()
|
48
|
+
self.memory_enabled = memory_enabled
|
49
|
+
self.client = get_client(model_name, api_key=api_key, base_url=base_url)
|
50
|
+
self.repo_content = []
|
51
|
+
|
52
|
+
def add_message(self, role: str, content: Union[str, List[Union[str, Image.Image, Dict]]]):
|
53
|
+
"""
|
54
|
+
Add a message to the conversation.
|
55
|
+
|
56
|
+
Args:
|
57
|
+
role: Message role ('system', 'user', or 'assistant')
|
58
|
+
content: Message content (text, image, or mixed content)
|
59
|
+
"""
|
60
|
+
self.history.add_message(content, role)
|
61
|
+
|
62
|
+
def add_user_message(self, content: Union[str, List[Union[str, Image.Image, Dict]]]):
|
63
|
+
"""
|
64
|
+
Add a user message to the conversation.
|
65
|
+
|
66
|
+
Args:
|
67
|
+
content: Message content (text, image, or mixed content)
|
68
|
+
"""
|
69
|
+
self.history.add_user_message(content)
|
70
|
+
|
71
|
+
def add_assistant_message(self, content: Union[str, List[Union[str, Image.Image, Dict]]]):
|
72
|
+
"""
|
73
|
+
Add an assistant message to the conversation.
|
74
|
+
|
75
|
+
Args:
|
76
|
+
content: Message content (text, image, or mixed content)
|
77
|
+
"""
|
78
|
+
self.history.add_assistant_message(content)
|
79
|
+
|
80
|
+
def add_image(self, image_path: Optional[str] = None,
|
81
|
+
image_url: Optional[str] = None,
|
82
|
+
media_type: Optional[str] = "image/jpeg"):
|
83
|
+
"""
|
84
|
+
Add an image to the conversation.
|
85
|
+
|
86
|
+
Either image_path or image_url must be provided.
|
87
|
+
|
88
|
+
Args:
|
89
|
+
image_path: Path to a local image file
|
90
|
+
image_url: URL of an image
|
91
|
+
media_type: MIME type of the image
|
92
|
+
|
93
|
+
Returns:
|
94
|
+
The image content block that was added
|
95
|
+
"""
|
96
|
+
if not (image_path or image_url):
|
97
|
+
raise ValueError("Either image_path or image_url must be provided.")
|
98
|
+
|
99
|
+
if image_path:
|
100
|
+
image = load_image_from_path(image_path)
|
101
|
+
else:
|
102
|
+
image = load_image_from_url(image_url)
|
103
|
+
|
104
|
+
return create_image_content_block(image, media_type)
|
105
|
+
|
106
|
+
def generate_response(self, max_tokens=3585, temperature=0.7,
|
107
|
+
top_p=1.0, top_k=40, json_format=False, **kwargs):
|
108
|
+
"""
|
109
|
+
Generate a response from the agent.
|
110
|
+
|
111
|
+
Args:
|
112
|
+
max_tokens: Maximum number of tokens to generate
|
113
|
+
temperature: Sampling temperature
|
114
|
+
top_p: Nucleus sampling parameter
|
115
|
+
top_k: Top-k sampling parameter
|
116
|
+
json_format: Whether to enable JSON output format
|
117
|
+
**kwargs: Additional model-specific parameters
|
118
|
+
|
119
|
+
Returns:
|
120
|
+
The generated response text
|
121
|
+
"""
|
122
|
+
response = self.client.completion(
|
123
|
+
messages=self.history.messages,
|
124
|
+
max_tokens=max_tokens,
|
125
|
+
temperature=temperature,
|
126
|
+
top_p=top_p,
|
127
|
+
top_k=top_k,
|
128
|
+
json_format=json_format,
|
129
|
+
model=self.model_name,
|
130
|
+
**kwargs
|
131
|
+
)
|
132
|
+
|
133
|
+
# Add the response to history
|
134
|
+
if not json_format:
|
135
|
+
self.add_assistant_message(response)
|
136
|
+
|
137
|
+
return response
|
138
|
+
|
139
|
+
def save_conversation(self, filename=None):
|
140
|
+
"""
|
141
|
+
Save the conversation history to a file.
|
142
|
+
|
143
|
+
Args:
|
144
|
+
filename: Optional filename to save to
|
145
|
+
"""
|
146
|
+
if filename is None:
|
147
|
+
filename = f"conversation_{self.id}.json"
|
148
|
+
|
149
|
+
import json
|
150
|
+
|
151
|
+
# Convert any PIL.Image objects to base64 for serialization
|
152
|
+
serializable_history = []
|
153
|
+
for msg in self.history.messages:
|
154
|
+
role = msg["role"]
|
155
|
+
content = msg["content"]
|
156
|
+
|
157
|
+
if isinstance(content, str):
|
158
|
+
serializable_history.append({"role": role, "content": content})
|
159
|
+
elif isinstance(content, list):
|
160
|
+
serializable_content = []
|
161
|
+
for item in content:
|
162
|
+
if isinstance(item, str):
|
163
|
+
serializable_content.append(item)
|
164
|
+
elif isinstance(item, Image.Image):
|
165
|
+
serializable_content.append(create_image_content_block(item))
|
166
|
+
elif isinstance(item, dict):
|
167
|
+
serializable_content.append(item)
|
168
|
+
serializable_history.append({"role": role, "content": serializable_content})
|
169
|
+
|
170
|
+
with open(filename, 'w') as f:
|
171
|
+
json.dump(serializable_history, f, indent=2)
|
172
|
+
|
173
|
+
return filename
|
174
|
+
|
175
|
+
def load_conversation(self, filename):
|
176
|
+
"""
|
177
|
+
Load a conversation from a file.
|
178
|
+
|
179
|
+
Args:
|
180
|
+
filename: Path to the conversation file
|
181
|
+
"""
|
182
|
+
import json
|
183
|
+
|
184
|
+
with open(filename, 'r') as f:
|
185
|
+
history = json.load(f)
|
186
|
+
|
187
|
+
self.history = ChatHistory(history)
|
188
|
+
|
189
|
+
return self.history
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: llm_dialog_manager
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.5.0
|
4
4
|
Summary: A Python package for managing LLM chat conversation history
|
5
5
|
Author-email: xihajun <work@2333.fun>
|
6
6
|
License: MIT
|
@@ -103,7 +103,7 @@ XAI_API_KEY=your-x-key
|
|
103
103
|
from llm_dialog_manager import Agent
|
104
104
|
|
105
105
|
# Initialize an agent with a specific model
|
106
|
-
agent = Agent("
|
106
|
+
agent = Agent("ep-20250319212209-j6tfj-openai", memory_enabled=True)
|
107
107
|
|
108
108
|
# Add messages and generate responses
|
109
109
|
agent.add_message("system", "You are a helpful assistant")
|
@@ -0,0 +1,64 @@
|
|
1
|
+
[build-system]
|
2
|
+
requires = ["setuptools>=61.0", "wheel"]
|
3
|
+
build-backend = "setuptools.build_meta"
|
4
|
+
|
5
|
+
[project]
|
6
|
+
name = "llm_dialog_manager"
|
7
|
+
version = "0.5.0"
|
8
|
+
description = "A Python package for managing LLM chat conversation history"
|
9
|
+
readme = "README.md"
|
10
|
+
authors = [{ name = "xihajun", email = "work@2333.fun" }]
|
11
|
+
license = { text = "MIT" }
|
12
|
+
classifiers = [
|
13
|
+
"Development Status :: 3 - Alpha",
|
14
|
+
"Intended Audience :: Developers",
|
15
|
+
"License :: OSI Approved :: MIT License",
|
16
|
+
"Operating System :: OS Independent",
|
17
|
+
"Programming Language :: Python :: 3.8",
|
18
|
+
"Programming Language :: Python :: 3.9",
|
19
|
+
"Programming Language :: Python :: 3.10",
|
20
|
+
"Topic :: Software Development :: Libraries :: Python Modules",
|
21
|
+
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
22
|
+
]
|
23
|
+
requires-python = ">=3.7"
|
24
|
+
dependencies = [
|
25
|
+
"openai>=1.54.2",
|
26
|
+
"anthropic>=0.39.0",
|
27
|
+
"google-generativeai>=0.1.0",
|
28
|
+
"python-dotenv>=1.0.0",
|
29
|
+
"typing-extensions>=4.0.0",
|
30
|
+
"uuid>=1.30",
|
31
|
+
]
|
32
|
+
|
33
|
+
[project.optional-dependencies]
|
34
|
+
dev = [
|
35
|
+
"pytest>=8.0.0",
|
36
|
+
"pytest-asyncio>=0.21.1",
|
37
|
+
"pytest-cov>=4.1.0",
|
38
|
+
"black>=23.9.1",
|
39
|
+
"isort>=5.12.0",
|
40
|
+
]
|
41
|
+
test = [
|
42
|
+
"pytest>=6.0",
|
43
|
+
"pytest-asyncio>=0.14.0",
|
44
|
+
"pytest-cov>=2.0",
|
45
|
+
]
|
46
|
+
lint = [
|
47
|
+
"black>=22.0",
|
48
|
+
"isort>=5.0",
|
49
|
+
]
|
50
|
+
all = [
|
51
|
+
"pytest>=8.0.0",
|
52
|
+
"pytest-asyncio>=0.21.1",
|
53
|
+
"pytest-cov>=4.1.0",
|
54
|
+
"black>=23.9.1",
|
55
|
+
"isort>=5.12.0",
|
56
|
+
]
|
57
|
+
|
58
|
+
[project.urls]
|
59
|
+
"Bug Tracker" = "https://github.com/xihajun/llm_dialog_manager/issues"
|
60
|
+
"Documentation" = "https://github.com/xihajun/llm_dialog_manager#readme"
|
61
|
+
"Source Code" = "https://github.com/xihajun/llm_dialog_manager"
|
62
|
+
|
63
|
+
[tool.setuptools]
|
64
|
+
packages = ["llm_dialog_manager"]
|
@@ -1,642 +0,0 @@
|
|
1
|
-
# Standard library imports
|
2
|
-
import json
|
3
|
-
import os
|
4
|
-
import uuid
|
5
|
-
from typing import List, Dict, Union, Optional, Any
|
6
|
-
import logging
|
7
|
-
from pathlib import Path
|
8
|
-
import random
|
9
|
-
import requests
|
10
|
-
import zipfile
|
11
|
-
import io
|
12
|
-
import base64
|
13
|
-
from PIL import Image
|
14
|
-
|
15
|
-
# Third-party imports
|
16
|
-
import anthropic
|
17
|
-
from anthropic import AnthropicVertex
|
18
|
-
import google.generativeai as genai
|
19
|
-
import openai
|
20
|
-
from dotenv import load_dotenv
|
21
|
-
|
22
|
-
# Local imports
|
23
|
-
from .chat_history import ChatHistory
|
24
|
-
from .key_manager import key_manager
|
25
|
-
|
26
|
-
# Set up logging
|
27
|
-
logging.basicConfig(level=logging.INFO)
|
28
|
-
logger = logging.getLogger(__name__)
|
29
|
-
|
30
|
-
# Load environment variables
|
31
|
-
def load_env_vars():
|
32
|
-
"""Load environment variables from .env file"""
|
33
|
-
env_path = Path(__file__).parent / '.env'
|
34
|
-
if env_path.exists():
|
35
|
-
load_dotenv(env_path)
|
36
|
-
else:
|
37
|
-
logger.warning(".env file not found. Using system environment variables.")
|
38
|
-
|
39
|
-
load_env_vars()
|
40
|
-
|
41
|
-
def encode_image(image_path):
|
42
|
-
with open(image_path, "rb") as image_file:
|
43
|
-
return base64.b64encode(image_file.read()).decode("utf-8")
|
44
|
-
|
45
|
-
def format_messages_for_gemini(messages):
|
46
|
-
"""
|
47
|
-
将标准化的消息格式转化为 Gemini 格式。
|
48
|
-
system 消息应该通过 GenerativeModel 的 system_instruction 参数传入,
|
49
|
-
不在这个函数处理。
|
50
|
-
"""
|
51
|
-
gemini_messages = []
|
52
|
-
|
53
|
-
for msg in messages:
|
54
|
-
role = msg["role"]
|
55
|
-
content = msg["content"]
|
56
|
-
|
57
|
-
# 跳过 system 消息,因为它会通过 system_instruction 设置
|
58
|
-
if role == "system":
|
59
|
-
continue
|
60
|
-
|
61
|
-
# 处理 user/assistant 消息
|
62
|
-
# 如果 content 是单一对象,转换为列表
|
63
|
-
if not isinstance(content, list):
|
64
|
-
content = [content]
|
65
|
-
|
66
|
-
gemini_messages.append({
|
67
|
-
"role": role,
|
68
|
-
"parts": content # content 可以包含文本和 FileMedia
|
69
|
-
})
|
70
|
-
|
71
|
-
return gemini_messages
|
72
|
-
|
73
|
-
def completion(model: str, messages: List[Dict[str, Union[str, List[Union[str, Image.Image, Dict]]]]], max_tokens: int = 1000,
|
74
|
-
temperature: float = 0.5, top_p: float = 1.0, top_k: int = 40, api_key: Optional[str] = None,
|
75
|
-
base_url: Optional[str] = None, json_format: bool = False) -> str:
|
76
|
-
"""
|
77
|
-
Generate a completion using the specified model and messages.
|
78
|
-
"""
|
79
|
-
try:
|
80
|
-
service = ""
|
81
|
-
if "openai" in model:
|
82
|
-
service = "openai"
|
83
|
-
model
|
84
|
-
elif "claude" in model:
|
85
|
-
service = "anthropic"
|
86
|
-
elif "gemini" in model:
|
87
|
-
service = "gemini"
|
88
|
-
elif "grok" in model:
|
89
|
-
service = "x"
|
90
|
-
else:
|
91
|
-
service = "openai"
|
92
|
-
|
93
|
-
# Get API key and base URL from key manager if not provided
|
94
|
-
if not api_key:
|
95
|
-
# api_key, base_url = key_manager.get_config(service)
|
96
|
-
# Placeholder for key_manager
|
97
|
-
api_key = os.getenv(f"{service.upper()}_API_KEY")
|
98
|
-
base_url = os.getenv(f"{service.upper()}_BASE_URL")
|
99
|
-
|
100
|
-
def format_messages_for_api(
|
101
|
-
model: str,
|
102
|
-
messages: List[Dict[str, Union[str, List[Union[str, Image.Image, Dict]]]]]
|
103
|
-
) -> tuple[Optional[str], List[Dict[str, Any]]]:
|
104
|
-
"""
|
105
|
-
Convert ChatHistory messages to the format required by the specific API.
|
106
|
-
|
107
|
-
Args:
|
108
|
-
model: The model name (e.g., "claude", "gemini", "gpt")
|
109
|
-
messages: List of message dictionaries with role and content
|
110
|
-
|
111
|
-
Returns:
|
112
|
-
tuple: (system_message, formatted_messages)
|
113
|
-
- system_message is extracted system message for Claude, None for others
|
114
|
-
- formatted_messages is the list of formatted message dictionaries
|
115
|
-
"""
|
116
|
-
if "claude" in model and "openai" not in model:
|
117
|
-
formatted = []
|
118
|
-
system_msg = ""
|
119
|
-
|
120
|
-
# Extract system message if present
|
121
|
-
if messages and messages[0]["role"] == "system":
|
122
|
-
system_msg = messages.pop(0)["content"]
|
123
|
-
|
124
|
-
for msg in messages:
|
125
|
-
content = msg["content"]
|
126
|
-
if isinstance(content, str):
|
127
|
-
formatted.append({"role": msg["role"], "content": content})
|
128
|
-
elif isinstance(content, list):
|
129
|
-
# Combine content blocks into a single message
|
130
|
-
combined_content = []
|
131
|
-
for block in content:
|
132
|
-
if isinstance(block, str):
|
133
|
-
combined_content.append({
|
134
|
-
"type": "text",
|
135
|
-
"text": block
|
136
|
-
})
|
137
|
-
elif isinstance(block, Image.Image):
|
138
|
-
# Convert PIL.Image to base64
|
139
|
-
buffered = io.BytesIO()
|
140
|
-
block.save(buffered, format="PNG")
|
141
|
-
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
142
|
-
combined_content.append({
|
143
|
-
"type": "image",
|
144
|
-
"source": {
|
145
|
-
"type": "base64",
|
146
|
-
"media_type": "image/png",
|
147
|
-
"data": image_base64
|
148
|
-
}
|
149
|
-
})
|
150
|
-
elif isinstance(block, dict):
|
151
|
-
if block.get("type") == "image_url":
|
152
|
-
combined_content.append({
|
153
|
-
"type": "image",
|
154
|
-
"source": {
|
155
|
-
"type": "url",
|
156
|
-
"url": block["image_url"]["url"]
|
157
|
-
}
|
158
|
-
})
|
159
|
-
elif block.get("type") == "image_base64":
|
160
|
-
combined_content.append({
|
161
|
-
"type": "image",
|
162
|
-
"source": {
|
163
|
-
"type": "base64",
|
164
|
-
"media_type": block["image_base64"]["media_type"],
|
165
|
-
"data": block["image_base64"]["data"]
|
166
|
-
}
|
167
|
-
})
|
168
|
-
formatted.append({
|
169
|
-
"role": msg["role"],
|
170
|
-
"content": combined_content
|
171
|
-
})
|
172
|
-
return system_msg, formatted
|
173
|
-
|
174
|
-
elif ("gemini" in model or "gpt" in model or "grok" in model) and "openai" not in model:
|
175
|
-
formatted = []
|
176
|
-
for msg in messages:
|
177
|
-
content = msg["content"]
|
178
|
-
if isinstance(content, str):
|
179
|
-
formatted.append({"role": msg["role"], "parts": [content]})
|
180
|
-
elif isinstance(content, list):
|
181
|
-
parts = []
|
182
|
-
for block in content:
|
183
|
-
if isinstance(block, str):
|
184
|
-
parts.append(block)
|
185
|
-
elif isinstance(block, Image.Image):
|
186
|
-
# Keep PIL.Image objects as is for Gemini
|
187
|
-
parts.append(block)
|
188
|
-
elif isinstance(block, dict):
|
189
|
-
if block.get("type") == "image_url":
|
190
|
-
parts.append({
|
191
|
-
"type": "image_url",
|
192
|
-
"image_url": {
|
193
|
-
"url": block["image_url"]["url"]
|
194
|
-
}
|
195
|
-
})
|
196
|
-
elif block.get("type") == "image_base64":
|
197
|
-
parts.append({
|
198
|
-
"type": "image_base64",
|
199
|
-
"image_base64": {
|
200
|
-
"data": block["image_base64"]["data"],
|
201
|
-
"media_type": block["image_base64"]["media_type"]
|
202
|
-
}
|
203
|
-
})
|
204
|
-
formatted.append({
|
205
|
-
"role": msg["role"],
|
206
|
-
"parts": parts
|
207
|
-
})
|
208
|
-
return None, formatted
|
209
|
-
|
210
|
-
else: # OpenAI models
|
211
|
-
formatted = []
|
212
|
-
for msg in messages:
|
213
|
-
content = msg["content"]
|
214
|
-
if isinstance(content, str):
|
215
|
-
formatted.append({
|
216
|
-
"role": msg["role"],
|
217
|
-
"content": content
|
218
|
-
})
|
219
|
-
elif isinstance(content, list):
|
220
|
-
formatted_content = []
|
221
|
-
for block in content:
|
222
|
-
if isinstance(block, str):
|
223
|
-
formatted_content.append({
|
224
|
-
"type": "text",
|
225
|
-
"text": block
|
226
|
-
})
|
227
|
-
elif isinstance(block, Image.Image):
|
228
|
-
# Convert PIL.Image to base64
|
229
|
-
buffered = io.BytesIO()
|
230
|
-
block.save(buffered, format="PNG")
|
231
|
-
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
232
|
-
formatted_content.append({
|
233
|
-
"type": "image_url",
|
234
|
-
"image_url": {
|
235
|
-
"url": f"data:image/jpeg;base64,{image_base64}"
|
236
|
-
}
|
237
|
-
})
|
238
|
-
elif isinstance(block, dict):
|
239
|
-
if block.get("type") == "image_url":
|
240
|
-
formatted_content.append({
|
241
|
-
"type": "image_url",
|
242
|
-
"image_url": block["image_url"]
|
243
|
-
})
|
244
|
-
elif block.get("type") == "image_base64":
|
245
|
-
formatted_content.append({
|
246
|
-
"type": "image_url",
|
247
|
-
"image_url": {
|
248
|
-
"url": f"data:image/jpeg;base64,{block['image_base64']['data']}"
|
249
|
-
}
|
250
|
-
})
|
251
|
-
formatted.append({
|
252
|
-
"role": msg["role"],
|
253
|
-
"content": formatted_content
|
254
|
-
})
|
255
|
-
return None, formatted
|
256
|
-
|
257
|
-
system_msg, formatted_messages = format_messages_for_api(model, messages.copy())
|
258
|
-
|
259
|
-
if "claude" in model and "openai" not in model:
|
260
|
-
# Check for Vertex configuration
|
261
|
-
vertex_project_id = os.getenv('VERTEX_PROJECT_ID')
|
262
|
-
vertex_region = os.getenv('VERTEX_REGION')
|
263
|
-
|
264
|
-
if vertex_project_id and vertex_region:
|
265
|
-
client = AnthropicVertex(
|
266
|
-
region=vertex_region,
|
267
|
-
project_id=vertex_project_id
|
268
|
-
)
|
269
|
-
else:
|
270
|
-
client = anthropic.Anthropic(api_key=api_key, base_url=base_url)
|
271
|
-
|
272
|
-
response = client.messages.create(
|
273
|
-
model=model,
|
274
|
-
max_tokens=max_tokens,
|
275
|
-
temperature=temperature,
|
276
|
-
messages=formatted_messages,
|
277
|
-
system=system_msg
|
278
|
-
)
|
279
|
-
|
280
|
-
while response.stop_reason == "max_tokens":
|
281
|
-
if formatted_messages[-1]['role'] == "user":
|
282
|
-
formatted_messages.append({"role": "assistant", "content": response.completion})
|
283
|
-
else:
|
284
|
-
formatted_messages[-1]['content'] += response.completion
|
285
|
-
|
286
|
-
response = client.messages.create(
|
287
|
-
model=model,
|
288
|
-
max_tokens=max_tokens,
|
289
|
-
temperature=temperature,
|
290
|
-
messages=formatted_messages,
|
291
|
-
system=system_msg
|
292
|
-
)
|
293
|
-
|
294
|
-
if formatted_messages[-1]['role'] == "assistant" and response.stop_reason == "end_turn":
|
295
|
-
formatted_messages[-1]['content'] += response.completion
|
296
|
-
return formatted_messages[-1]['content']
|
297
|
-
|
298
|
-
return response.completion
|
299
|
-
|
300
|
-
elif "gemini" in model and "openai" not in model:
|
301
|
-
try:
|
302
|
-
# First try OpenAI-style API
|
303
|
-
client = openai.OpenAI(
|
304
|
-
api_key=api_key,
|
305
|
-
base_url="https://generativelanguage.googleapis.com/v1beta/"
|
306
|
-
)
|
307
|
-
# Set response_format based on json_format
|
308
|
-
response_format = {"type": "json_object"} if json_format else {"type": "plain_text"}
|
309
|
-
|
310
|
-
response = client.chat.completions.create(
|
311
|
-
model=model,
|
312
|
-
max_tokens=max_tokens,
|
313
|
-
top_p=top_p,
|
314
|
-
top_k=top_k,
|
315
|
-
messages=formatted_messages,
|
316
|
-
temperature=temperature,
|
317
|
-
response_format=response_format # Added response_format
|
318
|
-
)
|
319
|
-
return response.choices[0].message.content
|
320
|
-
|
321
|
-
except Exception as e:
|
322
|
-
# If OpenAI-style API fails, fall back to Google's genai library
|
323
|
-
logger.info("Falling back to Google's genai library")
|
324
|
-
genai.configure(api_key=api_key)
|
325
|
-
system_instruction = ""
|
326
|
-
for msg in messages:
|
327
|
-
if msg["role"] == "system":
|
328
|
-
system_instruction = msg["content"]
|
329
|
-
break
|
330
|
-
|
331
|
-
# 将其他消息转换为 gemini 格式
|
332
|
-
gemini_messages = format_messages_for_gemini(messages)
|
333
|
-
mime_type = "application/json" if json_format else "text/plain"
|
334
|
-
generation_config = genai.types.GenerationConfig(
|
335
|
-
temperature=temperature,
|
336
|
-
top_p=top_p,
|
337
|
-
top_k=top_k,
|
338
|
-
max_output_tokens=max_tokens,
|
339
|
-
response_mime_type=mime_type
|
340
|
-
)
|
341
|
-
|
342
|
-
model_instance = genai.GenerativeModel(
|
343
|
-
model_name=model,
|
344
|
-
system_instruction=system_instruction, # system 消息通过这里传入
|
345
|
-
generation_config=generation_config
|
346
|
-
)
|
347
|
-
|
348
|
-
response = model_instance.generate_content(gemini_messages, generation_config=generation_config)
|
349
|
-
|
350
|
-
return response.text
|
351
|
-
|
352
|
-
elif "grok" in model and "openai" not in model:
|
353
|
-
# Randomly choose between OpenAI and Anthropic SDK
|
354
|
-
use_anthropic = random.choice([True, False])
|
355
|
-
|
356
|
-
if use_anthropic:
|
357
|
-
logger.info("Using Anthropic for Grok model")
|
358
|
-
client = anthropic.Anthropic(
|
359
|
-
api_key=api_key,
|
360
|
-
base_url="https://api.x.ai"
|
361
|
-
)
|
362
|
-
|
363
|
-
system_msg = ""
|
364
|
-
if messages and messages[0]["role"] == "system":
|
365
|
-
system_msg = messages.pop(0)["content"]
|
366
|
-
|
367
|
-
response = client.messages.create(
|
368
|
-
model=model,
|
369
|
-
max_tokens=max_tokens,
|
370
|
-
temperature=temperature,
|
371
|
-
messages=formatted_messages,
|
372
|
-
system=system_msg
|
373
|
-
)
|
374
|
-
return response.completion
|
375
|
-
else:
|
376
|
-
logger.info("Using OpenAI for Grok model")
|
377
|
-
client = openai.OpenAI(
|
378
|
-
api_key=api_key,
|
379
|
-
base_url="https://api.x.ai/v1"
|
380
|
-
)
|
381
|
-
# Set response_format based on json_format
|
382
|
-
response_format = {"type": "json_object"} if json_format else {"type": "plain_text"}
|
383
|
-
|
384
|
-
response = client.chat.completions.create(
|
385
|
-
model=model,
|
386
|
-
messages=formatted_messages,
|
387
|
-
max_tokens=max_tokens,
|
388
|
-
temperature=temperature,
|
389
|
-
response_format=response_format # Added response_format
|
390
|
-
)
|
391
|
-
return response.choices[0].message.content
|
392
|
-
|
393
|
-
else: # OpenAI models
|
394
|
-
if model.endswith("-openai"):
|
395
|
-
model = model[:-7] # Remove last 7 characters ("-openai")
|
396
|
-
|
397
|
-
# Initialize OpenAI client with only supported parameters
|
398
|
-
client_kwargs = {"api_key": api_key}
|
399
|
-
if base_url:
|
400
|
-
client_kwargs["base_url"] = base_url
|
401
|
-
client = openai.OpenAI(**client_kwargs)
|
402
|
-
|
403
|
-
# Create base parameters
|
404
|
-
params = {
|
405
|
-
"model": model,
|
406
|
-
"messages": formatted_messages,
|
407
|
-
}
|
408
|
-
|
409
|
-
# Add optional parameters
|
410
|
-
if json_format:
|
411
|
-
params["response_format"] = {"type": "json_object"}
|
412
|
-
if not ("o1" in model or "o3" in model):
|
413
|
-
params["max_tokens"] = max_tokens
|
414
|
-
params["temperature"] = temperature
|
415
|
-
|
416
|
-
response = client.chat.completions.create(**params)
|
417
|
-
return response.choices[0].message.content
|
418
|
-
|
419
|
-
# Release the API key after successful use
|
420
|
-
if not api_key:
|
421
|
-
# key_manager.release_config(service, api_key)
|
422
|
-
pass
|
423
|
-
|
424
|
-
return response
|
425
|
-
|
426
|
-
except Exception as e:
|
427
|
-
logger.error(f"Error in completion: {str(e)}")
|
428
|
-
raise
|
429
|
-
|
430
|
-
class Agent:
|
431
|
-
def __init__(self, model_name: str, messages: Optional[Union[str, List[Dict[str, Union[str, List[Union[str, Image.Image, Dict]]]]]]] = None,
|
432
|
-
memory_enabled: bool = False, api_key: Optional[str] = None) -> None:
|
433
|
-
"""Initialize an Agent instance."""
|
434
|
-
self.id = f"{model_name}-{uuid.uuid4().hex[:8]}"
|
435
|
-
self.model_name = model_name
|
436
|
-
self.history = ChatHistory(messages) if messages else ChatHistory()
|
437
|
-
self.memory_enabled = memory_enabled
|
438
|
-
self.api_key = api_key
|
439
|
-
self.repo_content = []
|
440
|
-
|
441
|
-
def add_message(self, role: str, content: Union[str, List[Union[str, Image.Image, Dict]]]):
|
442
|
-
"""Add a message to the conversation."""
|
443
|
-
self.history.add_message(content, role)
|
444
|
-
|
445
|
-
def add_user_message(self, content: Union[str, List[Union[str, Image.Image, Dict]]]):
|
446
|
-
"""Add a user message."""
|
447
|
-
self.history.add_user_message(content)
|
448
|
-
|
449
|
-
def add_assistant_message(self, content: Union[str, List[Union[str, Image.Image, Dict]]]):
|
450
|
-
"""Add an assistant message."""
|
451
|
-
self.history.add_assistant_message(content)
|
452
|
-
|
453
|
-
def add_image(self, image_path: Optional[str] = None, image_url: Optional[str] = None, media_type: Optional[str] = "image/jpeg"):
|
454
|
-
"""
|
455
|
-
Add an image to the conversation.
|
456
|
-
Either image_path or image_url must be provided.
|
457
|
-
"""
|
458
|
-
if not image_path and not image_url:
|
459
|
-
raise ValueError("Either image_path or image_url must be provided.")
|
460
|
-
|
461
|
-
if image_path:
|
462
|
-
if not os.path.exists(image_path):
|
463
|
-
raise FileNotFoundError(f"Image file {image_path} does not exist.")
|
464
|
-
if "gemini" in self.model_name and "openai" not in self.model_name:
|
465
|
-
# For Gemini, load as PIL.Image
|
466
|
-
image_pil = Image.open(image_path)
|
467
|
-
image_block = image_pil
|
468
|
-
elif "claude" in self.model_name and "openai" not in self.model_name:
|
469
|
-
# For Claude and others, use base64 encoding
|
470
|
-
with open(image_path, "rb") as img_file:
|
471
|
-
image_data = base64.standard_b64encode(img_file.read()).decode("utf-8")
|
472
|
-
image_block = {
|
473
|
-
"type": "image",
|
474
|
-
"source": {
|
475
|
-
"type": "base64",
|
476
|
-
"media_type": media_type,
|
477
|
-
"data": image_data,
|
478
|
-
},
|
479
|
-
}
|
480
|
-
else:
|
481
|
-
# openai format
|
482
|
-
base64_image = encode_image(image_path)
|
483
|
-
image_block = {
|
484
|
-
"type": "image_url",
|
485
|
-
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
|
486
|
-
}
|
487
|
-
else:
|
488
|
-
# If image_url is provided
|
489
|
-
if "gemini" in self.model_name and "openai" not in self.model_name:
|
490
|
-
# For Gemini, you can pass image URLs directly
|
491
|
-
image_block = {"type": "image_url", "image_url": {"url": image_url}}
|
492
|
-
elif "claude" in self.model_name and "openai" not in self.model_name:
|
493
|
-
import httpx
|
494
|
-
media_type = "image/jpeg"
|
495
|
-
image_data = base64.standard_b64encode(httpx.get(image_url).content).decode("utf-8")
|
496
|
-
image_block = {
|
497
|
-
"type": "image",
|
498
|
-
"source": {
|
499
|
-
"type": "base64",
|
500
|
-
"media_type": media_type,
|
501
|
-
"data": image_data,
|
502
|
-
},
|
503
|
-
}
|
504
|
-
else:
|
505
|
-
# For Claude and others, use image URLs
|
506
|
-
image_block = {
|
507
|
-
"type": "image_url",
|
508
|
-
"image_url": {
|
509
|
-
"url": image_url
|
510
|
-
}
|
511
|
-
}
|
512
|
-
|
513
|
-
# Add the image block to the last user message or as a new user message
|
514
|
-
if self.history.last_role == "user":
|
515
|
-
current_content = self.history.messages[-1]["content"]
|
516
|
-
if isinstance(current_content, list):
|
517
|
-
current_content.append(image_block)
|
518
|
-
else:
|
519
|
-
self.history.messages[-1]["content"] = [current_content, image_block]
|
520
|
-
else:
|
521
|
-
# Start a new user message with the image
|
522
|
-
self.history.add_message([image_block], "user")
|
523
|
-
|
524
|
-
def generate_response(self, max_tokens=3585, temperature=0.7, top_p=1.0, top_k=40, json_format: bool = False) -> str:
|
525
|
-
"""Generate a response from the agent.
|
526
|
-
|
527
|
-
Args:
|
528
|
-
max_tokens (int, optional): Maximum number of tokens. Defaults to 3585.
|
529
|
-
temperature (float, optional): Sampling temperature. Defaults to 0.7.
|
530
|
-
json_format (bool, optional): Whether to enable JSON output format. Defaults to False.
|
531
|
-
|
532
|
-
Returns:
|
533
|
-
str: The generated response.
|
534
|
-
"""
|
535
|
-
if not self.history.messages:
|
536
|
-
raise ValueError("No messages in history to generate response from")
|
537
|
-
|
538
|
-
messages = self.history.messages
|
539
|
-
print(self.model_name)
|
540
|
-
response_text = completion(
|
541
|
-
model=self.model_name,
|
542
|
-
messages=messages,
|
543
|
-
max_tokens=max_tokens,
|
544
|
-
temperature=temperature,
|
545
|
-
top_p=top_p,
|
546
|
-
top_k=top_k,
|
547
|
-
api_key=self.api_key,
|
548
|
-
json_format=json_format # Pass json_format to completion
|
549
|
-
)
|
550
|
-
if self.model_name.startswith("openai"):
|
551
|
-
# OpenAI does not support images, so responses are simple strings
|
552
|
-
if self.history.messages[-1]["role"] == "assistant":
|
553
|
-
self.history.messages[-1]["content"] = response_text
|
554
|
-
elif self.memory_enabled:
|
555
|
-
self.add_message("assistant", response_text)
|
556
|
-
elif "claude" in self.model_name:
|
557
|
-
if self.history.messages[-1]["role"] == "assistant":
|
558
|
-
self.history.messages[-1]["content"] = response_text
|
559
|
-
elif self.memory_enabled:
|
560
|
-
self.add_message("assistant", response_text)
|
561
|
-
elif "gemini" in self.model_name or "grok" in self.model_name:
|
562
|
-
if self.history.messages[-1]["role"] == "assistant":
|
563
|
-
if isinstance(self.history.messages[-1]["content"], list):
|
564
|
-
self.history.messages[-1]["content"].append(response_text)
|
565
|
-
else:
|
566
|
-
self.history.messages[-1]["content"] = [self.history.messages[-1]["content"], response_text]
|
567
|
-
elif self.memory_enabled:
|
568
|
-
self.add_message("assistant", response_text)
|
569
|
-
else:
|
570
|
-
# Handle other models similarly
|
571
|
-
if self.history.messages[-1]["role"] == "assistant":
|
572
|
-
self.history.messages[-1]["content"] = response_text
|
573
|
-
elif self.memory_enabled:
|
574
|
-
self.add_message("assistant", response_text)
|
575
|
-
|
576
|
-
return response_text
|
577
|
-
|
578
|
-
def save_conversation(self):
|
579
|
-
filename = f"{self.id}.json"
|
580
|
-
with open(filename, 'w', encoding='utf-8') as file:
|
581
|
-
json.dump(self.history.messages, file, ensure_ascii=False, indent=4)
|
582
|
-
|
583
|
-
def load_conversation(self, filename: Optional[str] = None):
|
584
|
-
if filename is None:
|
585
|
-
filename = f"{self.id}.json"
|
586
|
-
with open(filename, 'r', encoding='utf-8') as file:
|
587
|
-
messages = json.load(file)
|
588
|
-
# Handle deserialization of images if necessary
|
589
|
-
self.history = ChatHistory(messages)
|
590
|
-
|
591
|
-
def add_repo(self, repo_url: Optional[str] = None, username: Optional[str] = None, repo_name: Optional[str] = None, commit_hash: Optional[str] = None):
|
592
|
-
if username and repo_name:
|
593
|
-
if commit_hash:
|
594
|
-
repo_url = f"https://github.com/{username}/{repo_name}/archive/{commit_hash}.zip"
|
595
|
-
else:
|
596
|
-
repo_url = f"https://github.com/{username}/{repo_name}/archive/refs/heads/main.zip"
|
597
|
-
|
598
|
-
if not repo_url:
|
599
|
-
raise ValueError("Either repo_url or both username and repo_name must be provided")
|
600
|
-
|
601
|
-
response = requests.get(repo_url)
|
602
|
-
if response.status_code == 200:
|
603
|
-
repo_content = ""
|
604
|
-
with zipfile.ZipFile(io.BytesIO(response.content)) as z:
|
605
|
-
for file_info in z.infolist():
|
606
|
-
if not file_info.is_dir() and file_info.filename.endswith(('.py', '.txt')):
|
607
|
-
with z.open(file_info) as f:
|
608
|
-
content = f.read().decode('utf-8')
|
609
|
-
repo_content += f"{file_info.filename}\n```\n{content}\n```\n"
|
610
|
-
self.repo_content.append(repo_content)
|
611
|
-
else:
|
612
|
-
raise ValueError(f"Failed to download repository from {repo_url}")
|
613
|
-
|
614
|
-
if __name__ == "__main__":
|
615
|
-
# Example Usage
|
616
|
-
# Create an Agent instance (Gemini model)
|
617
|
-
agent = Agent("gemini-1.5-flash-openai", "you are Jack101", memory_enabled=True)
|
618
|
-
|
619
|
-
# Add an image
|
620
|
-
agent.add_image(image_path="example.png")
|
621
|
-
|
622
|
-
# Add a user message
|
623
|
-
agent.add_message("user", "Who are you? What's in this image?")
|
624
|
-
|
625
|
-
# Generate response with JSON format enabled
|
626
|
-
try:
|
627
|
-
response = agent.generate_response(json_format=True) # json_format set to True
|
628
|
-
print("Response:", response)
|
629
|
-
except Exception as e:
|
630
|
-
logger.error(f"Failed to generate response: {e}")
|
631
|
-
|
632
|
-
# Print the entire conversation history
|
633
|
-
print("Conversation History:")
|
634
|
-
print(agent.history)
|
635
|
-
|
636
|
-
# Pop the last message
|
637
|
-
last_message = agent.history.pop()
|
638
|
-
print("Last Message:", last_message)
|
639
|
-
|
640
|
-
# Generate another response without JSON format
|
641
|
-
response = agent.generate_response()
|
642
|
-
print("Response:", response)
|
@@ -1,32 +0,0 @@
|
|
1
|
-
[build-system]
|
2
|
-
requires = [ "setuptools>=61.0", "wheel",]
|
3
|
-
build-backend = "setuptools.build_meta"
|
4
|
-
|
5
|
-
[project]
|
6
|
-
name = "llm_dialog_manager"
|
7
|
-
version = "0.4.7"
|
8
|
-
description = "A Python package for managing LLM chat conversation history"
|
9
|
-
readme = "README.md"
|
10
|
-
classifiers = [ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Scientific/Engineering :: Artificial Intelligence",]
|
11
|
-
requires-python = ">=3.7"
|
12
|
-
dependencies = [ "openai>=1.54.2", "anthropic>=0.39.0", "google-generativeai>=0.1.0", "python-dotenv>=1.0.0", "typing-extensions>=4.0.0", "uuid>=1.30",]
|
13
|
-
[[project.authors]]
|
14
|
-
name = "xihajun"
|
15
|
-
email = "work@2333.fun"
|
16
|
-
|
17
|
-
[project.license]
|
18
|
-
text = "MIT"
|
19
|
-
|
20
|
-
[project.optional-dependencies]
|
21
|
-
dev = [ "pytest>=8.0.0", "pytest-asyncio>=0.21.1", "pytest-cov>=4.1.0", "black>=23.9.1", "isort>=5.12.0",]
|
22
|
-
test = [ "pytest>=6.0", "pytest-asyncio>=0.14.0", "pytest-cov>=2.0",]
|
23
|
-
lint = [ "black>=22.0", "isort>=5.0",]
|
24
|
-
all = [ "pytest>=8.0.0", "pytest-asyncio>=0.21.1", "pytest-cov>=4.1.0", "black>=23.9.1", "isort>=5.12.0",]
|
25
|
-
|
26
|
-
[project.urls]
|
27
|
-
"Bug Tracker" = "https://github.com/xihajun/llm_dialog_manager/issues"
|
28
|
-
Documentation = "https://github.com/xihajun/llm_dialog_manager#readme"
|
29
|
-
"Source Code" = "https://github.com/xihajun/llm_dialog_manager"
|
30
|
-
|
31
|
-
[tool.setuptools]
|
32
|
-
packages = [ "llm_dialog_manager",]
|
File without changes
|
File without changes
|
File without changes
|
{llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/llm_dialog_manager.egg-info/SOURCES.txt
RENAMED
File without changes
|
File without changes
|
{llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/llm_dialog_manager.egg-info/requires.txt
RENAMED
File without changes
|
{llm_dialog_manager-0.4.7 → llm_dialog_manager-0.5.0}/llm_dialog_manager.egg-info/top_level.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|