llama-cloud 0.1.0__tar.gz → 0.1.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of llama-cloud might be problematic. Click here for more details.
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/PKG-INFO +3 -2
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/__init__.py +2 -6
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/data_sinks/client.py +6 -6
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/data_sinks/types/data_sink_update_component.py +0 -4
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/parsing/client.py +32 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/__init__.py +2 -6
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/azure_open_ai_embedding.py +2 -7
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/bedrock_embedding.py +1 -4
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_pinecone_vector_store.py +1 -1
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cohere_embedding.py +4 -9
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/configurable_data_sink_names.py +0 -8
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/configurable_transformation_names.py +0 -28
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/configured_transformation_item_component.py +0 -14
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_sink_component.py +0 -4
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_sink_create_component.py +0 -4
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/gemini_embedding.py +3 -14
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/hugging_face_inference_api_embedding.py +0 -9
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/input_message.py +1 -1
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/llama_parse_parameters.py +4 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/open_ai_embedding.py +2 -25
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/vertex_ai_embedding_config.py +2 -2
- llama_cloud-0.1.0/llama_cloud/types/extend_vertex_text_embedding.py → llama_cloud-0.1.2/llama_cloud/types/vertex_text_embedding.py +5 -6
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/pyproject.toml +2 -1
- llama_cloud-0.1.0/llama_cloud/types/cloud_chroma_vector_store.py +0 -39
- llama_cloud-0.1.0/llama_cloud/types/cloud_weaviate_vector_store.py +0 -37
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/LICENSE +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/README.md +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/client.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/core/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/core/api_error.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/core/client_wrapper.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/core/datetime_utils.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/core/jsonable_encoder.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/core/remove_none_from_dict.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/environment.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/errors/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/errors/unprocessable_entity_error.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/component_definitions/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/component_definitions/client.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/data_sinks/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/data_sinks/types/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/data_sources/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/data_sources/client.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/data_sources/types/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/data_sources/types/data_source_update_component.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/data_sources/types/data_source_update_custom_metadata_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/evals/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/evals/client.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/extraction/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/extraction/client.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/extraction/types/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/extraction/types/extraction_schema_create_data_schema_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/extraction/types/extraction_schema_update_data_schema_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/files/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/files/client.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/files/types/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/files/types/file_create_resource_info_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/organizations/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/organizations/client.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/parsing/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/pipelines/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/pipelines/client.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/pipelines/types/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/pipelines/types/pipeline_file_update_custom_metadata_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/pipelines/types/pipeline_update_embedding_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/pipelines/types/pipeline_update_transform_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/projects/__init__.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/resources/projects/client.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/advanced_mode_transform_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/advanced_mode_transform_config_chunking_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/advanced_mode_transform_config_segmentation_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/auto_transform_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/azure_open_ai_embedding_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/base.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/base_prompt_template.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/bedrock_embedding_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/box_auth_mechanism.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/character_chunking_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/character_splitter.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/chat_data.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/chat_message.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_az_storage_blob_data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_azure_ai_search_vector_store.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_box_data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_confluence_data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_document.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_document_create.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_google_drive_data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_jira_data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_milvus_vector_store.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_mongo_db_atlas_vector_search.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_notion_page_data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_one_drive_data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_postgres_vector_store.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_qdrant_vector_store.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_s_3_data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_sharepoint_data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cloud_slack_data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/code_splitter.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/cohere_embedding_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/configurable_data_source_names.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/configurable_transformation_definition.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/configured_transformation_item.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_sink.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_sink_create.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_sink_definition.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_source_component.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_source_create.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_source_create_component.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_source_create_custom_metadata_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_source_custom_metadata_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/data_source_definition.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/element_segmentation_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/eval_dataset.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/eval_dataset_job_params.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/eval_dataset_job_record.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/eval_execution_params.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/eval_execution_params_override.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/eval_metric.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/eval_question.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/eval_question_create.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/eval_question_result.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/extraction_job.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/extraction_result.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/extraction_result_data_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/extraction_schema.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/extraction_schema_data_schema_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/file.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/file_resource_info_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/filter_condition.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/filter_operator.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/gemini_embedding_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/http_validation_error.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/hugging_face_inference_api_embedding_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/hugging_face_inference_api_embedding_token.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/ingestion_error_response.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/job_name_mapping.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/llama_parse_supported_file_extensions.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/llm.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/llm_model_data.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/llm_parameters.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/local_eval.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/local_eval_results.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/local_eval_sets.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/managed_ingestion_status.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/managed_ingestion_status_response.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/markdown_element_node_parser.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/markdown_node_parser.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/message_annotation.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/message_role.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/metadata_filter.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/metadata_filter_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/metadata_filters.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/metadata_filters_filters_item.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/metric_result.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/node_parser.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/node_relationship.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/none_chunking_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/none_segmentation_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/object_type.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/open_ai_embedding_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/organization.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/organization_create.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/page_screenshot_metadata.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/page_screenshot_node_with_score.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/page_segmentation_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/page_splitter_node_parser.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/parser_languages.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/parsing_history_item.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/parsing_job.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/parsing_job_json_result.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/parsing_job_markdown_result.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/parsing_job_text_result.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/parsing_usage.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/partition_names.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_configuration_hashes.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_create.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_create_embedding_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_create_transform_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_data_source.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_data_source_component.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_data_source_create.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_data_source_custom_metadata_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_deployment.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_embedding_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_file.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_file_config_hash_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_file_create.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_file_create_custom_metadata_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_file_custom_metadata_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_file_resource_info_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_transform_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pipeline_type.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/playground_session.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pooling.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/preset_retrieval_params.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/presigned_url.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/project.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/project_create.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/prompt_mixin_prompts.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/prompt_spec.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/pydantic_program_mode.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/related_node_info.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/retrieval_mode.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/retrieve_results.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/semantic_chunking_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/sentence_chunking_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/sentence_splitter.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/status_enum.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/supported_llm_model.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/supported_llm_model_names.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/text_node.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/text_node_relationships_value.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/text_node_with_score.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/token_chunking_config.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/token_text_splitter.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/transformation_category_names.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/user_organization.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/user_organization_create.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/user_organization_delete.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/validation_error.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/validation_error_loc_item.py +0 -0
- {llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/vertex_embedding_mode.py +0 -0
|
@@ -1,16 +1,17 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: llama-cloud
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.2
|
|
4
4
|
Summary:
|
|
5
|
+
License: MIT
|
|
5
6
|
Author: Logan Markewich
|
|
6
7
|
Author-email: logan@runllama.ai
|
|
7
8
|
Requires-Python: >=3.8,<4
|
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
8
10
|
Classifier: Programming Language :: Python :: 3
|
|
9
11
|
Classifier: Programming Language :: Python :: 3.8
|
|
10
12
|
Classifier: Programming Language :: Python :: 3.9
|
|
11
13
|
Classifier: Programming Language :: Python :: 3.10
|
|
12
14
|
Classifier: Programming Language :: Python :: 3.11
|
|
13
|
-
Classifier: Programming Language :: Python :: 3.12
|
|
14
15
|
Requires-Dist: httpx (>=0.20.0)
|
|
15
16
|
Requires-Dist: pydantic (>=1.10)
|
|
16
17
|
Description-Content-Type: text/markdown
|
|
@@ -27,7 +27,6 @@ from .types import (
|
|
|
27
27
|
CloudAzStorageBlobDataSource,
|
|
28
28
|
CloudAzureAiSearchVectorStore,
|
|
29
29
|
CloudBoxDataSource,
|
|
30
|
-
CloudChromaVectorStore,
|
|
31
30
|
CloudConfluenceDataSource,
|
|
32
31
|
CloudDocument,
|
|
33
32
|
CloudDocumentCreate,
|
|
@@ -43,7 +42,6 @@ from .types import (
|
|
|
43
42
|
CloudS3DataSource,
|
|
44
43
|
CloudSharepointDataSource,
|
|
45
44
|
CloudSlackDataSource,
|
|
46
|
-
CloudWeaviateVectorStore,
|
|
47
45
|
CodeSplitter,
|
|
48
46
|
CohereEmbedding,
|
|
49
47
|
CohereEmbeddingConfig,
|
|
@@ -75,7 +73,6 @@ from .types import (
|
|
|
75
73
|
EvalQuestion,
|
|
76
74
|
EvalQuestionCreate,
|
|
77
75
|
EvalQuestionResult,
|
|
78
|
-
ExtendVertexTextEmbedding,
|
|
79
76
|
ExtractionJob,
|
|
80
77
|
ExtractionResult,
|
|
81
78
|
ExtractionResultDataValue,
|
|
@@ -200,6 +197,7 @@ from .types import (
|
|
|
200
197
|
ValidationErrorLocItem,
|
|
201
198
|
VertexAiEmbeddingConfig,
|
|
202
199
|
VertexEmbeddingMode,
|
|
200
|
+
VertexTextEmbedding,
|
|
203
201
|
)
|
|
204
202
|
from .errors import UnprocessableEntityError
|
|
205
203
|
from .resources import (
|
|
@@ -259,7 +257,6 @@ __all__ = [
|
|
|
259
257
|
"CloudAzStorageBlobDataSource",
|
|
260
258
|
"CloudAzureAiSearchVectorStore",
|
|
261
259
|
"CloudBoxDataSource",
|
|
262
|
-
"CloudChromaVectorStore",
|
|
263
260
|
"CloudConfluenceDataSource",
|
|
264
261
|
"CloudDocument",
|
|
265
262
|
"CloudDocumentCreate",
|
|
@@ -275,7 +272,6 @@ __all__ = [
|
|
|
275
272
|
"CloudS3DataSource",
|
|
276
273
|
"CloudSharepointDataSource",
|
|
277
274
|
"CloudSlackDataSource",
|
|
278
|
-
"CloudWeaviateVectorStore",
|
|
279
275
|
"CodeSplitter",
|
|
280
276
|
"CohereEmbedding",
|
|
281
277
|
"CohereEmbeddingConfig",
|
|
@@ -310,7 +306,6 @@ __all__ = [
|
|
|
310
306
|
"EvalQuestion",
|
|
311
307
|
"EvalQuestionCreate",
|
|
312
308
|
"EvalQuestionResult",
|
|
313
|
-
"ExtendVertexTextEmbedding",
|
|
314
309
|
"ExtractionJob",
|
|
315
310
|
"ExtractionResult",
|
|
316
311
|
"ExtractionResultDataValue",
|
|
@@ -450,6 +445,7 @@ __all__ = [
|
|
|
450
445
|
"ValidationErrorLocItem",
|
|
451
446
|
"VertexAiEmbeddingConfig",
|
|
452
447
|
"VertexEmbeddingMode",
|
|
448
|
+
"VertexTextEmbedding",
|
|
453
449
|
"component_definitions",
|
|
454
450
|
"data_sinks",
|
|
455
451
|
"data_sources",
|
|
@@ -89,7 +89,7 @@ class DataSinksClient:
|
|
|
89
89
|
client.data_sinks.create_data_sink(
|
|
90
90
|
request=DataSinkCreate(
|
|
91
91
|
name="string",
|
|
92
|
-
sink_type=ConfigurableDataSinkNames.
|
|
92
|
+
sink_type=ConfigurableDataSinkNames.PINECONE,
|
|
93
93
|
),
|
|
94
94
|
)
|
|
95
95
|
"""
|
|
@@ -138,7 +138,7 @@ class DataSinksClient:
|
|
|
138
138
|
client.data_sinks.upsert_data_sink(
|
|
139
139
|
request=DataSinkCreate(
|
|
140
140
|
name="string",
|
|
141
|
-
sink_type=ConfigurableDataSinkNames.
|
|
141
|
+
sink_type=ConfigurableDataSinkNames.PINECONE,
|
|
142
142
|
),
|
|
143
143
|
)
|
|
144
144
|
"""
|
|
@@ -220,7 +220,7 @@ class DataSinksClient:
|
|
|
220
220
|
)
|
|
221
221
|
client.data_sinks.update_data_sink(
|
|
222
222
|
data_sink_id="string",
|
|
223
|
-
sink_type=ConfigurableDataSinkNames.
|
|
223
|
+
sink_type=ConfigurableDataSinkNames.PINECONE,
|
|
224
224
|
)
|
|
225
225
|
"""
|
|
226
226
|
_request: typing.Dict[str, typing.Any] = {"sink_type": sink_type}
|
|
@@ -340,7 +340,7 @@ class AsyncDataSinksClient:
|
|
|
340
340
|
await client.data_sinks.create_data_sink(
|
|
341
341
|
request=DataSinkCreate(
|
|
342
342
|
name="string",
|
|
343
|
-
sink_type=ConfigurableDataSinkNames.
|
|
343
|
+
sink_type=ConfigurableDataSinkNames.PINECONE,
|
|
344
344
|
),
|
|
345
345
|
)
|
|
346
346
|
"""
|
|
@@ -389,7 +389,7 @@ class AsyncDataSinksClient:
|
|
|
389
389
|
await client.data_sinks.upsert_data_sink(
|
|
390
390
|
request=DataSinkCreate(
|
|
391
391
|
name="string",
|
|
392
|
-
sink_type=ConfigurableDataSinkNames.
|
|
392
|
+
sink_type=ConfigurableDataSinkNames.PINECONE,
|
|
393
393
|
),
|
|
394
394
|
)
|
|
395
395
|
"""
|
|
@@ -471,7 +471,7 @@ class AsyncDataSinksClient:
|
|
|
471
471
|
)
|
|
472
472
|
await client.data_sinks.update_data_sink(
|
|
473
473
|
data_sink_id="string",
|
|
474
|
-
sink_type=ConfigurableDataSinkNames.
|
|
474
|
+
sink_type=ConfigurableDataSinkNames.PINECONE,
|
|
475
475
|
)
|
|
476
476
|
"""
|
|
477
477
|
_request: typing.Dict[str, typing.Any] = {"sink_type": sink_type}
|
|
@@ -3,21 +3,17 @@
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
5
|
from ....types.cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
|
|
6
|
-
from ....types.cloud_chroma_vector_store import CloudChromaVectorStore
|
|
7
6
|
from ....types.cloud_milvus_vector_store import CloudMilvusVectorStore
|
|
8
7
|
from ....types.cloud_mongo_db_atlas_vector_search import CloudMongoDbAtlasVectorSearch
|
|
9
8
|
from ....types.cloud_pinecone_vector_store import CloudPineconeVectorStore
|
|
10
9
|
from ....types.cloud_postgres_vector_store import CloudPostgresVectorStore
|
|
11
10
|
from ....types.cloud_qdrant_vector_store import CloudQdrantVectorStore
|
|
12
|
-
from ....types.cloud_weaviate_vector_store import CloudWeaviateVectorStore
|
|
13
11
|
|
|
14
12
|
DataSinkUpdateComponent = typing.Union[
|
|
15
13
|
typing.Dict[str, typing.Any],
|
|
16
|
-
CloudChromaVectorStore,
|
|
17
14
|
CloudPineconeVectorStore,
|
|
18
15
|
CloudPostgresVectorStore,
|
|
19
16
|
CloudQdrantVectorStore,
|
|
20
|
-
CloudWeaviateVectorStore,
|
|
21
17
|
CloudAzureAiSearchVectorStore,
|
|
22
18
|
CloudMongoDbAtlasVectorSearch,
|
|
23
19
|
CloudMilvusVectorStore,
|
|
@@ -125,6 +125,10 @@ class ParsingClient:
|
|
|
125
125
|
disable_reconstruction: bool,
|
|
126
126
|
input_s_3_path: str,
|
|
127
127
|
output_s_3_path_prefix: str,
|
|
128
|
+
azure_openai_deployment_name: str,
|
|
129
|
+
azure_openai_endpoint: str,
|
|
130
|
+
azure_openai_api_version: str,
|
|
131
|
+
azure_openai_key: str,
|
|
128
132
|
file: typing.Optional[str] = OMIT,
|
|
129
133
|
) -> ParsingJob:
|
|
130
134
|
"""
|
|
@@ -179,6 +183,14 @@ class ParsingClient:
|
|
|
179
183
|
|
|
180
184
|
- output_s_3_path_prefix: str.
|
|
181
185
|
|
|
186
|
+
- azure_openai_deployment_name: str.
|
|
187
|
+
|
|
188
|
+
- azure_openai_endpoint: str.
|
|
189
|
+
|
|
190
|
+
- azure_openai_api_version: str.
|
|
191
|
+
|
|
192
|
+
- azure_openai_key: str.
|
|
193
|
+
|
|
182
194
|
- file: typing.Optional[str].
|
|
183
195
|
"""
|
|
184
196
|
_request: typing.Dict[str, typing.Any] = {
|
|
@@ -206,6 +218,10 @@ class ParsingClient:
|
|
|
206
218
|
"disable_reconstruction": disable_reconstruction,
|
|
207
219
|
"input_s3_path": input_s_3_path,
|
|
208
220
|
"output_s3_path_prefix": output_s_3_path_prefix,
|
|
221
|
+
"azure_openai_deployment_name": azure_openai_deployment_name,
|
|
222
|
+
"azure_openai_endpoint": azure_openai_endpoint,
|
|
223
|
+
"azure_openai_api_version": azure_openai_api_version,
|
|
224
|
+
"azure_openai_key": azure_openai_key,
|
|
209
225
|
}
|
|
210
226
|
if file is not OMIT:
|
|
211
227
|
_request["file"] = file
|
|
@@ -678,6 +694,10 @@ class AsyncParsingClient:
|
|
|
678
694
|
disable_reconstruction: bool,
|
|
679
695
|
input_s_3_path: str,
|
|
680
696
|
output_s_3_path_prefix: str,
|
|
697
|
+
azure_openai_deployment_name: str,
|
|
698
|
+
azure_openai_endpoint: str,
|
|
699
|
+
azure_openai_api_version: str,
|
|
700
|
+
azure_openai_key: str,
|
|
681
701
|
file: typing.Optional[str] = OMIT,
|
|
682
702
|
) -> ParsingJob:
|
|
683
703
|
"""
|
|
@@ -732,6 +752,14 @@ class AsyncParsingClient:
|
|
|
732
752
|
|
|
733
753
|
- output_s_3_path_prefix: str.
|
|
734
754
|
|
|
755
|
+
- azure_openai_deployment_name: str.
|
|
756
|
+
|
|
757
|
+
- azure_openai_endpoint: str.
|
|
758
|
+
|
|
759
|
+
- azure_openai_api_version: str.
|
|
760
|
+
|
|
761
|
+
- azure_openai_key: str.
|
|
762
|
+
|
|
735
763
|
- file: typing.Optional[str].
|
|
736
764
|
"""
|
|
737
765
|
_request: typing.Dict[str, typing.Any] = {
|
|
@@ -759,6 +787,10 @@ class AsyncParsingClient:
|
|
|
759
787
|
"disable_reconstruction": disable_reconstruction,
|
|
760
788
|
"input_s3_path": input_s_3_path,
|
|
761
789
|
"output_s3_path_prefix": output_s_3_path_prefix,
|
|
790
|
+
"azure_openai_deployment_name": azure_openai_deployment_name,
|
|
791
|
+
"azure_openai_endpoint": azure_openai_endpoint,
|
|
792
|
+
"azure_openai_api_version": azure_openai_api_version,
|
|
793
|
+
"azure_openai_key": azure_openai_key,
|
|
762
794
|
}
|
|
763
795
|
if file is not OMIT:
|
|
764
796
|
_request["file"] = file
|
|
@@ -30,7 +30,6 @@ from .chat_message import ChatMessage
|
|
|
30
30
|
from .cloud_az_storage_blob_data_source import CloudAzStorageBlobDataSource
|
|
31
31
|
from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
|
|
32
32
|
from .cloud_box_data_source import CloudBoxDataSource
|
|
33
|
-
from .cloud_chroma_vector_store import CloudChromaVectorStore
|
|
34
33
|
from .cloud_confluence_data_source import CloudConfluenceDataSource
|
|
35
34
|
from .cloud_document import CloudDocument
|
|
36
35
|
from .cloud_document_create import CloudDocumentCreate
|
|
@@ -46,7 +45,6 @@ from .cloud_qdrant_vector_store import CloudQdrantVectorStore
|
|
|
46
45
|
from .cloud_s_3_data_source import CloudS3DataSource
|
|
47
46
|
from .cloud_sharepoint_data_source import CloudSharepointDataSource
|
|
48
47
|
from .cloud_slack_data_source import CloudSlackDataSource
|
|
49
|
-
from .cloud_weaviate_vector_store import CloudWeaviateVectorStore
|
|
50
48
|
from .code_splitter import CodeSplitter
|
|
51
49
|
from .cohere_embedding import CohereEmbedding
|
|
52
50
|
from .cohere_embedding_config import CohereEmbeddingConfig
|
|
@@ -78,7 +76,6 @@ from .eval_metric import EvalMetric
|
|
|
78
76
|
from .eval_question import EvalQuestion
|
|
79
77
|
from .eval_question_create import EvalQuestionCreate
|
|
80
78
|
from .eval_question_result import EvalQuestionResult
|
|
81
|
-
from .extend_vertex_text_embedding import ExtendVertexTextEmbedding
|
|
82
79
|
from .extraction_job import ExtractionJob
|
|
83
80
|
from .extraction_result import ExtractionResult
|
|
84
81
|
from .extraction_result_data_value import ExtractionResultDataValue
|
|
@@ -209,6 +206,7 @@ from .validation_error import ValidationError
|
|
|
209
206
|
from .validation_error_loc_item import ValidationErrorLocItem
|
|
210
207
|
from .vertex_ai_embedding_config import VertexAiEmbeddingConfig
|
|
211
208
|
from .vertex_embedding_mode import VertexEmbeddingMode
|
|
209
|
+
from .vertex_text_embedding import VertexTextEmbedding
|
|
212
210
|
|
|
213
211
|
__all__ = [
|
|
214
212
|
"AdvancedModeTransformConfig",
|
|
@@ -237,7 +235,6 @@ __all__ = [
|
|
|
237
235
|
"CloudAzStorageBlobDataSource",
|
|
238
236
|
"CloudAzureAiSearchVectorStore",
|
|
239
237
|
"CloudBoxDataSource",
|
|
240
|
-
"CloudChromaVectorStore",
|
|
241
238
|
"CloudConfluenceDataSource",
|
|
242
239
|
"CloudDocument",
|
|
243
240
|
"CloudDocumentCreate",
|
|
@@ -253,7 +250,6 @@ __all__ = [
|
|
|
253
250
|
"CloudS3DataSource",
|
|
254
251
|
"CloudSharepointDataSource",
|
|
255
252
|
"CloudSlackDataSource",
|
|
256
|
-
"CloudWeaviateVectorStore",
|
|
257
253
|
"CodeSplitter",
|
|
258
254
|
"CohereEmbedding",
|
|
259
255
|
"CohereEmbeddingConfig",
|
|
@@ -285,7 +281,6 @@ __all__ = [
|
|
|
285
281
|
"EvalQuestion",
|
|
286
282
|
"EvalQuestionCreate",
|
|
287
283
|
"EvalQuestionResult",
|
|
288
|
-
"ExtendVertexTextEmbedding",
|
|
289
284
|
"ExtractionJob",
|
|
290
285
|
"ExtractionResult",
|
|
291
286
|
"ExtractionResultDataValue",
|
|
@@ -410,4 +405,5 @@ __all__ = [
|
|
|
410
405
|
"ValidationErrorLocItem",
|
|
411
406
|
"VertexAiEmbeddingConfig",
|
|
412
407
|
"VertexEmbeddingMode",
|
|
408
|
+
"VertexTextEmbedding",
|
|
413
409
|
]
|
|
@@ -15,14 +15,13 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class AzureOpenAiEmbedding(pydantic.BaseModel):
|
|
18
|
-
model_name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model.")
|
|
18
|
+
model_name: typing.Optional[str] = pydantic.Field(description="The name of the OpenAI embedding model.")
|
|
19
19
|
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
20
|
-
callback_manager: typing.Optional[typing.Any]
|
|
21
20
|
num_workers: typing.Optional[int]
|
|
22
21
|
additional_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
|
|
23
22
|
description="Additional kwargs for the OpenAI API."
|
|
24
23
|
)
|
|
25
|
-
api_key: str
|
|
24
|
+
api_key: typing.Optional[str]
|
|
26
25
|
api_base: typing.Optional[str] = pydantic.Field(description="The base URL for Azure deployment.")
|
|
27
26
|
api_version: typing.Optional[str] = pydantic.Field(description="The version for Azure OpenAI API.")
|
|
28
27
|
max_retries: typing.Optional[int] = pydantic.Field(description="Maximum number of retries.")
|
|
@@ -34,10 +33,6 @@ class AzureOpenAiEmbedding(pydantic.BaseModel):
|
|
|
34
33
|
dimensions: typing.Optional[int]
|
|
35
34
|
azure_endpoint: typing.Optional[str]
|
|
36
35
|
azure_deployment: typing.Optional[str]
|
|
37
|
-
azure_ad_token_provider: typing.Optional[str]
|
|
38
|
-
use_azure_ad: bool = pydantic.Field(
|
|
39
|
-
description="Indicates if Microsoft Entra ID (former Azure AD) is used for token authentication"
|
|
40
|
-
)
|
|
41
36
|
class_name: typing.Optional[str]
|
|
42
37
|
|
|
43
38
|
def json(self, **kwargs: typing.Any) -> str:
|
|
@@ -15,17 +15,14 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class BedrockEmbedding(pydantic.BaseModel):
|
|
18
|
-
model_name: str = pydantic.Field(description="The modelId of the Bedrock model to use.")
|
|
18
|
+
model_name: typing.Optional[str] = pydantic.Field(description="The modelId of the Bedrock model to use.")
|
|
19
19
|
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
20
|
-
callback_manager: typing.Optional[typing.Any]
|
|
21
20
|
num_workers: typing.Optional[int]
|
|
22
21
|
profile_name: typing.Optional[str]
|
|
23
22
|
aws_access_key_id: typing.Optional[str]
|
|
24
23
|
aws_secret_access_key: typing.Optional[str]
|
|
25
24
|
aws_session_token: typing.Optional[str]
|
|
26
25
|
region_name: typing.Optional[str]
|
|
27
|
-
botocore_session: typing.Optional[typing.Any]
|
|
28
|
-
botocore_config: typing.Optional[typing.Any]
|
|
29
26
|
max_retries: typing.Optional[int] = pydantic.Field(description="The maximum number of API retries.")
|
|
30
27
|
timeout: typing.Optional[float] = pydantic.Field(
|
|
31
28
|
description="The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts."
|
|
@@ -29,7 +29,7 @@ class CloudPineconeVectorStore(pydantic.BaseModel):
|
|
|
29
29
|
"""
|
|
30
30
|
|
|
31
31
|
supports_nested_metadata_filters: typing.Optional[bool]
|
|
32
|
-
api_key: str
|
|
32
|
+
api_key: str = pydantic.Field(description="The API key for authenticating with Pinecone")
|
|
33
33
|
index_name: str
|
|
34
34
|
namespace: typing.Optional[str]
|
|
35
35
|
insert_kwargs: typing.Optional[typing.Dict[str, typing.Any]]
|
|
@@ -15,18 +15,13 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class CohereEmbedding(pydantic.BaseModel):
|
|
18
|
-
""
|
|
19
|
-
CohereEmbedding uses the Cohere API to generate embeddings for text.
|
|
20
|
-
"""
|
|
21
|
-
|
|
22
|
-
model_name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model.")
|
|
18
|
+
model_name: typing.Optional[str] = pydantic.Field(description="The modelId of the Cohere model to use.")
|
|
23
19
|
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
24
|
-
callback_manager: typing.Optional[typing.Any]
|
|
25
20
|
num_workers: typing.Optional[int]
|
|
26
|
-
api_key: str
|
|
27
|
-
truncate: str = pydantic.Field(description="Truncation type - START/ END/ NONE")
|
|
21
|
+
api_key: typing.Optional[str]
|
|
22
|
+
truncate: typing.Optional[str] = pydantic.Field(description="Truncation type - START/ END/ NONE")
|
|
28
23
|
input_type: typing.Optional[str]
|
|
29
|
-
embedding_type: str = pydantic.Field(
|
|
24
|
+
embedding_type: typing.Optional[str] = pydantic.Field(
|
|
30
25
|
description="Embedding type. If not provided float embedding_type is used when needed."
|
|
31
26
|
)
|
|
32
27
|
class_name: typing.Optional[str]
|
|
@@ -7,36 +7,28 @@ T_Result = typing.TypeVar("T_Result")
|
|
|
7
7
|
|
|
8
8
|
|
|
9
9
|
class ConfigurableDataSinkNames(str, enum.Enum):
|
|
10
|
-
CHROMA = "CHROMA"
|
|
11
10
|
PINECONE = "PINECONE"
|
|
12
11
|
POSTGRES = "POSTGRES"
|
|
13
12
|
QDRANT = "QDRANT"
|
|
14
|
-
WEAVIATE = "WEAVIATE"
|
|
15
13
|
AZUREAI_SEARCH = "AZUREAI_SEARCH"
|
|
16
14
|
MONGODB_ATLAS = "MONGODB_ATLAS"
|
|
17
15
|
MILVUS = "MILVUS"
|
|
18
16
|
|
|
19
17
|
def visit(
|
|
20
18
|
self,
|
|
21
|
-
chroma: typing.Callable[[], T_Result],
|
|
22
19
|
pinecone: typing.Callable[[], T_Result],
|
|
23
20
|
postgres: typing.Callable[[], T_Result],
|
|
24
21
|
qdrant: typing.Callable[[], T_Result],
|
|
25
|
-
weaviate: typing.Callable[[], T_Result],
|
|
26
22
|
azureai_search: typing.Callable[[], T_Result],
|
|
27
23
|
mongodb_atlas: typing.Callable[[], T_Result],
|
|
28
24
|
milvus: typing.Callable[[], T_Result],
|
|
29
25
|
) -> T_Result:
|
|
30
|
-
if self is ConfigurableDataSinkNames.CHROMA:
|
|
31
|
-
return chroma()
|
|
32
26
|
if self is ConfigurableDataSinkNames.PINECONE:
|
|
33
27
|
return pinecone()
|
|
34
28
|
if self is ConfigurableDataSinkNames.POSTGRES:
|
|
35
29
|
return postgres()
|
|
36
30
|
if self is ConfigurableDataSinkNames.QDRANT:
|
|
37
31
|
return qdrant()
|
|
38
|
-
if self is ConfigurableDataSinkNames.WEAVIATE:
|
|
39
|
-
return weaviate()
|
|
40
32
|
if self is ConfigurableDataSinkNames.AZUREAI_SEARCH:
|
|
41
33
|
return azureai_search()
|
|
42
34
|
if self is ConfigurableDataSinkNames.MONGODB_ATLAS:
|
{llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/configurable_transformation_names.py
RENAMED
|
@@ -14,13 +14,6 @@ class ConfigurableTransformationNames(str, enum.Enum):
|
|
|
14
14
|
TOKEN_AWARE_NODE_PARSER = "TOKEN_AWARE_NODE_PARSER"
|
|
15
15
|
MARKDOWN_NODE_PARSER = "MARKDOWN_NODE_PARSER"
|
|
16
16
|
MARKDOWN_ELEMENT_NODE_PARSER = "MARKDOWN_ELEMENT_NODE_PARSER"
|
|
17
|
-
OPENAI_EMBEDDING = "OPENAI_EMBEDDING"
|
|
18
|
-
AZURE_EMBEDDING = "AZURE_EMBEDDING"
|
|
19
|
-
COHERE_EMBEDDING = "COHERE_EMBEDDING"
|
|
20
|
-
BEDROCK_EMBEDDING = "BEDROCK_EMBEDDING"
|
|
21
|
-
HUGGINGFACE_API_EMBEDDING = "HUGGINGFACE_API_EMBEDDING"
|
|
22
|
-
GEMINI_EMBEDDING = "GEMINI_EMBEDDING"
|
|
23
|
-
VERTEXAI_EMBEDDING = "VERTEXAI_EMBEDDING"
|
|
24
17
|
|
|
25
18
|
def visit(
|
|
26
19
|
self,
|
|
@@ -31,13 +24,6 @@ class ConfigurableTransformationNames(str, enum.Enum):
|
|
|
31
24
|
token_aware_node_parser: typing.Callable[[], T_Result],
|
|
32
25
|
markdown_node_parser: typing.Callable[[], T_Result],
|
|
33
26
|
markdown_element_node_parser: typing.Callable[[], T_Result],
|
|
34
|
-
openai_embedding: typing.Callable[[], T_Result],
|
|
35
|
-
azure_embedding: typing.Callable[[], T_Result],
|
|
36
|
-
cohere_embedding: typing.Callable[[], T_Result],
|
|
37
|
-
bedrock_embedding: typing.Callable[[], T_Result],
|
|
38
|
-
huggingface_api_embedding: typing.Callable[[], T_Result],
|
|
39
|
-
gemini_embedding: typing.Callable[[], T_Result],
|
|
40
|
-
vertexai_embedding: typing.Callable[[], T_Result],
|
|
41
27
|
) -> T_Result:
|
|
42
28
|
if self is ConfigurableTransformationNames.CHARACTER_SPLITTER:
|
|
43
29
|
return character_splitter()
|
|
@@ -53,17 +39,3 @@ class ConfigurableTransformationNames(str, enum.Enum):
|
|
|
53
39
|
return markdown_node_parser()
|
|
54
40
|
if self is ConfigurableTransformationNames.MARKDOWN_ELEMENT_NODE_PARSER:
|
|
55
41
|
return markdown_element_node_parser()
|
|
56
|
-
if self is ConfigurableTransformationNames.OPENAI_EMBEDDING:
|
|
57
|
-
return openai_embedding()
|
|
58
|
-
if self is ConfigurableTransformationNames.AZURE_EMBEDDING:
|
|
59
|
-
return azure_embedding()
|
|
60
|
-
if self is ConfigurableTransformationNames.COHERE_EMBEDDING:
|
|
61
|
-
return cohere_embedding()
|
|
62
|
-
if self is ConfigurableTransformationNames.BEDROCK_EMBEDDING:
|
|
63
|
-
return bedrock_embedding()
|
|
64
|
-
if self is ConfigurableTransformationNames.HUGGINGFACE_API_EMBEDDING:
|
|
65
|
-
return huggingface_api_embedding()
|
|
66
|
-
if self is ConfigurableTransformationNames.GEMINI_EMBEDDING:
|
|
67
|
-
return gemini_embedding()
|
|
68
|
-
if self is ConfigurableTransformationNames.VERTEXAI_EMBEDDING:
|
|
69
|
-
return vertexai_embedding()
|
|
@@ -2,17 +2,10 @@
|
|
|
2
2
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
|
-
from .azure_open_ai_embedding import AzureOpenAiEmbedding
|
|
6
|
-
from .bedrock_embedding import BedrockEmbedding
|
|
7
5
|
from .character_splitter import CharacterSplitter
|
|
8
6
|
from .code_splitter import CodeSplitter
|
|
9
|
-
from .cohere_embedding import CohereEmbedding
|
|
10
|
-
from .extend_vertex_text_embedding import ExtendVertexTextEmbedding
|
|
11
|
-
from .gemini_embedding import GeminiEmbedding
|
|
12
|
-
from .hugging_face_inference_api_embedding import HuggingFaceInferenceApiEmbedding
|
|
13
7
|
from .markdown_element_node_parser import MarkdownElementNodeParser
|
|
14
8
|
from .markdown_node_parser import MarkdownNodeParser
|
|
15
|
-
from .open_ai_embedding import OpenAiEmbedding
|
|
16
9
|
from .page_splitter_node_parser import PageSplitterNodeParser
|
|
17
10
|
from .sentence_splitter import SentenceSplitter
|
|
18
11
|
from .token_text_splitter import TokenTextSplitter
|
|
@@ -26,11 +19,4 @@ ConfiguredTransformationItemComponent = typing.Union[
|
|
|
26
19
|
TokenTextSplitter,
|
|
27
20
|
MarkdownNodeParser,
|
|
28
21
|
MarkdownElementNodeParser,
|
|
29
|
-
OpenAiEmbedding,
|
|
30
|
-
AzureOpenAiEmbedding,
|
|
31
|
-
CohereEmbedding,
|
|
32
|
-
BedrockEmbedding,
|
|
33
|
-
HuggingFaceInferenceApiEmbedding,
|
|
34
|
-
GeminiEmbedding,
|
|
35
|
-
ExtendVertexTextEmbedding,
|
|
36
22
|
]
|
|
@@ -3,21 +3,17 @@
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
5
|
from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
|
|
6
|
-
from .cloud_chroma_vector_store import CloudChromaVectorStore
|
|
7
6
|
from .cloud_milvus_vector_store import CloudMilvusVectorStore
|
|
8
7
|
from .cloud_mongo_db_atlas_vector_search import CloudMongoDbAtlasVectorSearch
|
|
9
8
|
from .cloud_pinecone_vector_store import CloudPineconeVectorStore
|
|
10
9
|
from .cloud_postgres_vector_store import CloudPostgresVectorStore
|
|
11
10
|
from .cloud_qdrant_vector_store import CloudQdrantVectorStore
|
|
12
|
-
from .cloud_weaviate_vector_store import CloudWeaviateVectorStore
|
|
13
11
|
|
|
14
12
|
DataSinkComponent = typing.Union[
|
|
15
13
|
typing.Dict[str, typing.Any],
|
|
16
|
-
CloudChromaVectorStore,
|
|
17
14
|
CloudPineconeVectorStore,
|
|
18
15
|
CloudPostgresVectorStore,
|
|
19
16
|
CloudQdrantVectorStore,
|
|
20
|
-
CloudWeaviateVectorStore,
|
|
21
17
|
CloudAzureAiSearchVectorStore,
|
|
22
18
|
CloudMongoDbAtlasVectorSearch,
|
|
23
19
|
CloudMilvusVectorStore,
|
|
@@ -3,21 +3,17 @@
|
|
|
3
3
|
import typing
|
|
4
4
|
|
|
5
5
|
from .cloud_azure_ai_search_vector_store import CloudAzureAiSearchVectorStore
|
|
6
|
-
from .cloud_chroma_vector_store import CloudChromaVectorStore
|
|
7
6
|
from .cloud_milvus_vector_store import CloudMilvusVectorStore
|
|
8
7
|
from .cloud_mongo_db_atlas_vector_search import CloudMongoDbAtlasVectorSearch
|
|
9
8
|
from .cloud_pinecone_vector_store import CloudPineconeVectorStore
|
|
10
9
|
from .cloud_postgres_vector_store import CloudPostgresVectorStore
|
|
11
10
|
from .cloud_qdrant_vector_store import CloudQdrantVectorStore
|
|
12
|
-
from .cloud_weaviate_vector_store import CloudWeaviateVectorStore
|
|
13
11
|
|
|
14
12
|
DataSinkCreateComponent = typing.Union[
|
|
15
13
|
typing.Dict[str, typing.Any],
|
|
16
|
-
CloudChromaVectorStore,
|
|
17
14
|
CloudPineconeVectorStore,
|
|
18
15
|
CloudPostgresVectorStore,
|
|
19
16
|
CloudQdrantVectorStore,
|
|
20
|
-
CloudWeaviateVectorStore,
|
|
21
17
|
CloudAzureAiSearchVectorStore,
|
|
22
18
|
CloudMongoDbAtlasVectorSearch,
|
|
23
19
|
CloudMilvusVectorStore,
|
|
@@ -15,25 +15,14 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class GeminiEmbedding(pydantic.BaseModel):
|
|
18
|
-
""
|
|
19
|
-
Google Gemini embeddings.
|
|
20
|
-
|
|
21
|
-
Args:
|
|
22
|
-
model_name (str): Model for embedding.
|
|
23
|
-
Defaults to "models/embedding-001".
|
|
24
|
-
|
|
25
|
-
api_key (Optional[str]): API key to access the model. Defaults to None.
|
|
26
|
-
api_base (Optional[str]): API base to access the model. Defaults to Official Base.
|
|
27
|
-
transport (Optional[str]): Transport to access the model.
|
|
28
|
-
"""
|
|
29
|
-
|
|
30
|
-
model_name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model.")
|
|
18
|
+
model_name: typing.Optional[str] = pydantic.Field(description="The modelId of the Gemini model to use.")
|
|
31
19
|
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
32
|
-
callback_manager: typing.Optional[typing.Any]
|
|
33
20
|
num_workers: typing.Optional[int]
|
|
34
21
|
title: typing.Optional[str]
|
|
35
22
|
task_type: typing.Optional[str]
|
|
36
23
|
api_key: typing.Optional[str]
|
|
24
|
+
api_base: typing.Optional[str]
|
|
25
|
+
transport: typing.Optional[str]
|
|
37
26
|
class_name: typing.Optional[str]
|
|
38
27
|
|
|
39
28
|
def json(self, **kwargs: typing.Any) -> str:
|
{llama_cloud-0.1.0 → llama_cloud-0.1.2}/llama_cloud/types/hugging_face_inference_api_embedding.py
RENAMED
|
@@ -17,17 +17,8 @@ except ImportError:
|
|
|
17
17
|
|
|
18
18
|
|
|
19
19
|
class HuggingFaceInferenceApiEmbedding(pydantic.BaseModel):
|
|
20
|
-
"""
|
|
21
|
-
Wrapper on the Hugging Face's Inference API for embeddings.
|
|
22
|
-
|
|
23
|
-
Overview of the design:
|
|
24
|
-
|
|
25
|
-
- Uses the feature extraction task: https://huggingface.co/tasks/feature-extraction
|
|
26
|
-
"""
|
|
27
|
-
|
|
28
20
|
model_name: typing.Optional[str]
|
|
29
21
|
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
30
|
-
callback_manager: typing.Optional[typing.Any]
|
|
31
22
|
num_workers: typing.Optional[int]
|
|
32
23
|
pooling: typing.Optional[Pooling]
|
|
33
24
|
query_instruction: typing.Optional[str]
|
|
@@ -20,7 +20,7 @@ class InputMessage(pydantic.BaseModel):
|
|
|
20
20
|
This is distinct from a ChatMessage because this schema is enforced by the AI Chat library used in the frontend
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
|
-
id:
|
|
23
|
+
id: str = pydantic.Field(description="ID of the message, if any. a UUID.")
|
|
24
24
|
role: MessageRole
|
|
25
25
|
content: str
|
|
26
26
|
data: typing.Optional[typing.Dict[str, typing.Any]]
|
|
@@ -44,6 +44,10 @@ class LlamaParseParameters(pydantic.BaseModel):
|
|
|
44
44
|
premium_mode: typing.Optional[bool]
|
|
45
45
|
s_3_input_path: typing.Optional[str] = pydantic.Field(alias="s3_input_path")
|
|
46
46
|
s_3_output_path_prefix: typing.Optional[str] = pydantic.Field(alias="s3_output_path_prefix")
|
|
47
|
+
azure_openai_deployment_name: typing.Optional[str]
|
|
48
|
+
azure_openai_endpoint: typing.Optional[str]
|
|
49
|
+
azure_openai_api_version: typing.Optional[str]
|
|
50
|
+
azure_openai_key: typing.Optional[str]
|
|
47
51
|
|
|
48
52
|
def json(self, **kwargs: typing.Any) -> str:
|
|
49
53
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
|
@@ -15,36 +15,13 @@ except ImportError:
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class OpenAiEmbedding(pydantic.BaseModel):
|
|
18
|
-
""
|
|
19
|
-
OpenAI class for embeddings.
|
|
20
|
-
|
|
21
|
-
Args:
|
|
22
|
-
mode (str): Mode for embedding.
|
|
23
|
-
Defaults to OpenAIEmbeddingMode.TEXT_SEARCH_MODE.
|
|
24
|
-
Options are:
|
|
25
|
-
|
|
26
|
-
- OpenAIEmbeddingMode.SIMILARITY_MODE
|
|
27
|
-
- OpenAIEmbeddingMode.TEXT_SEARCH_MODE
|
|
28
|
-
|
|
29
|
-
model (str): Model for embedding.
|
|
30
|
-
Defaults to OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002.
|
|
31
|
-
Options are:
|
|
32
|
-
|
|
33
|
-
- OpenAIEmbeddingModelType.DAVINCI
|
|
34
|
-
- OpenAIEmbeddingModelType.CURIE
|
|
35
|
-
- OpenAIEmbeddingModelType.BABBAGE
|
|
36
|
-
- OpenAIEmbeddingModelType.ADA
|
|
37
|
-
- OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002
|
|
38
|
-
"""
|
|
39
|
-
|
|
40
|
-
model_name: typing.Optional[str] = pydantic.Field(description="The name of the embedding model.")
|
|
18
|
+
model_name: typing.Optional[str] = pydantic.Field(description="The name of the OpenAI embedding model.")
|
|
41
19
|
embed_batch_size: typing.Optional[int] = pydantic.Field(description="The batch size for embedding calls.")
|
|
42
|
-
callback_manager: typing.Optional[typing.Any]
|
|
43
20
|
num_workers: typing.Optional[int]
|
|
44
21
|
additional_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
|
|
45
22
|
description="Additional kwargs for the OpenAI API."
|
|
46
23
|
)
|
|
47
|
-
api_key: str
|
|
24
|
+
api_key: typing.Optional[str]
|
|
48
25
|
api_base: typing.Optional[str]
|
|
49
26
|
api_version: typing.Optional[str]
|
|
50
27
|
max_retries: typing.Optional[int] = pydantic.Field(description="Maximum number of retries.")
|
|
@@ -4,7 +4,7 @@ import datetime as dt
|
|
|
4
4
|
import typing
|
|
5
5
|
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
|
7
|
-
from .
|
|
7
|
+
from .vertex_text_embedding import VertexTextEmbedding
|
|
8
8
|
|
|
9
9
|
try:
|
|
10
10
|
import pydantic
|
|
@@ -16,7 +16,7 @@ except ImportError:
|
|
|
16
16
|
|
|
17
17
|
|
|
18
18
|
class VertexAiEmbeddingConfig(pydantic.BaseModel):
|
|
19
|
-
component: typing.Optional[
|
|
19
|
+
component: typing.Optional[VertexTextEmbedding] = pydantic.Field(
|
|
20
20
|
description="Configuration for the VertexAI embedding model."
|
|
21
21
|
)
|
|
22
22
|
|