linearboost 0.0.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- linearboost-0.0.1/LICENSE +21 -0
- linearboost-0.0.1/PKG-INFO +20 -0
- linearboost-0.0.1/README.md +1 -0
- linearboost-0.0.1/pyproject.toml +30 -0
- linearboost-0.0.1/setup.cfg +4 -0
- linearboost-0.0.1/src/linearboost/LinearBoost.py +166 -0
- linearboost-0.0.1/src/linearboost/__init__.py +1 -0
- linearboost-0.0.1/src/linearboost.egg-info/PKG-INFO +20 -0
- linearboost-0.0.1/src/linearboost.egg-info/SOURCES.txt +10 -0
- linearboost-0.0.1/src/linearboost.egg-info/dependency_links.txt +1 -0
- linearboost-0.0.1/src/linearboost.egg-info/requires.txt +2 -0
- linearboost-0.0.1/src/linearboost.egg-info/top_level.txt +2 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) [2024] [Hamidreza Keshavarz, Reza Rawassizadeh]
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: linearboost
|
|
3
|
+
Version: 0.0.1
|
|
4
|
+
Summary: LinearBoost Python Package
|
|
5
|
+
Author-email: Hamidreza Keshavarz <hamid9@outlook.com>, Reza Rawassizadeh <rezar@bu.edu>
|
|
6
|
+
License: MIT License
|
|
7
|
+
Project-URL: Homepage, https://github.com/LinearBoost/linearboost-classifier
|
|
8
|
+
Project-URL: Documentation, https://linearboost.readthedocs.io
|
|
9
|
+
Project-URL: Issues, https://github.com/LinearBoost/linearboost-classifier/issues
|
|
10
|
+
Keywords: classification,classifier,linear,adaboost,boosting,boost
|
|
11
|
+
Classifier: Programming Language :: Python :: 3
|
|
12
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
13
|
+
Classifier: Operating System :: OS Independent
|
|
14
|
+
Requires-Python: >=3.8
|
|
15
|
+
Description-Content-Type: text/markdown
|
|
16
|
+
License-File: LICENSE
|
|
17
|
+
Requires-Dist: numpy>=1.24.3
|
|
18
|
+
Requires-Dist: scikit-learn>=1.2.2
|
|
19
|
+
|
|
20
|
+
LinearBoost is a classification algorithm based on boosting a linear classifier named SEFR. It can be used for classification tasks.
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
LinearBoost is a classification algorithm based on boosting a linear classifier named SEFR. It can be used for classification tasks.
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["setuptools>=61.0"]
|
|
3
|
+
build-backend = "setuptools.build_meta"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "linearboost"
|
|
7
|
+
version = "0.0.1"
|
|
8
|
+
authors = [
|
|
9
|
+
{ name="Hamidreza Keshavarz", email="hamid9@outlook.com" },
|
|
10
|
+
{ name="Reza Rawassizadeh", email="rezar@bu.edu"}
|
|
11
|
+
]
|
|
12
|
+
dependencies = [
|
|
13
|
+
"numpy>=1.24.3",
|
|
14
|
+
"scikit-learn>=1.2.2",
|
|
15
|
+
]
|
|
16
|
+
description = "LinearBoost Python Package"
|
|
17
|
+
readme = "README.md"
|
|
18
|
+
requires-python = ">=3.8"
|
|
19
|
+
classifiers = [
|
|
20
|
+
"Programming Language :: Python :: 3",
|
|
21
|
+
"License :: OSI Approved :: MIT License",
|
|
22
|
+
"Operating System :: OS Independent",
|
|
23
|
+
]
|
|
24
|
+
|
|
25
|
+
license = {text = "MIT License"}
|
|
26
|
+
keywords = ["classification", "classifier", "linear", "adaboost", "boosting", "boost"]
|
|
27
|
+
[project.urls]
|
|
28
|
+
Homepage = "https://github.com/LinearBoost/linearboost-classifier"
|
|
29
|
+
Documentation = "https://linearboost.readthedocs.io"
|
|
30
|
+
Issues = "https://github.com/LinearBoost/linearboost-classifier/issues"
|
|
@@ -0,0 +1,166 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from sklearn.base import BaseEstimator, ClassifierMixin
|
|
3
|
+
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
|
|
4
|
+
from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier
|
|
5
|
+
|
|
6
|
+
class SEFR(BaseEstimator):
|
|
7
|
+
def __init__(self):
|
|
8
|
+
self.weights = []
|
|
9
|
+
self.bias = 0
|
|
10
|
+
self.classes_ = np.array([0, 1])
|
|
11
|
+
#self.scaler = MinMaxScaler(feature_range=(0, 1))
|
|
12
|
+
self.label_encoder = LabelEncoder()
|
|
13
|
+
self.max = 0
|
|
14
|
+
self.min = 0
|
|
15
|
+
|
|
16
|
+
def fit(self, train_predictors, train_target, sample_weight=None):
|
|
17
|
+
"""
|
|
18
|
+
This is used for training the classifier on data.
|
|
19
|
+
Parameters
|
|
20
|
+
----------
|
|
21
|
+
train_predictors : float, either list or numpy array
|
|
22
|
+
are the main data in DataFrame
|
|
23
|
+
train_target : integer, numpy array
|
|
24
|
+
labels, should consist of 0s and 1s
|
|
25
|
+
"""
|
|
26
|
+
#train_predictors = self.scaler.fit_transform(train_predictors)
|
|
27
|
+
|
|
28
|
+
#self.label_encoder.fit(train_target)
|
|
29
|
+
#encoded_labels = self.label_encoder.transform(train_target)
|
|
30
|
+
#print(train_predictors)
|
|
31
|
+
|
|
32
|
+
X = np.array(train_predictors, dtype="float32")
|
|
33
|
+
#y = np.array(encoded_labels, dtype="int32")
|
|
34
|
+
y = np.array(train_target, dtype="int32")
|
|
35
|
+
|
|
36
|
+
if sample_weight is not None:
|
|
37
|
+
sample_weight = np.array(sample_weight, dtype="float32")
|
|
38
|
+
else:
|
|
39
|
+
sample_weight = np.ones(len(y), dtype="float32")
|
|
40
|
+
|
|
41
|
+
pos_labels = np.sign(y) == 1
|
|
42
|
+
neg_labels = np.invert(pos_labels)
|
|
43
|
+
|
|
44
|
+
pos_indices = X[pos_labels, :]
|
|
45
|
+
neg_indices = X[neg_labels, :]
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
avg_pos = np.average(pos_indices, axis=0, weights=sample_weight[pos_labels])
|
|
50
|
+
avg_neg = np.average(neg_indices, axis=0, weights=sample_weight[neg_labels])
|
|
51
|
+
|
|
52
|
+
self.weights = (avg_pos - avg_neg) / (avg_pos + avg_neg + 0.0000001)
|
|
53
|
+
|
|
54
|
+
sum_scores = np.dot(X, self.weights)
|
|
55
|
+
|
|
56
|
+
pos_label_count = np.count_nonzero(y)
|
|
57
|
+
neg_label_count = y.shape[0] - pos_label_count
|
|
58
|
+
|
|
59
|
+
pos_score_avg = np.average(sum_scores[y == 1], weights=sample_weight[y == 1])
|
|
60
|
+
neg_score_avg = np.average(sum_scores[y == 0], weights=sample_weight[y == 0])
|
|
61
|
+
|
|
62
|
+
self.bias = (neg_label_count * pos_score_avg + pos_label_count * neg_score_avg) / (neg_label_count + pos_label_count)
|
|
63
|
+
|
|
64
|
+
self.max = max(sum_scores)
|
|
65
|
+
self.min = min(sum_scores)
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
#print(sample_weight)
|
|
70
|
+
#print(self.weights, self.bias)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def predict(self, test_predictors):
|
|
75
|
+
"""
|
|
76
|
+
This is for prediction. When the model is trained, it can be applied on the test data.
|
|
77
|
+
Parameters
|
|
78
|
+
----------
|
|
79
|
+
test_predictors: either list or ndarray, two dimensional
|
|
80
|
+
the data without labels in
|
|
81
|
+
Returns
|
|
82
|
+
----------
|
|
83
|
+
predictions in numpy array
|
|
84
|
+
"""
|
|
85
|
+
#X = self.scaler.transform(test_predictors)
|
|
86
|
+
X = test_predictors
|
|
87
|
+
if isinstance(test_predictors, list):
|
|
88
|
+
X = np.array(test_predictors, dtype="float32")
|
|
89
|
+
|
|
90
|
+
temp = np.dot(X, self.weights)
|
|
91
|
+
preds = np.where(temp <= self.bias, 0 , 1)
|
|
92
|
+
#original_preds = self.label_encoder.inverse_transform(preds)
|
|
93
|
+
#return original_preds
|
|
94
|
+
return preds
|
|
95
|
+
|
|
96
|
+
def predict_proba(self, test_predictors):
|
|
97
|
+
"""
|
|
98
|
+
This is for prediction probabilities.
|
|
99
|
+
Parameters
|
|
100
|
+
----------
|
|
101
|
+
test_predictors: either list or ndarray, two dimensional
|
|
102
|
+
the data without labels in
|
|
103
|
+
Returns
|
|
104
|
+
----------
|
|
105
|
+
prediction probabilities in numpy array
|
|
106
|
+
"""
|
|
107
|
+
X = test_predictors
|
|
108
|
+
if isinstance(test_predictors, list):
|
|
109
|
+
X = np.array(test_predictors, dtype="float32")
|
|
110
|
+
|
|
111
|
+
linear_output = np.dot(X, self.weights) - self.bias
|
|
112
|
+
|
|
113
|
+
#print('llllll', linear_output)
|
|
114
|
+
#exit()
|
|
115
|
+
# =============================================================================
|
|
116
|
+
# pred_proba = 1 / (1 + np.exp(-linear_output))
|
|
117
|
+
# pred_proba = np.exp(linear_output) / (np.exp(linear_output) + np.exp(-linear_output))
|
|
118
|
+
# #print(pred_proba)
|
|
119
|
+
# return np.column_stack((1 - pred_proba, pred_proba))
|
|
120
|
+
# =============================================================================
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
temp = np.dot(X, self.weights)
|
|
124
|
+
score = (temp - self.bias) / np.linalg.norm(self.weights)
|
|
125
|
+
#score = (temp - self.bias) / self.max
|
|
126
|
+
pred_proba = 1 / (1 + np.exp(-score))
|
|
127
|
+
#pred_proba = (np.tanh(score) + 1) / 2
|
|
128
|
+
#print(pred_proba)
|
|
129
|
+
return np.column_stack((1 - pred_proba, pred_proba))
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
# to be tested later
|
|
135
|
+
#score = ((temp - self.bias) - self.min) / (self.max - self.min)
|
|
136
|
+
#pred_proba = score
|
|
137
|
+
#print(pred_proba)
|
|
138
|
+
#return np.column_stack((1 - pred_proba, pred_proba))
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
class LinearBoostClassifier(AdaBoostClassifier):
|
|
142
|
+
def __init__(self, n_estimators=200, learning_rate=1.0, algorithm='SAMME', random_state=9):
|
|
143
|
+
self.scaler = MinMaxScaler(feature_range=(0, 1))
|
|
144
|
+
self.label_encoder = LabelEncoder()
|
|
145
|
+
super().__init__(estimator=SEFR(), n_estimators=n_estimators, learning_rate=learning_rate, algorithm=algorithm, random_state=random_state)
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
def fit(self, X, y, sample_weight=None):
|
|
149
|
+
self.scaler.fit(X)
|
|
150
|
+
X = self.scaler.transform(X)
|
|
151
|
+
self.label_encoder.fit(y)
|
|
152
|
+
y = self.label_encoder.transform(y)
|
|
153
|
+
return super().fit(X, y, sample_weight)
|
|
154
|
+
|
|
155
|
+
def predict(self, X):
|
|
156
|
+
X = self.scaler.transform(X)
|
|
157
|
+
y_pred = super().predict(X)
|
|
158
|
+
return self.label_encoder.inverse_transform(y_pred)
|
|
159
|
+
|
|
160
|
+
def predict_proba(self, X):
|
|
161
|
+
X = self.scaler.transform(X)
|
|
162
|
+
return super().predict_proba(X)
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
def linboostclassifier(n_estimators=200, random_state=0, algorithm="SAMME"):
|
|
166
|
+
return AdaBoostClassifier(estimator=SEFR(), n_estimators=n_estimators, random_state=random_state, algorithm=algorithm)
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from .LinearBoost import LinearBoostClassifier
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: linearboost
|
|
3
|
+
Version: 0.0.1
|
|
4
|
+
Summary: LinearBoost Python Package
|
|
5
|
+
Author-email: Hamidreza Keshavarz <hamid9@outlook.com>, Reza Rawassizadeh <rezar@bu.edu>
|
|
6
|
+
License: MIT License
|
|
7
|
+
Project-URL: Homepage, https://github.com/LinearBoost/linearboost-classifier
|
|
8
|
+
Project-URL: Documentation, https://linearboost.readthedocs.io
|
|
9
|
+
Project-URL: Issues, https://github.com/LinearBoost/linearboost-classifier/issues
|
|
10
|
+
Keywords: classification,classifier,linear,adaboost,boosting,boost
|
|
11
|
+
Classifier: Programming Language :: Python :: 3
|
|
12
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
13
|
+
Classifier: Operating System :: OS Independent
|
|
14
|
+
Requires-Python: >=3.8
|
|
15
|
+
Description-Content-Type: text/markdown
|
|
16
|
+
License-File: LICENSE
|
|
17
|
+
Requires-Dist: numpy>=1.24.3
|
|
18
|
+
Requires-Dist: scikit-learn>=1.2.2
|
|
19
|
+
|
|
20
|
+
LinearBoost is a classification algorithm based on boosting a linear classifier named SEFR. It can be used for classification tasks.
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
LICENSE
|
|
2
|
+
README.md
|
|
3
|
+
pyproject.toml
|
|
4
|
+
src/linearboost/LinearBoost.py
|
|
5
|
+
src/linearboost/__init__.py
|
|
6
|
+
src/linearboost.egg-info/PKG-INFO
|
|
7
|
+
src/linearboost.egg-info/SOURCES.txt
|
|
8
|
+
src/linearboost.egg-info/dependency_links.txt
|
|
9
|
+
src/linearboost.egg-info/requires.txt
|
|
10
|
+
src/linearboost.egg-info/top_level.txt
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|