likelihood 1.2.23__tar.gz → 1.2.25__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (26) hide show
  1. {likelihood-1.2.23 → likelihood-1.2.25}/PKG-INFO +15 -3
  2. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/graph/nn.py +9 -10
  3. likelihood-1.2.25/likelihood/models/deep/autoencoders.py +598 -0
  4. likelihood-1.2.25/likelihood/models/hmm.py +163 -0
  5. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/models/simulation.py +5 -6
  6. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood.egg-info/PKG-INFO +15 -3
  7. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood.egg-info/SOURCES.txt +1 -0
  8. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood.egg-info/requires.txt +1 -1
  9. likelihood-1.2.23/likelihood/models/deep/autoencoders.py +0 -309
  10. {likelihood-1.2.23 → likelihood-1.2.25}/LICENSE +0 -0
  11. {likelihood-1.2.23 → likelihood-1.2.25}/README.md +0 -0
  12. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/__init__.py +0 -0
  13. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/graph/__init__.py +0 -0
  14. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/graph/graph.py +0 -0
  15. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/main.py +0 -0
  16. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/models/__init__.py +0 -0
  17. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/models/deep/__init__.py +0 -0
  18. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/models/regression.py +0 -0
  19. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/models/utils.py +0 -0
  20. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/tools/__init__.py +0 -0
  21. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/tools/numeric_tools.py +0 -0
  22. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood/tools/tools.py +0 -0
  23. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood.egg-info/dependency_links.txt +0 -0
  24. {likelihood-1.2.23 → likelihood-1.2.25}/likelihood.egg-info/top_level.txt +0 -0
  25. {likelihood-1.2.23 → likelihood-1.2.25}/setup.cfg +0 -0
  26. {likelihood-1.2.23 → likelihood-1.2.25}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: likelihood
3
- Version: 1.2.23
3
+ Version: 1.2.25
4
4
  Summary: A package that performs the maximum likelihood algorithm.
5
5
  Home-page: https://github.com/jzsmoreno/likelihood/
6
6
  Author: J. A. Moreno-Guerra
@@ -13,7 +13,7 @@ Classifier: Operating System :: OS Independent
13
13
  Requires-Python: >=3.10
14
14
  Description-Content-Type: text/markdown
15
15
  License-File: LICENSE
16
- Requires-Dist: black[jupyter]==24.1.1
16
+ Requires-Dist: black[jupyter]>=24.3.0
17
17
  Requires-Dist: mypy-extensions==1.0.0
18
18
  Requires-Dist: types-openpyxl==3.1.0.15
19
19
  Requires-Dist: pydocstyle==6.3.0
@@ -31,6 +31,18 @@ Requires-Dist: pyvis; extra == "full"
31
31
  Requires-Dist: tensorflow==2.15.0; extra == "full"
32
32
  Requires-Dist: keras-tuner; extra == "full"
33
33
  Requires-Dist: scikit-learn; extra == "full"
34
+ Dynamic: author
35
+ Dynamic: author-email
36
+ Dynamic: classifier
37
+ Dynamic: description
38
+ Dynamic: description-content-type
39
+ Dynamic: home-page
40
+ Dynamic: maintainer
41
+ Dynamic: maintainer-email
42
+ Dynamic: provides-extra
43
+ Dynamic: requires-dist
44
+ Dynamic: requires-python
45
+ Dynamic: summary
34
46
 
35
47
  ![likelihood](https://raw.githubusercontent.com/RodolfoFerro/likelihood/main/likelihood.png)
36
48
 
@@ -1,7 +1,9 @@
1
+ import logging
1
2
  import os
2
3
 
3
- os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
4
- import logging
4
+ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
5
+ logging.getLogger("tensorflow").setLevel(logging.ERROR)
6
+
5
7
  import warnings
6
8
  from typing import List, Tuple
7
9
 
@@ -9,19 +11,16 @@ import numpy as np
9
11
  import pandas as pd
10
12
  import tensorflow as tf
11
13
  from IPython.display import clear_output
12
- from numpy import ndarray
13
14
  from pandas.core.frame import DataFrame
14
15
  from sklearn.metrics import f1_score
15
16
  from sklearn.model_selection import train_test_split
16
17
 
17
18
  from likelihood.tools import generate_feature_yaml
18
19
 
19
- logging.getLogger("tensorflow").setLevel(logging.ERROR)
20
-
21
- tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
20
+ tf.get_logger().setLevel("ERROR")
22
21
 
23
22
 
24
- def compare_similarity(arr1: ndarray, arr2: ndarray) -> int:
23
+ def compare_similarity(arr1: np.ndarray, arr2: np.ndarray) -> int:
25
24
  """Compares the similarity between two arrays of categories.
26
25
 
27
26
  Parameters
@@ -44,9 +43,9 @@ def compare_similarity(arr1: ndarray, arr2: ndarray) -> int:
44
43
  return count
45
44
 
46
45
 
47
- def cal_adjency_matrix(
46
+ def cal_adjacency_matrix(
48
47
  df: DataFrame, exclude_subset: List[str] = [], sparse: bool = True, **kwargs
49
- ) -> Tuple[dict, ndarray]:
48
+ ) -> Tuple[dict, np.ndarray]:
50
49
  """Calculates the adjacency matrix for a given DataFrame.
51
50
  The adjacency matrix is a matrix that represents the similarity between each pair of categories.
52
51
  The similarity is calculated using the `compare_similarity` function.
@@ -133,7 +132,7 @@ class Data:
133
132
  target: str | None = None,
134
133
  exclude_subset: List[str] = [],
135
134
  ):
136
- _, adjacency = cal_adjency_matrix(df, exclude_subset=exclude_subset, sparse=True)
135
+ _, adjacency = cal_adjacency_matrix(df, exclude_subset=exclude_subset, sparse=True)
137
136
  if target is not None:
138
137
  X = df.drop(columns=[target] + exclude_subset)
139
138
  else:
@@ -0,0 +1,598 @@
1
+ import logging
2
+ import os
3
+ import random
4
+ from functools import partial
5
+ from shutil import rmtree
6
+
7
+ import matplotlib
8
+ import matplotlib.colors as mcolors
9
+ import matplotlib.pyplot as plt
10
+ import numpy as np
11
+ import pandas as pd
12
+ from pandas.plotting import radviz
13
+
14
+ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
15
+ logging.getLogger("tensorflow").setLevel(logging.ERROR)
16
+
17
+ import warnings
18
+ from functools import wraps
19
+
20
+ import keras_tuner
21
+ import tensorflow as tf
22
+ from pandas.core.frame import DataFrame
23
+ from sklearn.manifold import TSNE
24
+
25
+ from likelihood.tools import OneHotEncoder
26
+
27
+ tf.get_logger().setLevel("ERROR")
28
+
29
+
30
+ def suppress_warnings(func):
31
+ @wraps(func)
32
+ def wrapper(*args, **kwargs):
33
+ with warnings.catch_warnings():
34
+ warnings.simplefilter("ignore")
35
+ return func(*args, **kwargs)
36
+
37
+ return wrapper
38
+
39
+
40
+ @tf.keras.utils.register_keras_serializable(package="Custom", name="AutoClassifier")
41
+ class AutoClassifier(tf.keras.Model):
42
+ """
43
+ An auto-classifier model that automatically determines the best classification strategy based on the input data.
44
+
45
+ Attributes:
46
+ - input_shape_parm: The shape of the input data.
47
+ - num_classes: The number of classes in the dataset.
48
+ - units: The number of neurons in each hidden layer.
49
+ - activation: The type of activation function to use for the neural network layers.
50
+
51
+ Methods:
52
+ __init__(self, input_shape_parm, num_classes, units, activation): Initializes an AutoClassifier instance with the given parameters.
53
+ build(self, input_shape_parm): Builds the model architecture based on input_shape_parm.
54
+ call(self, x): Defines the forward pass of the model.
55
+ get_config(self): Returns the configuration of the model.
56
+ from_config(cls, config): Recreates an instance of AutoClassifier from its configuration.
57
+ """
58
+
59
+ def __init__(self, input_shape_parm, num_classes, units, activation, **kwargs):
60
+ """
61
+ Initializes an AutoClassifier instance with the given parameters.
62
+
63
+ Parameters
64
+ ----------
65
+ input_shape_parm : `int`
66
+ The shape of the input data.
67
+ num_classes : `int`
68
+ The number of classes in the dataset.
69
+ units : `int`
70
+ The number of neurons in each hidden layer.
71
+ activation : `str`
72
+ The type of activation function to use for the neural network layers.
73
+
74
+ Keyword Arguments:
75
+ ----------
76
+ Additional keyword arguments to pass to the model.
77
+
78
+ classifier_activation : `str`
79
+ The activation function to use for the classifier layer. Default is "softmax". If the activation function is not a classification function, the model can be used in regression problems.
80
+ num_layers : `int`
81
+ The number of hidden layers in the classifier. Default is 1.
82
+ """
83
+ super(AutoClassifier, self).__init__()
84
+ self.input_shape_parm = input_shape_parm
85
+ self.num_classes = num_classes
86
+ self.units = units
87
+ self.activation = activation
88
+
89
+ self.encoder = None
90
+ self.decoder = None
91
+ self.classifier = None
92
+ self.classifier_activation = kwargs.get("classifier_activation", "softmax")
93
+ self.num_layers = kwargs.get("num_layers", 1)
94
+
95
+ def build(self, input_shape):
96
+ self.encoder = tf.keras.Sequential(
97
+ [
98
+ tf.keras.layers.Dense(units=self.units, activation=self.activation),
99
+ tf.keras.layers.Dense(units=int(self.units / 2), activation=self.activation),
100
+ ]
101
+ )
102
+
103
+ self.decoder = tf.keras.Sequential(
104
+ [
105
+ tf.keras.layers.Dense(units=self.units, activation=self.activation),
106
+ tf.keras.layers.Dense(units=self.input_shape_parm, activation=self.activation),
107
+ ]
108
+ )
109
+
110
+ self.classifier = tf.keras.Sequential()
111
+ if self.num_layers > 1:
112
+ for _ in range(self.num_layers - 1):
113
+ self.classifier.add(
114
+ tf.keras.layers.Dense(units=self.units, activation=self.activation)
115
+ )
116
+ self.classifier.add(
117
+ tf.keras.layers.Dense(units=self.num_classes, activation=self.classifier_activation)
118
+ )
119
+
120
+ def call(self, x):
121
+ encoded = self.encoder(x)
122
+ decoded = self.decoder(encoded)
123
+ combined = tf.concat([decoded, encoded], axis=1)
124
+ classification = self.classifier(combined)
125
+ return classification
126
+
127
+ def get_config(self):
128
+ config = {
129
+ "input_shape_parm": self.input_shape_parm,
130
+ "num_classes": self.num_classes,
131
+ "units": self.units,
132
+ "activation": self.activation,
133
+ "classifier_activation": self.classifier_activation,
134
+ "num_layers": self.num_layers,
135
+ }
136
+ base_config = super(AutoClassifier, self).get_config()
137
+ return dict(list(base_config.items()) + list(config.items()))
138
+
139
+ @classmethod
140
+ def from_config(cls, config):
141
+ return cls(
142
+ input_shape_parm=config["input_shape_parm"],
143
+ num_classes=config["num_classes"],
144
+ units=config["units"],
145
+ activation=config["activation"],
146
+ classifier_activation=config["classifier_activation"],
147
+ num_layers=config["num_layers"],
148
+ )
149
+
150
+
151
+ def call_existing_code(
152
+ units: int,
153
+ activation: str,
154
+ threshold: float,
155
+ optimizer: str,
156
+ input_shape_parm: None | int = None,
157
+ num_classes: None | int = None,
158
+ num_layers: int = 1,
159
+ ) -> AutoClassifier:
160
+ """
161
+ Calls an existing AutoClassifier instance.
162
+
163
+ Parameters
164
+ ----------
165
+ units : `int`
166
+ The number of neurons in each hidden layer.
167
+ activation : `str`
168
+ The type of activation function to use for the neural network layers.
169
+ threshold : `float`
170
+ The threshold for the classifier.
171
+ optimizer : `str`
172
+ The type of optimizer to use for the neural network layers.
173
+ input_shape_parm : `None` | `int`
174
+ The shape of the input data.
175
+ num_classes : `int`
176
+ The number of classes in the dataset.
177
+
178
+ Returns
179
+ -------
180
+ `AutoClassifier`
181
+ The AutoClassifier instance.
182
+ """
183
+ model = AutoClassifier(
184
+ input_shape_parm=input_shape_parm,
185
+ num_classes=num_classes,
186
+ units=units,
187
+ activation=activation,
188
+ num_layers=num_layers,
189
+ )
190
+ model.compile(
191
+ optimizer=optimizer,
192
+ loss=tf.keras.losses.CategoricalCrossentropy(),
193
+ metrics=[tf.keras.metrics.F1Score(threshold=threshold)],
194
+ )
195
+ return model
196
+
197
+
198
+ def build_model(
199
+ hp, input_shape_parm: None | int, num_classes: None | int, **kwargs
200
+ ) -> AutoClassifier:
201
+ """Builds a neural network model using Keras Tuner's search algorithm.
202
+
203
+ Parameters
204
+ ----------
205
+ hp : `keras_tuner.HyperParameters`
206
+ The hyperparameters to tune.
207
+ input_shape_parm : `None` | `int`
208
+ The shape of the input data.
209
+ num_classes : `int`
210
+ The number of classes in the dataset.
211
+
212
+ Keyword Arguments:
213
+ ----------
214
+ Additional keyword arguments to pass to the model.
215
+
216
+ hyperparameters : `dict`
217
+ The hyperparameters to set.
218
+
219
+ Returns
220
+ -------
221
+ `keras.Model`
222
+ The neural network model.
223
+ """
224
+ hyperparameters = kwargs.get("hyperparameters", None)
225
+ hyperparameters_keys = hyperparameters.keys() if hyperparameters is not None else []
226
+
227
+ units = (
228
+ hp.Int(
229
+ "units",
230
+ min_value=int(input_shape_parm * 0.2),
231
+ max_value=int(input_shape_parm * 1.5),
232
+ step=2,
233
+ )
234
+ if "units" not in hyperparameters_keys
235
+ else hyperparameters["units"]
236
+ )
237
+ activation = (
238
+ hp.Choice("activation", ["sigmoid", "relu", "tanh", "selu", "softplus", "softsign"])
239
+ if "activation" not in hyperparameters_keys
240
+ else hyperparameters["activation"]
241
+ )
242
+ optimizer = (
243
+ hp.Choice("optimizer", ["sgd", "adam", "adadelta", "rmsprop", "adamax", "adagrad"])
244
+ if "optimizer" not in hyperparameters_keys
245
+ else hyperparameters["optimizer"]
246
+ )
247
+ threshold = (
248
+ hp.Float("threshold", min_value=0.1, max_value=0.9, sampling="log")
249
+ if "threshold" not in hyperparameters_keys
250
+ else hyperparameters["threshold"]
251
+ )
252
+ num_layers = (
253
+ hp.Int("num_layers", min_value=1, max_value=10, step=1)
254
+ if "num_layers" not in hyperparameters_keys
255
+ else hyperparameters["num_layers"]
256
+ )
257
+
258
+ model = call_existing_code(
259
+ units=units,
260
+ activation=activation,
261
+ threshold=threshold,
262
+ optimizer=optimizer,
263
+ input_shape_parm=input_shape_parm,
264
+ num_classes=num_classes,
265
+ num_layers=num_layers,
266
+ )
267
+ return model
268
+
269
+
270
+ @suppress_warnings
271
+ def setup_model(
272
+ data: DataFrame,
273
+ target: str,
274
+ epochs: int,
275
+ train_size: float = 0.7,
276
+ seed=None,
277
+ train_mode: bool = True,
278
+ filepath: str = "./my_dir/best_model",
279
+ method: str = "Hyperband",
280
+ **kwargs,
281
+ ) -> AutoClassifier:
282
+ """Setup model for training and tuning.
283
+
284
+ Parameters
285
+ ----------
286
+ data : `DataFrame`
287
+ The dataset to train the model on.
288
+ target : `str`
289
+ The name of the target column.
290
+ epochs : `int`
291
+ The number of epochs to train the model for.
292
+ train_size : `float`
293
+ The proportion of the dataset to use for training.
294
+ seed : `Any` | `int`
295
+ The random seed to use for reproducibility.
296
+ train_mode : `bool`
297
+ Whether to train the model or not.
298
+ filepath : `str`
299
+ The path to save the best model to.
300
+ method : `str`
301
+ The method to use for hyperparameter tuning. Options are "Hyperband" and "RandomSearch".
302
+
303
+ Keyword Arguments:
304
+ ----------
305
+ Additional keyword arguments to pass to the model.
306
+
307
+ max_trials : `int`
308
+ The maximum number of trials to perform.
309
+ directory : `str`
310
+ The directory to save the model to.
311
+ project_name : `str`
312
+ The name of the project.
313
+ objective : `str`
314
+ The objective to optimize.
315
+ verbose : `bool`
316
+ Whether to print verbose output.
317
+ hyperparameters : `dict`
318
+ The hyperparameters to set.
319
+
320
+ Returns
321
+ -------
322
+ model : `AutoClassifier`
323
+ The trained model.
324
+ """
325
+ max_trials = kwargs.get("max_trials", 10)
326
+ directory = kwargs.get("directory", "./my_dir")
327
+ project_name = kwargs.get("project_name", "get_best")
328
+ objective = kwargs.get("objective", "val_loss")
329
+ verbose = kwargs.get("verbose", True)
330
+ hyperparameters = kwargs.get("hyperparameters", None)
331
+
332
+ X = data.drop(columns=target)
333
+ input_sample = X.sample(1)
334
+ y = data[target]
335
+ assert (
336
+ X.select_dtypes(include=["object"]).empty == True
337
+ ), "Categorical variables within the DataFrame must be encoded, this is done by using the DataFrameEncoder from likelihood."
338
+ validation_split = 1.0 - train_size
339
+
340
+ if train_mode:
341
+ try:
342
+ if (not os.path.exists(directory)) and directory != "./":
343
+ os.makedirs(directory)
344
+ elif directory != "./":
345
+ print(f"Directory {directory} already exists, it will be deleted.")
346
+ rmtree(directory)
347
+ os.makedirs(directory)
348
+ except:
349
+ print("Warning: unable to create directory")
350
+
351
+ y_encoder = OneHotEncoder()
352
+ y = y_encoder.encode(y.to_list())
353
+ X = X.to_numpy()
354
+ input_sample.to_numpy()
355
+ X = np.asarray(X).astype(np.float32)
356
+ input_sample = np.asarray(input_sample).astype(np.float32)
357
+ y = np.asarray(y).astype(np.float32)
358
+
359
+ input_shape_parm = X.shape[1]
360
+ num_classes = y.shape[1]
361
+ global build_model
362
+ build_model = partial(
363
+ build_model,
364
+ input_shape_parm=input_shape_parm,
365
+ num_classes=num_classes,
366
+ hyperparameters=hyperparameters,
367
+ )
368
+
369
+ if method == "Hyperband":
370
+ tuner = keras_tuner.Hyperband(
371
+ hypermodel=build_model,
372
+ objective=objective,
373
+ max_epochs=epochs,
374
+ factor=3,
375
+ directory=directory,
376
+ project_name=project_name,
377
+ seed=seed,
378
+ )
379
+ elif method == "RandomSearch":
380
+ tuner = keras_tuner.RandomSearch(
381
+ hypermodel=build_model,
382
+ objective=objective,
383
+ max_trials=max_trials,
384
+ directory=directory,
385
+ project_name=project_name,
386
+ seed=seed,
387
+ )
388
+
389
+ tuner.search(X, y, epochs=epochs, validation_split=validation_split, verbose=verbose)
390
+ models = tuner.get_best_models(num_models=2)
391
+ best_model = models[0]
392
+ best_model(input_sample)
393
+
394
+ best_model.save(filepath, save_format="tf")
395
+
396
+ if verbose:
397
+ tuner.results_summary()
398
+ else:
399
+ best_model = tf.keras.models.load_model(filepath)
400
+
401
+ best_hps = tuner.get_best_hyperparameters(1)[0].values
402
+ return best_model, pd.DataFrame(best_hps, index=["Value"])
403
+
404
+
405
+ class GetInsights:
406
+ def __init__(self, model: AutoClassifier, inputs: np.ndarray) -> None:
407
+ self.inputs = inputs
408
+ self.model = model
409
+ self.encoder_layer = self.model.encoder.layers[0]
410
+ self.decoder_layer = self.model.decoder.layers[0]
411
+ self.classifier_layer = self.model.classifier.layers[-2]
412
+ self.encoder_weights = self.encoder_layer.get_weights()[0]
413
+ self.decoder_weights = self.decoder_layer.get_weights()[0]
414
+ self.classifier_weights = self.classifier_layer.get_weights()[0]
415
+ colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)
416
+
417
+ by_hsv = sorted(
418
+ (tuple(mcolors.rgb_to_hsv(mcolors.to_rgba(color)[:3])), name)
419
+ for name, color in colors.items()
420
+ )
421
+ self.sorted_names = [name for hsv, name in by_hsv if hsv[1] > 0.4 and hsv[2] >= 0.4]
422
+ random.shuffle(self.sorted_names)
423
+
424
+ def predictor_analyzer(
425
+ self,
426
+ frac=None,
427
+ cmap: str = "viridis",
428
+ aspect: str = "auto",
429
+ highlight: bool = True,
430
+ **kwargs,
431
+ ) -> None:
432
+ self._viz_weights(cmap=cmap, aspect=aspect, highlight=highlight, **kwargs)
433
+ inputs = self.inputs.copy()
434
+ y_labels = kwargs.get("y_labels", None)
435
+ if frac:
436
+ n = int(frac * self.inputs.shape[0])
437
+ indexes = np.random.choice(np.arange(inputs.shape[0]), n, replace=False)
438
+ inputs = inputs[indexes]
439
+ inputs[np.isnan(inputs)] = 0.0
440
+ encoded = self.model.encoder(inputs)
441
+ reconstructed = self.model.decoder(encoded)
442
+ combined = tf.concat([reconstructed, encoded], axis=1)
443
+ self.classification = self.model.classifier(combined).numpy().argmax(axis=1)
444
+ ax = plt.subplot(1, 2, 1)
445
+ plt.imshow(self.inputs, cmap=cmap, aspect=aspect)
446
+ plt.colorbar()
447
+ plt.title("Original Data")
448
+ plt.subplot(1, 2, 2, sharex=ax, sharey=ax)
449
+ plt.imshow(reconstructed, cmap=cmap, aspect=aspect)
450
+ plt.colorbar()
451
+ plt.title("Decoder Layer Reconstruction")
452
+ plt.show()
453
+
454
+ self._get_tsne_repr(inputs=inputs, frac=frac)
455
+ self._viz_tsne_repr(c=self.classification)
456
+
457
+ self.data = pd.DataFrame(encoded, columns=[f"Feature {i}" for i in range(encoded.shape[1])])
458
+ self.data_input = pd.DataFrame(
459
+ inputs,
460
+ columns=(
461
+ [f"Feature {i}" for i in range(inputs.shape[1])] if y_labels is None else y_labels
462
+ ),
463
+ )
464
+ self.data["class"] = self.classification
465
+ self.data_input["class"] = self.classification
466
+ radviz(self.data, "class", color=self.colors)
467
+ plt.title("Radviz Visualization of Latent Space")
468
+ plt.show()
469
+
470
+ radviz(self.data_input, "class", color=self.colors)
471
+ plt.title("Radviz Visualization of Input Data")
472
+ plt.show()
473
+ return self._statistics(self.data_input)
474
+
475
+ def _statistics(self, data_input: DataFrame, **kwargs) -> DataFrame:
476
+ data = data_input.copy(deep=True)
477
+
478
+ if not pd.api.types.is_string_dtype(data["class"]):
479
+ data["class"] = data["class"].astype(str)
480
+
481
+ data.ffill(inplace=True)
482
+ grouped_data = data.groupby("class")
483
+
484
+ numerical_stats = grouped_data.agg(["mean", "min", "max", "std", "median"])
485
+ numerical_stats.columns = ["_".join(col).strip() for col in numerical_stats.columns.values]
486
+
487
+ def get_mode(x):
488
+ mode_series = x.mode()
489
+ return mode_series.iloc[0] if not mode_series.empty else None
490
+
491
+ mode_stats = grouped_data.apply(get_mode, include_groups=False)
492
+ mode_stats.columns = [f"{col}_mode" for col in mode_stats.columns]
493
+ combined_stats = pd.concat([numerical_stats, mode_stats], axis=1)
494
+
495
+ return combined_stats.T
496
+
497
+ def _viz_weights(
498
+ self, cmap: str = "viridis", aspect: str = "auto", highlight: bool = True, **kwargs
499
+ ) -> None:
500
+ title = kwargs.get("title", "Encoder Layer Weights (Dense Layer)")
501
+ y_labels = kwargs.get("y_labels", None)
502
+ cmap_highlight = kwargs.get("cmap_highlight", "Pastel1")
503
+ highlight_mask = np.zeros_like(self.encoder_weights, dtype=bool)
504
+
505
+ plt.imshow(self.encoder_weights, cmap=cmap, aspect=aspect)
506
+ plt.colorbar()
507
+ plt.title(title)
508
+ if y_labels is not None:
509
+ plt.yticks(ticks=np.arange(self.encoder_weights.shape[0]), labels=y_labels)
510
+ if highlight:
511
+ for i, j in enumerate(self.encoder_weights.argmax(axis=1)):
512
+ highlight_mask[i, j] = True
513
+ plt.imshow(
514
+ np.ma.masked_where(~highlight_mask, self.encoder_weights),
515
+ cmap=cmap_highlight,
516
+ alpha=0.5,
517
+ aspect=aspect,
518
+ )
519
+ plt.show()
520
+
521
+ def _get_tsne_repr(self, inputs=None, frac=None) -> None:
522
+ if inputs is None:
523
+ inputs = self.inputs.copy()
524
+ if frac:
525
+ n = int(frac * self.inputs.shape[0])
526
+ indexes = np.random.choice(np.arange(inputs.shape[0]), n, replace=False)
527
+ inputs = inputs[indexes]
528
+ inputs[np.isnan(inputs)] = 0.0
529
+ self.latent_representations = inputs @ self.encoder_weights
530
+
531
+ tsne = TSNE(n_components=2)
532
+ self.reduced_data_tsne = tsne.fit_transform(self.latent_representations)
533
+
534
+ def _viz_tsne_repr(self, **kwargs) -> None:
535
+ c = kwargs.get("c", None)
536
+ self.colors = (
537
+ kwargs.get("colors", self.sorted_names[: len(np.unique(c))]) if c is not None else None
538
+ )
539
+ plt.scatter(
540
+ self.reduced_data_tsne[:, 0],
541
+ self.reduced_data_tsne[:, 1],
542
+ cmap=matplotlib.colors.ListedColormap(self.colors) if c is not None else None,
543
+ c=c,
544
+ )
545
+ if c is not None:
546
+ cb = plt.colorbar()
547
+ loc = np.arange(0, max(c), max(c) / float(len(self.colors)))
548
+ cb.set_ticks(loc)
549
+ cb.set_ticklabels(np.unique(c))
550
+ plt.title("t-SNE Visualization of Latent Space")
551
+ plt.xlabel("t-SNE 1")
552
+ plt.ylabel("t-SNE 2")
553
+ plt.show()
554
+
555
+
556
+ ########################################################################################
557
+
558
+ if __name__ == "__main__":
559
+ # Example usage
560
+ import pandas as pd
561
+ from sklearn.datasets import load_iris
562
+ from sklearn.preprocessing import OneHotEncoder
563
+
564
+ # Load the dataset
565
+ iris = load_iris()
566
+
567
+ # Convert to a DataFrame for easy exploration
568
+ iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
569
+ iris_df["species"] = iris.target
570
+
571
+ X = iris_df.drop(columns="species")
572
+ y_labels = X.columns
573
+ X = X.values
574
+ y = iris_df["species"].values
575
+
576
+ X = np.asarray(X).astype(np.float32)
577
+
578
+ encoder = OneHotEncoder()
579
+ y = encoder.fit_transform(y.reshape(-1, 1)).toarray()
580
+ y = np.asarray(y).astype(np.float32)
581
+
582
+ model = AutoClassifier(
583
+ input_shape_parm=X.shape[1], num_classes=3, units=27, activation="selu", num_layers=2
584
+ )
585
+ model.compile(
586
+ optimizer="adam",
587
+ loss=tf.keras.losses.CategoricalCrossentropy(),
588
+ metrics=[tf.keras.metrics.F1Score(threshold=0.5)],
589
+ )
590
+ model.fit(X, y, epochs=50, validation_split=0.2)
591
+
592
+ insights = GetInsights(model, X)
593
+ summary = insights.predictor_analyzer(frac=1.0, y_labels=y_labels)
594
+ insights._get_tsne_repr()
595
+ insights._viz_tsne_repr()
596
+ insights._viz_tsne_repr(c=iris_df["species"])
597
+ insights._viz_weights()
598
+ print(summary)
@@ -0,0 +1,163 @@
1
+ import logging
2
+ import os
3
+ import pickle
4
+ from typing import List, Tuple
5
+
6
+ import numpy as np
7
+ from IPython.display import clear_output
8
+
9
+
10
+ class HMM:
11
+ def __init__(self, n_states: int, n_observations: int):
12
+ self.n_states = n_states
13
+ self.n_observations = n_observations
14
+
15
+ # Initialize parameters with random values
16
+ self.pi = np.random.dirichlet(np.ones(n_states), size=1)[0]
17
+ self.A = np.random.dirichlet(np.ones(n_states), size=n_states)
18
+ self.B = np.random.dirichlet(np.ones(n_observations), size=n_states)
19
+
20
+ def save_model(self, filename: str = "./hmm") -> None:
21
+ filename = filename if filename.endswith(".pkl") else filename + ".pkl"
22
+ with open(filename, "wb") as f:
23
+ pickle.dump(self, f)
24
+
25
+ @staticmethod
26
+ def load_model(filename: str = "./hmm") -> "HMM":
27
+ filename = filename + ".pkl" if not filename.endswith(".pkl") else filename
28
+ with open(filename, "rb") as f:
29
+ return pickle.load(f)
30
+
31
+ def forward(self, sequence: List[int]) -> np.ndarray:
32
+ T = len(sequence)
33
+ alpha = np.zeros((T, self.n_states))
34
+
35
+ # Add a small constant (smoothing) to avoid log(0)
36
+ epsilon = 1e-10 # Small value to avoid taking log(0)
37
+
38
+ # Initialization (log-space)
39
+ alpha[0] = np.log(self.pi + epsilon) + np.log(self.B[:, sequence[0]] + epsilon)
40
+ alpha[0] -= np.log(np.sum(np.exp(alpha[0]))) # Normalization (log-space)
41
+
42
+ # Recursion (log-space)
43
+ for t in range(1, T):
44
+ for i in range(self.n_states):
45
+ alpha[t, i] = np.log(
46
+ np.sum(np.exp(alpha[t - 1] + np.log(self.A[:, i] + epsilon)))
47
+ ) + np.log(self.B[i, sequence[t]] + epsilon)
48
+ alpha[t] -= np.log(np.sum(np.exp(alpha[t]))) # Normalization
49
+
50
+ return alpha
51
+
52
+ def backward(self, sequence: List[int]) -> np.ndarray:
53
+ T = len(sequence)
54
+ beta = np.ones((T, self.n_states))
55
+
56
+ # Backward recursion
57
+ for t in range(T - 2, -1, -1):
58
+ for i in range(self.n_states):
59
+ beta[t, i] = np.sum(self.A[i] * self.B[:, sequence[t + 1]] * beta[t + 1])
60
+
61
+ return beta
62
+
63
+ def viterbi(self, sequence: List[int]) -> np.ndarray:
64
+ T = len(sequence)
65
+ delta = np.zeros((T, self.n_states))
66
+ psi = np.zeros((T, self.n_states), dtype=int)
67
+
68
+ # Initialization
69
+ delta[0] = self.pi * self.B[:, sequence[0]]
70
+
71
+ # Recursion
72
+ for t in range(1, T):
73
+ for i in range(self.n_states):
74
+ delta[t, i] = np.max(delta[t - 1] * self.A[:, i]) * self.B[i, sequence[t]]
75
+ psi[t, i] = np.argmax(delta[t - 1] * self.A[:, i])
76
+
77
+ # Reconstruct the most probable path
78
+ state_sequence = np.zeros(T, dtype=int)
79
+ state_sequence[T - 1] = np.argmax(delta[T - 1])
80
+ for t in range(T - 2, -1, -1):
81
+ state_sequence[t] = psi[t + 1, state_sequence[t + 1]]
82
+
83
+ return state_sequence
84
+
85
+ def baum_welch(
86
+ self, sequences: List[List[int]], n_iterations: int, verbose: bool = False
87
+ ) -> None:
88
+ for iteration in range(n_iterations):
89
+ # Initialize accumulators
90
+ A_num = np.zeros((self.n_states, self.n_states))
91
+ B_num = np.zeros((self.n_states, self.n_observations))
92
+ pi_num = np.zeros(self.n_states)
93
+
94
+ for sequence in sequences:
95
+ T = len(sequence)
96
+ alpha = self.forward(sequence)
97
+ beta = self.backward(sequence)
98
+
99
+ # Update pi
100
+ gamma = (alpha * beta) / np.sum(alpha * beta, axis=1, keepdims=True)
101
+ pi_num += gamma[0]
102
+
103
+ # Update A and B
104
+ for t in range(T - 1):
105
+ xi = np.zeros((self.n_states, self.n_states))
106
+ denom = np.sum(alpha[t] * self.A * self.B[:, sequence[t + 1]] * beta[t + 1])
107
+
108
+ for i in range(self.n_states):
109
+ for j in range(self.n_states):
110
+ xi[i, j] = (
111
+ alpha[t, i]
112
+ * self.A[i, j]
113
+ * self.B[j, sequence[t + 1]]
114
+ * beta[t + 1, j]
115
+ ) / denom
116
+ A_num[i] += xi[i]
117
+
118
+ B_num[:, sequence[t]] += gamma[t]
119
+
120
+ # For the last step of the sequence
121
+ B_num[:, sequence[-1]] += gamma[-1]
122
+
123
+ # Normalize and update parameters
124
+ self.pi = pi_num / len(sequences)
125
+ self.A = A_num / np.sum(A_num, axis=1, keepdims=True)
126
+ self.B = B_num / np.sum(B_num, axis=1, keepdims=True)
127
+
128
+ # Logging parameters every 10 iterations
129
+ if iteration % 10 == 0 and verbose:
130
+ os.system("cls" if os.name == "nt" else "clear")
131
+ clear_output(wait=True)
132
+ logging.info(f"Iteration {iteration}:")
133
+ logging.info("Pi: %s", self.pi)
134
+ logging.info("A:\n%s", self.A)
135
+ logging.info("B:\n%s", self.B)
136
+
137
+ def decoding_accuracy(self, sequences: List[List[int]], true_states: List[List[int]]) -> float:
138
+ correct_predictions = 0
139
+ total_predictions = 0
140
+
141
+ for sequence, true_state in zip(sequences, true_states):
142
+ predicted_states = self.viterbi(sequence)
143
+ correct_predictions += np.sum(predicted_states == true_state)
144
+ total_predictions += len(sequence)
145
+
146
+ accuracy = (correct_predictions / total_predictions) * 100
147
+ return accuracy
148
+
149
+ def state_probabilities(self, sequence: List[int]) -> np.ndarray:
150
+ """
151
+ Returns the smoothed probabilities of the hidden states at each time step.
152
+ This is done by using both forward and backward probabilities.
153
+ """
154
+ alpha = self.forward(sequence)
155
+ beta = self.backward(sequence)
156
+
157
+ # Compute smoothed probabilities (gamma)
158
+ smoothed_probs = (alpha * beta) / np.sum(alpha * beta, axis=1, keepdims=True)
159
+
160
+ return smoothed_probs
161
+
162
+ def sequence_probability(self, sequence: List[int]) -> np.ndarray:
163
+ return self.state_probabilities(sequence)[-1]
@@ -5,7 +5,6 @@ from typing import List, Tuple, Union
5
5
  import matplotlib.pyplot as plt
6
6
  import numpy as np
7
7
  import pandas as pd
8
- from numpy import ndarray
9
8
  from pandas.core.frame import DataFrame
10
9
 
11
10
  from likelihood.tools import DataScaler, FeatureSelection, OneHotEncoder, cdf, check_nan_inf
@@ -66,12 +65,12 @@ class SimulationEngine(FeatureSelection):
66
65
 
67
66
  super().__init__(**kwargs)
68
67
 
69
- def predict(self, df: DataFrame, column: str) -> ndarray | list:
68
+ def predict(self, df: DataFrame, column: str) -> np.ndarray | list:
70
69
  # Let us assign the dictionary entries corresponding to the column
71
70
  w, quick_encoder, names_cols, dfe, numeric_dict = self.w_dict[column]
72
71
 
73
72
  df = df[names_cols].copy()
74
- # Change the scale of the dataframe
73
+ # Change the scale of the DataFrame
75
74
  dataset = self.df.copy()
76
75
  dataset.drop(columns=column, inplace=True)
77
76
  numeric_df = dataset.select_dtypes(include="number")
@@ -85,7 +84,7 @@ class SimulationEngine(FeatureSelection):
85
84
  for col in numeric_df.columns:
86
85
  df[col] = numeric_df[col].values
87
86
 
88
- # Encoding the datadrame
87
+ # Encoding the DataFrame
89
88
  for num, colname in enumerate(dfe._encode_columns):
90
89
  if df[colname].dtype == "object":
91
90
  encode_dict = dfe.encoding_list[num]
@@ -93,7 +92,7 @@ class SimulationEngine(FeatureSelection):
93
92
  dfe._code_transformation_to, dictionary_list=encode_dict
94
93
  )
95
94
 
96
- # PREDICTION
95
+ # Prediction
97
96
  y = df.to_numpy() @ w
98
97
 
99
98
  # Categorical column
@@ -113,7 +112,7 @@ class SimulationEngine(FeatureSelection):
113
112
 
114
113
  return y[:]
115
114
 
116
- def _encode(self, df: DataFrame) -> ndarray | list:
115
+ def _encode(self, df: DataFrame) -> np.ndarray | list:
117
116
  df = df.copy()
118
117
  column = df.columns[0]
119
118
  frec = df[column].value_counts() / len(df)
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: likelihood
3
- Version: 1.2.23
3
+ Version: 1.2.25
4
4
  Summary: A package that performs the maximum likelihood algorithm.
5
5
  Home-page: https://github.com/jzsmoreno/likelihood/
6
6
  Author: J. A. Moreno-Guerra
@@ -13,7 +13,7 @@ Classifier: Operating System :: OS Independent
13
13
  Requires-Python: >=3.10
14
14
  Description-Content-Type: text/markdown
15
15
  License-File: LICENSE
16
- Requires-Dist: black[jupyter]==24.1.1
16
+ Requires-Dist: black[jupyter]>=24.3.0
17
17
  Requires-Dist: mypy-extensions==1.0.0
18
18
  Requires-Dist: types-openpyxl==3.1.0.15
19
19
  Requires-Dist: pydocstyle==6.3.0
@@ -31,6 +31,18 @@ Requires-Dist: pyvis; extra == "full"
31
31
  Requires-Dist: tensorflow==2.15.0; extra == "full"
32
32
  Requires-Dist: keras-tuner; extra == "full"
33
33
  Requires-Dist: scikit-learn; extra == "full"
34
+ Dynamic: author
35
+ Dynamic: author-email
36
+ Dynamic: classifier
37
+ Dynamic: description
38
+ Dynamic: description-content-type
39
+ Dynamic: home-page
40
+ Dynamic: maintainer
41
+ Dynamic: maintainer-email
42
+ Dynamic: provides-extra
43
+ Dynamic: requires-dist
44
+ Dynamic: requires-python
45
+ Dynamic: summary
34
46
 
35
47
  ![likelihood](https://raw.githubusercontent.com/RodolfoFerro/likelihood/main/likelihood.png)
36
48
 
@@ -12,6 +12,7 @@ likelihood/graph/__init__.py
12
12
  likelihood/graph/graph.py
13
13
  likelihood/graph/nn.py
14
14
  likelihood/models/__init__.py
15
+ likelihood/models/hmm.py
15
16
  likelihood/models/regression.py
16
17
  likelihood/models/simulation.py
17
18
  likelihood/models/utils.py
@@ -1,4 +1,4 @@
1
- black[jupyter]==24.1.1
1
+ black[jupyter]>=24.3.0
2
2
  mypy-extensions==1.0.0
3
3
  types-openpyxl==3.1.0.15
4
4
  pydocstyle==6.3.0
@@ -1,309 +0,0 @@
1
- import logging
2
- import os
3
- from functools import partial
4
- from shutil import rmtree
5
-
6
- import keras_tuner
7
- import numpy as np
8
- import pandas as pd
9
- import tensorflow as tf
10
- from pandas.core.frame import DataFrame
11
-
12
- from likelihood.tools import OneHotEncoder
13
-
14
- logging.getLogger("tensorflow").setLevel(logging.ERROR)
15
-
16
- tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
17
-
18
-
19
- @tf.keras.utils.register_keras_serializable(package="Custom", name="AutoClassifier")
20
- class AutoClassifier(tf.keras.Model):
21
- """
22
- An auto-classifier model that automatically determines the best classification strategy based on the input data.
23
-
24
- Attributes:
25
- - input_shape_parm: The shape of the input data.
26
- - num_classes: The number of classes in the dataset.
27
- - units: The number of neurons in each hidden layer.
28
- - activation: The type of activation function to use for the neural network layers.
29
-
30
- Methods:
31
- __init__(self, input_shape_parm, num_classes, units, activation): Initializes an AutoClassifier instance with the given parameters.
32
- build(self, input_shape_parm): Builds the model architecture based on input_shape_parm.
33
- call(self, x): Defines the forward pass of the model.
34
- get_config(self): Returns the configuration of the model.
35
- from_config(cls, config): Recreates an instance of AutoClassifier from its configuration.
36
- """
37
-
38
- def __init__(self, input_shape_parm, num_classes, units, activation):
39
- """
40
- Initializes an AutoClassifier instance with the given parameters.
41
-
42
- Parameters
43
- ----------
44
- input_shape_parm : `int`
45
- The shape of the input data.
46
- num_classes : `int`
47
- The number of classes in the dataset.
48
- units : `int`
49
- The number of neurons in each hidden layer.
50
- activation : `str`
51
- The type of activation function to use for the neural network layers.
52
- """
53
- super(AutoClassifier, self).__init__()
54
- self.input_shape_parm = input_shape_parm
55
- self.num_classes = num_classes
56
- self.units = units
57
- self.activation = activation
58
-
59
- self.encoder = None
60
- self.decoder = None
61
- self.classifier = None
62
-
63
- def build(self, input_shape):
64
- self.encoder = tf.keras.Sequential(
65
- [
66
- tf.keras.layers.Dense(units=self.units, activation=self.activation),
67
- tf.keras.layers.Dense(units=int(self.units / 2), activation=self.activation),
68
- ]
69
- )
70
-
71
- self.decoder = tf.keras.Sequential(
72
- [
73
- tf.keras.layers.Dense(units=self.units, activation=self.activation),
74
- tf.keras.layers.Dense(units=self.input_shape_parm, activation=self.activation),
75
- ]
76
- )
77
-
78
- self.classifier = tf.keras.Sequential(
79
- [tf.keras.layers.Dense(self.num_classes, activation="softmax")]
80
- )
81
-
82
- def call(self, x):
83
- encoded = self.encoder(x)
84
- decoded = self.decoder(encoded)
85
- combined = tf.concat([decoded, encoded], axis=1)
86
- classification = self.classifier(combined)
87
- return classification
88
-
89
- def get_config(self):
90
- config = {
91
- "input_shape_parm": self.input_shape_parm,
92
- "num_classes": self.num_classes,
93
- "units": self.units,
94
- "activation": self.activation,
95
- }
96
- base_config = super(AutoClassifier, self).get_config()
97
- return dict(list(base_config.items()) + list(config.items()))
98
-
99
- @classmethod
100
- def from_config(cls, config):
101
- return cls(
102
- input_shape_parm=config["input_shape_parm"],
103
- num_classes=config["num_classes"],
104
- units=config["units"],
105
- activation=config["activation"],
106
- )
107
-
108
-
109
- def call_existing_code(
110
- units: int,
111
- activation: str,
112
- threshold: float,
113
- optimizer: str,
114
- input_shape_parm: None | int = None,
115
- num_classes: None | int = None,
116
- ) -> AutoClassifier:
117
- """
118
- Calls an existing AutoClassifier instance.
119
-
120
- Parameters
121
- ----------
122
- units : `int`
123
- The number of neurons in each hidden layer.
124
- activation : `str`
125
- The type of activation function to use for the neural network layers.
126
- threshold : `float`
127
- The threshold for the classifier.
128
- optimizer : `str`
129
- The type of optimizer to use for the neural network layers.
130
- input_shape_parm : `None` | `int`
131
- The shape of the input data.
132
- num_classes : `int`
133
- The number of classes in the dataset.
134
-
135
- Returns
136
- -------
137
- `AutoClassifier`
138
- The AutoClassifier instance.
139
- """
140
- model = AutoClassifier(
141
- input_shape_parm=input_shape_parm,
142
- num_classes=num_classes,
143
- units=units,
144
- activation=activation,
145
- )
146
- model.compile(
147
- optimizer=optimizer,
148
- loss=tf.keras.losses.CategoricalCrossentropy(),
149
- metrics=[tf.keras.metrics.F1Score(threshold=threshold)],
150
- )
151
- return model
152
-
153
-
154
- def build_model(hp, input_shape_parm: None | int, num_classes: None | int) -> AutoClassifier:
155
- """Builds a neural network model using Keras Tuner's search algorithm.
156
-
157
- Parameters
158
- ----------
159
- hp : `keras_tuner.HyperParameters`
160
- The hyperparameters to tune.
161
- input_shape_parm : `None` | `int`
162
- The shape of the input data.
163
- num_classes : `int`
164
- The number of classes in the dataset.
165
-
166
- Returns
167
- -------
168
- `keras.Model`
169
- The neural network model.
170
- """
171
- units = hp.Int(
172
- "units", min_value=int(input_shape_parm * 0.2), max_value=input_shape_parm, step=2
173
- )
174
- activation = hp.Choice("activation", ["sigmoid", "relu", "tanh", "selu", "softplus"])
175
- optimizer = hp.Choice("optimizer", ["sgd", "adam", "adadelta"])
176
- threshold = hp.Float("threshold", min_value=0.1, max_value=0.9, sampling="log")
177
-
178
- model = call_existing_code(
179
- units=units,
180
- activation=activation,
181
- threshold=threshold,
182
- optimizer=optimizer,
183
- input_shape_parm=input_shape_parm,
184
- num_classes=num_classes,
185
- )
186
- return model
187
-
188
-
189
- def setup_model(
190
- data: DataFrame,
191
- target: str,
192
- epochs: int,
193
- train_size: float = 0.7,
194
- seed=None,
195
- train_mode: bool = True,
196
- filepath: str = "./my_dir/best_model",
197
- **kwargs,
198
- ) -> AutoClassifier:
199
- """Setup model for training and tuning.
200
-
201
- Parameters
202
- ----------
203
- data : `DataFrame`
204
- The dataset to train the model on.
205
- target : `str`
206
- The name of the target column.
207
- epochs : `int`
208
- The number of epochs to train the model for.
209
- train_size : `float`
210
- The proportion of the dataset to use for training.
211
- seed : `Any` | `int`
212
- The random seed to use for reproducibility.
213
- train_mode : `bool`
214
- Whether to train the model or not.
215
- filepath : `str`
216
- The path to save the best model to.
217
-
218
- Keyword Arguments:
219
- ----------
220
- Additional keyword arguments to pass to the model.
221
-
222
- max_trials : `int`
223
- The maximum number of trials to perform.
224
- directory : `str`
225
- The directory to save the model to.
226
- project_name : `str`
227
- The name of the project.
228
- objective : `str`
229
- The objective to optimize.
230
- verbose : `bool`
231
- Whether to print verbose output.
232
-
233
- Returns
234
- -------
235
- model : `AutoClassifier`
236
- The trained model.
237
- """
238
- max_trials = kwargs["max_trials"] if "max_trials" in kwargs else 10
239
- directory = kwargs["directory"] if "directory" in kwargs else "./my_dir"
240
- project_name = kwargs["project_name"] if "project_name" in kwargs else "get_best"
241
- objective = kwargs["objective"] if "objective" in kwargs else "val_loss"
242
- verbose = kwargs["verbose"] if "verbose" in kwargs else True
243
-
244
- X = data.drop(columns=target)
245
- input_sample = X.sample(1)
246
- y = data[target]
247
- # Verify if there are categorical columns in the dataframe
248
- assert (
249
- X.select_dtypes(include=["object"]).empty == True
250
- ), "Categorical variables within the DataFrame must be encoded, this is done by using the DataFrameEncoder from likelihood."
251
- validation_split = 1.0 - train_size
252
- # Create my_dir path if it does not exist
253
-
254
- if train_mode:
255
- # Create a new directory if it does not exist
256
- try:
257
- if (not os.path.exists(directory)) and directory != "./":
258
- os.makedirs(directory)
259
- elif directory != "./":
260
- print(f"Directory {directory} already exists, it will be deleted.")
261
- rmtree(directory)
262
- os.makedirs(directory)
263
- except:
264
- print("Warning: unable to create directory")
265
-
266
- # Create a Classifier instance
267
- y_encoder = OneHotEncoder()
268
- y = y_encoder.encode(y.to_list())
269
- X = X.to_numpy()
270
- input_sample.to_numpy()
271
- X = np.asarray(X).astype(np.float32)
272
- input_sample = np.asarray(input_sample).astype(np.float32)
273
- y = np.asarray(y).astype(np.float32)
274
-
275
- input_shape_parm = X.shape[1]
276
- num_classes = y.shape[1]
277
- global build_model
278
- build_model = partial(
279
- build_model, input_shape_parm=input_shape_parm, num_classes=num_classes
280
- )
281
-
282
- # Create the AutoKeras model
283
- tuner = keras_tuner.RandomSearch(
284
- hypermodel=build_model,
285
- objective=objective,
286
- max_trials=max_trials,
287
- directory=directory,
288
- project_name=project_name,
289
- seed=seed,
290
- )
291
-
292
- tuner.search(X, y, epochs=epochs, validation_split=validation_split)
293
- models = tuner.get_best_models(num_models=2)
294
- best_model = models[0]
295
- best_model(input_sample)
296
-
297
- # save model
298
- best_model.save(filepath, save_format="tf")
299
-
300
- if verbose:
301
- tuner.results_summary()
302
- else:
303
- # Load the best model from the directory
304
- best_model = tf.keras.models.load_model(filepath)
305
-
306
- return best_model
307
-
308
-
309
- ########################################################################################
File without changes
File without changes
File without changes
File without changes