liger-kernel 0.5.4__tar.gz → 0.5.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/.github/workflows/amd-ci.yml +5 -1
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/PKG-INFO +11 -7
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/README.md +8 -5
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/benchmarks_visualizer.py +2 -2
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/data/all_benchmark_data.csv +30 -31
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_distill_jsd_loss.py +2 -0
- liger_kernel-0.5.6/benchmark/scripts/benchmark_dyt.py +139 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_kto_loss.py +4 -4
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/dev/modal/tests.py +1 -1
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/dev/modal/tests_bwd.py +1 -1
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/pyproject.toml +1 -1
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/cpo_loss.py +51 -11
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/dpo_loss.py +30 -4
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/functional.py +2 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/fused_linear_distillation.py +20 -5
- liger_kernel-0.5.6/src/liger_kernel/chunked_loss/fused_linear_ppo.py +331 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/fused_linear_preference.py +2 -2
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +112 -17
- liger_kernel-0.5.6/src/liger_kernel/chunked_loss/grpo_loss.py +236 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/jsd_loss.py +43 -13
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/kto_loss.py +50 -12
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/orpo_loss.py +37 -5
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/simpo_loss.py +47 -11
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/cross_entropy.py +7 -2
- liger_kernel-0.5.6/src/liger_kernel/ops/dyt.py +225 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/fused_linear_jsd.py +2 -1
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/jsd.py +30 -11
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/__init__.py +4 -0
- liger_kernel-0.5.6/src/liger_kernel/transformers/dyt.py +20 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/functional.py +5 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/model/gemma.py +8 -16
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/model/gemma2.py +7 -16
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/model/llama.py +8 -15
- liger_kernel-0.5.6/src/liger_kernel/transformers/model/llava.py +369 -0
- liger_kernel-0.5.6/src/liger_kernel/transformers/model/loss_utils.py +57 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/model/mistral.py +9 -10
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/model/mixtral.py +8 -15
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/model/mllama.py +8 -15
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/model/olmo2.py +8 -16
- liger_kernel-0.5.6/src/liger_kernel/transformers/model/paligemma.py +397 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/model/phi3.py +8 -15
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/model/qwen2.py +8 -15
- liger_kernel-0.5.6/src/liger_kernel/transformers/model/qwen2_5_vl.py +204 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/model/qwen2_vl.py +9 -10
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/monkey_patch.py +286 -12
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/utils.py +1 -3
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel.egg-info/PKG-INFO +11 -7
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel.egg-info/SOURCES.txt +14 -1
- liger_kernel-0.5.6/test/chunked_loss/test_grpo_loss.py +470 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/chunked_loss/test_jsd_loss.py +64 -20
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/chunked_loss/test_kto_loss.py +85 -8
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/chunked_loss/test_orpo_loss.py +6 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/convergence/bf16/test_mini_models.py +179 -0
- liger_kernel-0.5.6/test/convergence/bf16/test_mini_models_multimodal.py +835 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/convergence/bf16/test_mini_models_with_logits.py +202 -22
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/convergence/fp32/test_mini_models.py +173 -0
- liger_kernel-0.5.6/test/convergence/fp32/test_mini_models_multimodal.py +820 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/convergence/fp32/test_mini_models_with_logits.py +176 -1
- liger_kernel-0.5.6/test/resources/fake_configs/Google/Paligemma/paligemma-3b-pt-224/tokenizer_config.json +61 -0
- liger_kernel-0.5.6/test/resources/fake_configs/Llava/llava-1.5-7b-hf/preprocessor_config.json +28 -0
- liger_kernel-0.5.6/test/resources/fake_configs/Llava/llava-1.5-7b-hf/processor_config.json +7 -0
- liger_kernel-0.5.6/test/resources/fake_configs/Llava/llava-1.5-7b-hf/tokenizer_config.json +66 -0
- liger_kernel-0.5.6/test/resources/fake_configs/Qwen/Qwen2.5-VL-7B-Instruct/tokenizer_config.json +63 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_cross_entropy.py +39 -0
- liger_kernel-0.5.6/test/transformers/test_dyt.py +136 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_jsd.py +5 -5
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_monkey_patch.py +68 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/utils.py +70 -3
- liger_kernel-0.5.4/src/liger_kernel/chunked_loss/fused_linear_rlhf.py +0 -213
- liger_kernel-0.5.4/src/liger_kernel/chunked_loss/grpo_loss.py +0 -160
- liger_kernel-0.5.4/test/chunked_loss/test_grpo_loss.py +0 -275
- liger_kernel-0.5.4/test/convergence/bf16/test_mini_models_multimodal.py +0 -421
- liger_kernel-0.5.4/test/convergence/fp32/test_mini_models_multimodal.py +0 -415
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/.github/ISSUE_TEMPLATE/bug_report.yaml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/.github/ISSUE_TEMPLATE/feature_request.yaml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/.github/pull_request_template.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/.github/workflows/docs.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/.github/workflows/intel-ci.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/.github/workflows/nvi-ci.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/.github/workflows/publish-nightly.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/.github/workflows/publish-release.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/.gitignore +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/LICENSE +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/Makefile +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/NOTICE +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/README.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_cpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_dpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_embedding.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_fused_linear_cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_fused_linear_jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_geglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_group_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_kl_div.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_layer_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_orpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_qwen2vl_mrope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_rms_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_rope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_simpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_swiglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/benchmark_tvd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/benchmark/scripts/utils.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/dev/fmt-requirements.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/Examples.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/Getting-Started.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/High-Level-APIs.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/Low-Level-APIs.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/acknowledgement.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/contributing.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/images/banner.GIF +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/images/compose.gif +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/images/e2e-memory.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/images/e2e-tps.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/images/logo-banner.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/images/patch.gif +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/images/post-training.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/index.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/docs/license.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/alignment/accelerate_config.yaml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/alignment/run_orpo.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/README.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/callback.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/config/fsdp_config.json +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/img/gemma_7b_mem.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/img/gemma_7b_tp.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/img/llama_mem_alloc.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/img/llama_tps.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/img/qwen_mem_alloc.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/img/qwen_tps.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/launch_on_modal.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/requirements.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/run_benchmarks.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/run_gemma.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/run_llama.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/run_qwen.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/run_qwen2_vl.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/training.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/huggingface/training_multimodal.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/lightning/README.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/lightning/requirements.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/lightning/training.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/README.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/callback.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/docs/images/Memory_Stage1_num_head_3.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/docs/images/Memory_Stage1_num_head_5.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/docs/images/Memory_Stage2_num_head_3.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/docs/images/Memory_Stage2_num_head_5.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/docs/images/Throughput_Stage1_num_head_3.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/docs/images/Throughput_Stage1_num_head_5.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/docs/images/Throughput_Stage2_num_head_3.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/docs/images/Throughput_Stage2_num_head_5.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/fsdp/acc-fsdp.conf +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/medusa_util.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/requirements.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/scripts/llama3_8b_medusa.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/examples/medusa/train.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/licenses/LICENSE-Apache-2.0 +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/licenses/LICENSE-MIT-AutoAWQ +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/licenses/LICENSE-MIT-Efficient-Cross-Entropy +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/licenses/LICENSE-MIT-llmc +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/licenses/LICENSE-MIT-triton +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/mkdocs.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/setup.cfg +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/setup.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/README.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/chunked_loss/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/env_report.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/experimental/embedding.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/experimental/mm_int8int2.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/fused_linear_cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/geglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/group_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/kl_div.py +2 -2
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/layer_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/qwen2vl_mrope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/rms_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/rope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/swiglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/tvd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/ops/utils.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/auto_model.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/experimental/embedding.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/fused_linear_jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/geglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/group_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/kl_div.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/layer_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/model/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/qwen2vl_mrope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/rms_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/rope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/swiglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/trainer/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/trainer/orpo_trainer.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/trainer_integration.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/transformers/tvd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/triton/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel/triton/monkey_patch.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel.egg-info/dependency_links.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel.egg-info/requires.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/src/liger_kernel.egg-info/top_level.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/chunked_loss/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/chunked_loss/test_cpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/chunked_loss/test_dpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/chunked_loss/test_simpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/conftest.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/convergence/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/convergence/bf16/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/convergence/fp32/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/resources/fake_configs/Qwen/Qwen2-VL-7B-Instruct/tokenizer_config.json +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/resources/fake_configs/meta-llama/Llama-3.2-11B-Vision-Instruct/tokenizer_config.json +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/resources/scripts/generate_tokenized_dataset.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/resources/tiny_shakespeare.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/resources/tiny_shakespeare_tokenized/data-00000-of-00001.arrow +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/resources/tiny_shakespeare_tokenized/dataset_info.json +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/resources/tiny_shakespeare_tokenized/state.json +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_auto_model.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_embedding.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_flex_attention.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_fused_linear_cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_fused_linear_jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_geglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_group_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_kl_div.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_layer_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_mm_int8int2.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_qwen2vl_mrope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_rms_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_rope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_swiglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_trainer_integration.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_transformers.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/transformers/test_tvd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.6}/test/triton/test_triton_monkey_patch.py +0 -0
|
@@ -47,6 +47,9 @@ jobs:
|
|
|
47
47
|
tests:
|
|
48
48
|
runs-on: linux-mi300-gpu-1
|
|
49
49
|
needs: [checkstyle]
|
|
50
|
+
strategy:
|
|
51
|
+
matrix:
|
|
52
|
+
rocm_version: ['6.3']
|
|
50
53
|
|
|
51
54
|
steps:
|
|
52
55
|
- name: Checkout code
|
|
@@ -59,8 +62,9 @@ jobs:
|
|
|
59
62
|
|
|
60
63
|
- name: Setup Dependencies
|
|
61
64
|
run: |
|
|
65
|
+
rocm-smi
|
|
62
66
|
python -m pip install --upgrade pip
|
|
63
|
-
pip install -e .[dev] --extra-index-url https://download.pytorch.org/whl/nightly/
|
|
67
|
+
pip install -e .[dev] --extra-index-url https://download.pytorch.org/whl/nightly/rocm${{ matrix.rocm_version }}
|
|
64
68
|
|
|
65
69
|
- name: List Python Environments
|
|
66
70
|
run: python -m pip list
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: liger_kernel
|
|
3
|
-
Version: 0.5.
|
|
3
|
+
Version: 0.5.6
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -45,6 +45,7 @@ Requires-Dist: datasets>=2.19.2; extra == "dev"
|
|
|
45
45
|
Requires-Dist: seaborn; extra == "dev"
|
|
46
46
|
Requires-Dist: mkdocs; extra == "dev"
|
|
47
47
|
Requires-Dist: mkdocs-material; extra == "dev"
|
|
48
|
+
Dynamic: license-file
|
|
48
49
|
Dynamic: provides-extra
|
|
49
50
|
Dynamic: requires-dist
|
|
50
51
|
|
|
@@ -115,6 +116,7 @@ Dynamic: requires-dist
|
|
|
115
116
|
<details>
|
|
116
117
|
<summary>Latest News 🔥</summary>
|
|
117
118
|
|
|
119
|
+
- [2025/03/06] We release a joint blog post on TorchTune × Liger - [Peak Performance, Minimized Memory: Optimizing torchtune’s performance with torch.compile & Liger Kernel](https://pytorch.org/blog/peak-performance-minimized-memory/)
|
|
118
120
|
- [2024/12/11] We release [v0.5.0](https://github.com/linkedin/Liger-Kernel/releases/tag/v0.5.0): 80% more memory efficient post training losses (DPO, ORPO, CPO, etc)!
|
|
119
121
|
- [2024/12/5] We release LinkedIn Engineering Blog - [Liger-Kernel: Empowering an open source ecosystem of Triton Kernels for Efficient LLM Training](https://www.linkedin.com/blog/engineering/open-source/liger-kernel-open-source-ecosystem-for-efficient-llm-training)
|
|
120
122
|
- [2024/11/6] We release [v0.4.0](https://github.com/linkedin/Liger-Kernel/releases/tag/v0.4.0): Full AMD support, Tech Report, Modal CI, Llama-3.2-Vision!
|
|
@@ -154,7 +156,7 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
154
156
|
We provide optimized post training kernels like DPO, ORPO, SimPO, and more which can reduce memory usage by up to 80%. You can easily use them as python modules.
|
|
155
157
|
|
|
156
158
|
```python
|
|
157
|
-
from liger_kernel.chunked_loss import
|
|
159
|
+
from liger_kernel.chunked_loss import LigerFusedLinearORPOLoss
|
|
158
160
|
orpo_loss = LigerFusedLinearORPOLoss()
|
|
159
161
|
y = orpo_loss(lm_head.weight, x, target)
|
|
160
162
|
```
|
|
@@ -177,7 +179,7 @@ y = orpo_loss(lm_head.weight, x, target)
|
|
|
177
179
|
- **Exact:** Computation is exact—no approximations! Both forward and backward passes are implemented with rigorous unit tests and undergo convergence testing against training runs without Liger Kernel to ensure accuracy.
|
|
178
180
|
- **Lightweight:** Liger Kernel has minimal dependencies, requiring only Torch and Triton—no extra libraries needed! Say goodbye to dependency headaches!
|
|
179
181
|
- **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP, DeepSpeed, DDP, etc.).
|
|
180
|
-
- **Trainer Framework Integration**: [Axolotl](https://github.com/axolotl-ai-cloud/axolotl), [LLaMa-Factory](https://github.com/hiyouga/LLaMA-Factory), [SFTTrainer](https://github.com/huggingface/trl/releases/tag/v0.10.1), [Hugging Face Trainer](https://github.com/huggingface/transformers/pull/32860), [SWIFT](https://github.com/modelscope/ms-swift)
|
|
182
|
+
- **Trainer Framework Integration**: [Axolotl](https://github.com/axolotl-ai-cloud/axolotl), [LLaMa-Factory](https://github.com/hiyouga/LLaMA-Factory), [SFTTrainer](https://github.com/huggingface/trl/releases/tag/v0.10.1), [Hugging Face Trainer](https://github.com/huggingface/transformers/pull/32860), [SWIFT](https://github.com/modelscope/ms-swift), [oumi](https://github.com/oumi-ai/oumi/tree/main)
|
|
181
183
|
|
|
182
184
|
## Installation
|
|
183
185
|
|
|
@@ -312,8 +314,10 @@ loss.backward()
|
|
|
312
314
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
313
315
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
314
316
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
317
|
+
| Paligemma, Paligemma2, & Paligemma2 Mix | `liger_kernel.transformers.apply_liger_kernel_to_paligemma` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
315
318
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
316
319
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
320
|
+
| Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
317
321
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
318
322
|
| Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
|
319
323
|
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
@@ -385,8 +389,8 @@ loss.backward()
|
|
|
385
389
|
## Contact
|
|
386
390
|
|
|
387
391
|
- For issues, create a Github ticket in this repository
|
|
388
|
-
- For open discussion, join [our discord channel](https://discord.
|
|
389
|
-
- For formal collaboration, send an email to yannchen@linkedin.com
|
|
392
|
+
- For open discussion, join [our discord channel on GPUMode](https://discord.com/channels/1189498204333543425/1275130785933951039)
|
|
393
|
+
- For formal collaboration, send an email to yannchen@linkedin.com and hning@linkedin.com
|
|
390
394
|
|
|
391
395
|
## Cite this work
|
|
392
396
|
|
|
@@ -405,7 +409,7 @@ Biblatex entry:
|
|
|
405
409
|
```
|
|
406
410
|
|
|
407
411
|
## Star History
|
|
408
|
-
[](https://star-history.com/#linkedin/Liger-Kernel&Date)
|
|
412
|
+
[](https://www.star-history.com/#linkedin/Liger-Kernel&Date)
|
|
409
413
|
|
|
410
414
|
<p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
|
|
411
415
|
<a href="#readme-top" style="text-decoration: none; color: #007bff; font-weight: bold;">
|
|
@@ -65,6 +65,7 @@
|
|
|
65
65
|
<details>
|
|
66
66
|
<summary>Latest News 🔥</summary>
|
|
67
67
|
|
|
68
|
+
- [2025/03/06] We release a joint blog post on TorchTune × Liger - [Peak Performance, Minimized Memory: Optimizing torchtune’s performance with torch.compile & Liger Kernel](https://pytorch.org/blog/peak-performance-minimized-memory/)
|
|
68
69
|
- [2024/12/11] We release [v0.5.0](https://github.com/linkedin/Liger-Kernel/releases/tag/v0.5.0): 80% more memory efficient post training losses (DPO, ORPO, CPO, etc)!
|
|
69
70
|
- [2024/12/5] We release LinkedIn Engineering Blog - [Liger-Kernel: Empowering an open source ecosystem of Triton Kernels for Efficient LLM Training](https://www.linkedin.com/blog/engineering/open-source/liger-kernel-open-source-ecosystem-for-efficient-llm-training)
|
|
70
71
|
- [2024/11/6] We release [v0.4.0](https://github.com/linkedin/Liger-Kernel/releases/tag/v0.4.0): Full AMD support, Tech Report, Modal CI, Llama-3.2-Vision!
|
|
@@ -104,7 +105,7 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
104
105
|
We provide optimized post training kernels like DPO, ORPO, SimPO, and more which can reduce memory usage by up to 80%. You can easily use them as python modules.
|
|
105
106
|
|
|
106
107
|
```python
|
|
107
|
-
from liger_kernel.chunked_loss import
|
|
108
|
+
from liger_kernel.chunked_loss import LigerFusedLinearORPOLoss
|
|
108
109
|
orpo_loss = LigerFusedLinearORPOLoss()
|
|
109
110
|
y = orpo_loss(lm_head.weight, x, target)
|
|
110
111
|
```
|
|
@@ -127,7 +128,7 @@ y = orpo_loss(lm_head.weight, x, target)
|
|
|
127
128
|
- **Exact:** Computation is exact—no approximations! Both forward and backward passes are implemented with rigorous unit tests and undergo convergence testing against training runs without Liger Kernel to ensure accuracy.
|
|
128
129
|
- **Lightweight:** Liger Kernel has minimal dependencies, requiring only Torch and Triton—no extra libraries needed! Say goodbye to dependency headaches!
|
|
129
130
|
- **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP, DeepSpeed, DDP, etc.).
|
|
130
|
-
- **Trainer Framework Integration**: [Axolotl](https://github.com/axolotl-ai-cloud/axolotl), [LLaMa-Factory](https://github.com/hiyouga/LLaMA-Factory), [SFTTrainer](https://github.com/huggingface/trl/releases/tag/v0.10.1), [Hugging Face Trainer](https://github.com/huggingface/transformers/pull/32860), [SWIFT](https://github.com/modelscope/ms-swift)
|
|
131
|
+
- **Trainer Framework Integration**: [Axolotl](https://github.com/axolotl-ai-cloud/axolotl), [LLaMa-Factory](https://github.com/hiyouga/LLaMA-Factory), [SFTTrainer](https://github.com/huggingface/trl/releases/tag/v0.10.1), [Hugging Face Trainer](https://github.com/huggingface/transformers/pull/32860), [SWIFT](https://github.com/modelscope/ms-swift), [oumi](https://github.com/oumi-ai/oumi/tree/main)
|
|
131
132
|
|
|
132
133
|
## Installation
|
|
133
134
|
|
|
@@ -262,8 +263,10 @@ loss.backward()
|
|
|
262
263
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
263
264
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
264
265
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
266
|
+
| Paligemma, Paligemma2, & Paligemma2 Mix | `liger_kernel.transformers.apply_liger_kernel_to_paligemma` | LayerNorm, RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
265
267
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
266
268
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
269
|
+
| Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
267
270
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
268
271
|
| Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
|
269
272
|
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
@@ -335,8 +338,8 @@ loss.backward()
|
|
|
335
338
|
## Contact
|
|
336
339
|
|
|
337
340
|
- For issues, create a Github ticket in this repository
|
|
338
|
-
- For open discussion, join [our discord channel](https://discord.
|
|
339
|
-
- For formal collaboration, send an email to yannchen@linkedin.com
|
|
341
|
+
- For open discussion, join [our discord channel on GPUMode](https://discord.com/channels/1189498204333543425/1275130785933951039)
|
|
342
|
+
- For formal collaboration, send an email to yannchen@linkedin.com and hning@linkedin.com
|
|
340
343
|
|
|
341
344
|
## Cite this work
|
|
342
345
|
|
|
@@ -355,7 +358,7 @@ Biblatex entry:
|
|
|
355
358
|
```
|
|
356
359
|
|
|
357
360
|
## Star History
|
|
358
|
-
[](https://star-history.com/#linkedin/Liger-Kernel&Date)
|
|
361
|
+
[](https://www.star-history.com/#linkedin/Liger-Kernel&Date)
|
|
359
362
|
|
|
360
363
|
<p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
|
|
361
364
|
<a href="#readme-top" style="text-decoration: none; color: #007bff; font-weight: bold;">
|
|
@@ -8,8 +8,8 @@ import matplotlib.pyplot as plt
|
|
|
8
8
|
import pandas as pd
|
|
9
9
|
import seaborn as sns
|
|
10
10
|
|
|
11
|
-
DATA_PATH = "data/all_benchmark_data.csv"
|
|
12
|
-
VISUALIZATIONS_PATH = "visualizations/"
|
|
11
|
+
DATA_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "data/all_benchmark_data.csv"))
|
|
12
|
+
VISUALIZATIONS_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "visualizations/"))
|
|
13
13
|
|
|
14
14
|
|
|
15
15
|
@dataclass
|
|
@@ -751,36 +751,6 @@ fused_linear_simpo_loss,huggingface,full,memory,MB,B,B,2,8645.314453125,8645.314
|
|
|
751
751
|
fused_linear_simpo_loss,huggingface,full,memory,MB,B,B,4,12184.330078125,12184.330078125,12184.330078125,"{""T"": 1024, ""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16""}",NVIDIA A100-SXM4-80GB,2024-11-15 14:30:01,0.4.1
|
|
752
752
|
fused_linear_simpo_loss,huggingface,full,memory,MB,B,B,8,19262.361328125,19262.361328125,19262.361328125,"{""T"": 1024, ""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16""}",NVIDIA A100-SXM4-80GB,2024-11-15 14:30:01,0.4.1
|
|
753
753
|
fused_linear_simpo_loss,huggingface,full,memory,MB,B,B,16,33418.42578125,33418.42578125,33418.42578125,"{""T"": 1024, ""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16""}",NVIDIA A100-SXM4-80GB,2024-11-15 14:30:01,0.4.1
|
|
754
|
-
kto_loss,liger,forward,speed,ms,B,Batch Size (B),2,7.841599941253662,7.801983833312988,7.849664211273193,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:06,0.5.2
|
|
755
|
-
kto_loss,liger,forward,speed,ms,B,Batch Size (B),4,15.568096160888672,15.555737495422363,16.054176330566406,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:06,0.5.2
|
|
756
|
-
kto_loss,liger,forward,speed,ms,B,Batch Size (B),8,31.145376205444336,30.750951766967773,31.5398006439209,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:06,0.5.2
|
|
757
|
-
kto_loss,liger,forward,speed,ms,B,Batch Size (B),16,61.49708938598633,61.49708938598633,61.49708938598633,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:06,0.5.2
|
|
758
|
-
kto_loss,liger,forward,speed,ms,B,Batch Size (B),32,122.01449584960938,122.01449584960938,122.01449584960938,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:06,0.5.2
|
|
759
|
-
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),2,7.892335891723633,7.8687615394592285,8.03729248046875,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:28,0.5.2
|
|
760
|
-
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),4,14.16302490234375,13.813311576843262,15.860223770141602,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:28,0.5.2
|
|
761
|
-
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),8,25.56470489501953,25.564167022705078,25.641658782958984,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:28,0.5.2
|
|
762
|
-
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),16,53.0928955078125,53.0928955078125,53.0928955078125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:28,0.5.2
|
|
763
|
-
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),32,108.76080322265625,108.76080322265625,108.76080322265625,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:28,0.5.2
|
|
764
|
-
kto_loss,liger,full,speed,ms,B,Batch Size (B),2,8.662687301635742,8.488287925720215,9.611334800720215,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:50,0.5.2
|
|
765
|
-
kto_loss,liger,full,speed,ms,B,Batch Size (B),4,18.40096092224121,17.99224281311035,18.57883644104004,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:50,0.5.2
|
|
766
|
-
kto_loss,liger,full,speed,ms,B,Batch Size (B),8,32.09159851074219,31.708070755004883,32.475128173828125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:50,0.5.2
|
|
767
|
-
kto_loss,liger,full,speed,ms,B,Batch Size (B),16,69.30239868164062,69.30239868164062,69.30239868164062,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:50,0.5.2
|
|
768
|
-
kto_loss,liger,full,speed,ms,B,Batch Size (B),32,124.2437744140625,124.2437744140625,124.2437744140625,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:50,0.5.2
|
|
769
|
-
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),2,11.449472427368164,11.407564163208008,11.773555755615234,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:11,0.5.2
|
|
770
|
-
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),4,20.871471405029297,20.862951278686523,20.879276275634766,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:11,0.5.2
|
|
771
|
-
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),8,41.16409683227539,40.760780334472656,41.567413330078125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:11,0.5.2
|
|
772
|
-
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),16,77.720703125,77.720703125,77.720703125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:11,0.5.2
|
|
773
|
-
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),32,156.25794982910156,156.25794982910156,156.25794982910156,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:11,0.5.2
|
|
774
|
-
kto_loss,liger,full,memory,MB,B,Batch Size (B),2,2027.48583984375,2027.48583984375,2027.48583984375,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:36,0.5.2
|
|
775
|
-
kto_loss,liger,full,memory,MB,B,Batch Size (B),4,2789.736328125,2789.736328125,2789.736328125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:36,0.5.2
|
|
776
|
-
kto_loss,liger,full,memory,MB,B,Batch Size (B),8,2801.751953125,2801.751953125,2801.751953125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:36,0.5.2
|
|
777
|
-
kto_loss,liger,full,memory,MB,B,Batch Size (B),16,2825.783203125,2825.783203125,2825.783203125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:36,0.5.2
|
|
778
|
-
kto_loss,liger,full,memory,MB,B,Batch Size (B),32,2873.845703125,2873.845703125,2873.845703125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:36,0.5.2
|
|
779
|
-
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),2,3786.7373046875,3786.7373046875,3786.7373046875,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:59,0.5.2
|
|
780
|
-
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),4,5544.25390625,5544.25390625,5544.25390625,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:59,0.5.2
|
|
781
|
-
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),8,9057.287109375,9057.287109375,9057.287109375,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:59,0.5.2
|
|
782
|
-
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),16,16087.353515625,16087.353515625,16087.353515625,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:59,0.5.2
|
|
783
|
-
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),32,30147.486328125,30147.486328125,30147.486328125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:59,0.5.2
|
|
784
754
|
distill_jsd_loss,liger,forward,speed,ms,BT,B x T,1024,7.735536098480225,7.729177474975586,7.798131465911865,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 07:58:46,0.4.2
|
|
785
755
|
distill_jsd_loss,liger,forward,speed,ms,BT,B x T,2048,15.20411205291748,15.165056228637695,15.226079940795898,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 07:58:46,0.4.2
|
|
786
756
|
distill_jsd_loss,liger,forward,speed,ms,BT,B x T,4096,30.159456253051758,30.126911163330078,30.165311813354492,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 07:58:46,0.4.2
|
|
@@ -805,4 +775,33 @@ distill_jsd_loss,torch,full,memory,MB,BT,B x T,1024,16174.0390625,16174.0390625,
|
|
|
805
775
|
distill_jsd_loss,torch,full,memory,MB,BT,B x T,2048,23713.05078125,23713.05078125,23713.05078125,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 08:01:32,0.4.2
|
|
806
776
|
distill_jsd_loss,torch,full,memory,MB,BT,B x T,4096,38791.07421875,38791.07421875,38791.07421875,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 08:01:32,0.4.2
|
|
807
777
|
distill_jsd_loss,torch,full,memory,MB,BT,B x T,8192,68947.1015625,68947.1015625,68947.1015625,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 08:01:32,0.4.2
|
|
808
|
-
|
|
778
|
+
kto_loss,liger,forward,speed,ms,B,Batch Size (B),2,3.9951679706573486,3.991487979888916,4.002252578735352,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:22:44,0.5.4
|
|
779
|
+
kto_loss,liger,forward,speed,ms,B,Batch Size (B),4,7.8037919998168945,7.788575649261475,7.808595180511475,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:22:44,0.5.4
|
|
780
|
+
kto_loss,liger,forward,speed,ms,B,Batch Size (B),8,15.43172836303711,15.430015563964844,15.4335355758667,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:22:44,0.5.4
|
|
781
|
+
kto_loss,liger,forward,speed,ms,B,Batch Size (B),16,30.66864013671875,30.66431999206543,30.670501708984375,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:22:44,0.5.4
|
|
782
|
+
kto_loss,liger,forward,speed,ms,B,Batch Size (B),32,61.1163215637207,61.1163215637207,61.1163215637207,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:22:44,0.5.4
|
|
783
|
+
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),2,3.8766400814056396,3.8680384159088135,3.8897151947021484,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:01,0.5.4
|
|
784
|
+
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),4,7.213727951049805,7.206470489501953,7.229574680328369,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:01,0.5.4
|
|
785
|
+
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),8,13.828800201416016,13.810944557189941,13.834943771362305,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:01,0.5.4
|
|
786
|
+
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),16,27.0930233001709,27.08517074584961,27.09713363647461,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:01,0.5.4
|
|
787
|
+
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),32,54.13715362548828,54.13715362548828,54.13715362548828,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:01,0.5.4
|
|
788
|
+
kto_loss,liger,full,speed,ms,B,Batch Size (B),2,4.782928466796875,4.677459239959717,5.3430914878845215,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:18,0.5.4
|
|
789
|
+
kto_loss,liger,full,speed,ms,B,Batch Size (B),4,8.517248153686523,8.481344223022461,8.561504364013672,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:18,0.5.4
|
|
790
|
+
kto_loss,liger,full,speed,ms,B,Batch Size (B),8,16.547504425048828,16.513471603393555,16.678144454956055,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:18,0.5.4
|
|
791
|
+
kto_loss,liger,full,speed,ms,B,Batch Size (B),16,31.891263961791992,31.819705963134766,32.274131774902344,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:18,0.5.4
|
|
792
|
+
kto_loss,liger,full,speed,ms,B,Batch Size (B),32,62.953758239746094,62.953758239746094,62.953758239746094,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:18,0.5.4
|
|
793
|
+
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),2,6.201632022857666,6.163315296173096,6.314668655395508,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:35,0.5.4
|
|
794
|
+
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),4,11.156224250793457,11.142304420471191,11.207296371459961,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:35,0.5.4
|
|
795
|
+
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),8,21.249855041503906,21.231891632080078,21.264543533325195,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:35,0.5.4
|
|
796
|
+
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),16,41.55686569213867,41.536956787109375,41.57677459716797,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:35,0.5.4
|
|
797
|
+
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),32,81.56924438476562,81.56924438476562,81.56924438476562,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:35,0.5.4
|
|
798
|
+
kto_loss,liger,full,memory,MB,B,Batch Size (B),2,2585.73876953125,2585.73876953125,2585.73876953125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:55,0.5.4
|
|
799
|
+
kto_loss,liger,full,memory,MB,B,Batch Size (B),4,3348.9892578125,3348.9892578125,3348.9892578125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:55,0.5.4
|
|
800
|
+
kto_loss,liger,full,memory,MB,B,Batch Size (B),8,3361.0048828125,3361.0048828125,3361.0048828125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:55,0.5.4
|
|
801
|
+
kto_loss,liger,full,memory,MB,B,Batch Size (B),16,3385.0361328125,3385.0361328125,3385.0361328125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:55,0.5.4
|
|
802
|
+
kto_loss,liger,full,memory,MB,B,Batch Size (B),32,3433.0986328125,3433.0986328125,3433.0986328125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:55,0.5.4
|
|
803
|
+
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),2,4341.74951171875,4341.74951171875,4341.74951171875,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:24:11,0.5.4
|
|
804
|
+
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),4,6099.26513671875,6099.26513671875,6099.26513671875,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:24:11,0.5.4
|
|
805
|
+
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),8,9613.298828125,9613.298828125,9613.298828125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:24:11,0.5.4
|
|
806
|
+
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),16,16643.365234375,16643.365234375,16643.365234375,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:24:11,0.5.4
|
|
807
|
+
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),32,30703.498046875,30703.498046875,30703.498046875,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:24:11,0.5.4
|
|
@@ -0,0 +1,139 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import sys
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import triton
|
|
6
|
+
|
|
7
|
+
from utils import QUANTILES
|
|
8
|
+
from utils import SingleBenchmarkRunInput
|
|
9
|
+
from utils import SingleBenchmarkRunOutput
|
|
10
|
+
from utils import _test_memory
|
|
11
|
+
from utils import parse_benchmark_script_args
|
|
12
|
+
from utils import run_benchmarks
|
|
13
|
+
|
|
14
|
+
from liger_kernel.utils import infer_device
|
|
15
|
+
|
|
16
|
+
device = infer_device()
|
|
17
|
+
|
|
18
|
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def bench_speed_dyt(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOutput:
|
|
22
|
+
from test.transformers.test_dyt import LigerDyT
|
|
23
|
+
from test.transformers.test_dyt import TorchDyT
|
|
24
|
+
|
|
25
|
+
BT = input.x
|
|
26
|
+
provider = input.kernel_provider
|
|
27
|
+
mode = input.kernel_operation_mode
|
|
28
|
+
extra_benchmark_config = input.extra_benchmark_config
|
|
29
|
+
hidden_size = extra_benchmark_config["hidden_size"]
|
|
30
|
+
dtype = extra_benchmark_config["dtype"]
|
|
31
|
+
|
|
32
|
+
x_shape = (BT, hidden_size)
|
|
33
|
+
torch_dyt = TorchDyT(hidden_size=hidden_size).to(device)
|
|
34
|
+
torch_compile_dyt = torch.compile(TorchDyT(hidden_size=hidden_size).to(device))
|
|
35
|
+
triton_dyt = LigerDyT(hidden_size=hidden_size).to(device)
|
|
36
|
+
|
|
37
|
+
x = torch.randn(x_shape, dtype=dtype, device=device)
|
|
38
|
+
dy = torch.randn_like(x)
|
|
39
|
+
x.requires_grad_(True)
|
|
40
|
+
|
|
41
|
+
def fwd():
|
|
42
|
+
if provider == "liger":
|
|
43
|
+
return triton_dyt(x)
|
|
44
|
+
elif provider == "torch":
|
|
45
|
+
return torch_dyt(x)
|
|
46
|
+
elif provider == "torch_compile":
|
|
47
|
+
return torch_compile_dyt(x)
|
|
48
|
+
|
|
49
|
+
if mode == "forward":
|
|
50
|
+
ms_50, ms_20, ms_80 = triton.testing.do_bench(fwd, quantiles=QUANTILES, grad_to_none=[x], rep=500)
|
|
51
|
+
elif mode == "backward":
|
|
52
|
+
y = fwd()
|
|
53
|
+
ms_50, ms_20, ms_80 = triton.testing.do_bench(
|
|
54
|
+
lambda: y.backward(dy, retain_graph=True),
|
|
55
|
+
quantiles=QUANTILES,
|
|
56
|
+
grad_to_none=[x],
|
|
57
|
+
rep=500,
|
|
58
|
+
)
|
|
59
|
+
elif mode == "full":
|
|
60
|
+
|
|
61
|
+
def full():
|
|
62
|
+
y = fwd()
|
|
63
|
+
y.backward(dy)
|
|
64
|
+
|
|
65
|
+
ms_50, ms_20, ms_80 = triton.testing.do_bench(full, quantiles=QUANTILES, grad_to_none=[x], rep=500)
|
|
66
|
+
|
|
67
|
+
return SingleBenchmarkRunOutput(
|
|
68
|
+
y_20=ms_20,
|
|
69
|
+
y_50=ms_50,
|
|
70
|
+
y_80=ms_80,
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def bench_memory_dyt(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOutput:
|
|
75
|
+
from test.transformers.test_dyt import LigerDyT
|
|
76
|
+
from test.transformers.test_dyt import TorchDyT
|
|
77
|
+
|
|
78
|
+
BT = input.x
|
|
79
|
+
provider = input.kernel_provider
|
|
80
|
+
extra_benchmark_config = input.extra_benchmark_config
|
|
81
|
+
hidden_size = extra_benchmark_config["hidden_size"]
|
|
82
|
+
dtype = extra_benchmark_config["dtype"]
|
|
83
|
+
|
|
84
|
+
x_shape = (BT, hidden_size)
|
|
85
|
+
torch_dyt = TorchDyT(hidden_size=hidden_size).to(device)
|
|
86
|
+
torch_compile_dyt = torch.compile(TorchDyT(hidden_size=hidden_size).to(device))
|
|
87
|
+
triton_dyt = LigerDyT(hidden_size=hidden_size).to(device)
|
|
88
|
+
|
|
89
|
+
x = torch.randn(x_shape, dtype=dtype, device=device)
|
|
90
|
+
dy = torch.randn_like(x)
|
|
91
|
+
x.requires_grad_(True)
|
|
92
|
+
|
|
93
|
+
def fwd():
|
|
94
|
+
if provider == "liger":
|
|
95
|
+
return triton_dyt(x)
|
|
96
|
+
elif provider == "torch":
|
|
97
|
+
return torch_dyt(x)
|
|
98
|
+
elif provider == "torch_compile":
|
|
99
|
+
return torch_compile_dyt(x)
|
|
100
|
+
|
|
101
|
+
def full():
|
|
102
|
+
y = fwd()
|
|
103
|
+
y.backward(dy, retain_graph=True)
|
|
104
|
+
|
|
105
|
+
mem_50, mem_20, mem_80 = _test_memory(full, quantiles=QUANTILES)
|
|
106
|
+
return SingleBenchmarkRunOutput(
|
|
107
|
+
y_20=mem_20,
|
|
108
|
+
y_50=mem_50,
|
|
109
|
+
y_80=mem_80,
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
if __name__ == "__main__":
|
|
114
|
+
args = parse_benchmark_script_args()
|
|
115
|
+
|
|
116
|
+
common_configs = {
|
|
117
|
+
"kernel_name": "dyt",
|
|
118
|
+
"x_name": "BT",
|
|
119
|
+
"x_label": "batch_size * seq_len",
|
|
120
|
+
"x_values": [2**i for i in range(10, 15)],
|
|
121
|
+
"kernel_providers": ["liger", "torch", "torch_compile"],
|
|
122
|
+
"extra_benchmark_configs": [{"hidden_size": 4096, "dtype": torch.float32}],
|
|
123
|
+
"overwrite": args.overwrite,
|
|
124
|
+
}
|
|
125
|
+
|
|
126
|
+
run_benchmarks(
|
|
127
|
+
bench_test_fn=bench_speed_dyt,
|
|
128
|
+
kernel_operation_modes=["forward", "backward", "full"],
|
|
129
|
+
metric_name="speed",
|
|
130
|
+
metric_unit="ms",
|
|
131
|
+
**common_configs,
|
|
132
|
+
)
|
|
133
|
+
run_benchmarks(
|
|
134
|
+
bench_test_fn=bench_memory_dyt,
|
|
135
|
+
kernel_operation_modes=["full"],
|
|
136
|
+
metric_name="memory",
|
|
137
|
+
metric_unit="MB",
|
|
138
|
+
**common_configs,
|
|
139
|
+
)
|
|
@@ -149,7 +149,7 @@ def bench_memory_kto_loss(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunO
|
|
|
149
149
|
y=target,
|
|
150
150
|
preference_labels=preference_labels,
|
|
151
151
|
kl=kl,
|
|
152
|
-
)
|
|
152
|
+
)[0]
|
|
153
153
|
elif provider == "huggingface":
|
|
154
154
|
return torch_kto_loss(
|
|
155
155
|
x=_input,
|
|
@@ -157,7 +157,7 @@ def bench_memory_kto_loss(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunO
|
|
|
157
157
|
y=target,
|
|
158
158
|
preference_labels=preference_labels,
|
|
159
159
|
kl=kl,
|
|
160
|
-
)
|
|
160
|
+
)[0]
|
|
161
161
|
|
|
162
162
|
def full():
|
|
163
163
|
y = fwd()
|
|
@@ -230,7 +230,7 @@ def bench_speed_kto_loss(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOu
|
|
|
230
230
|
y=target,
|
|
231
231
|
preference_labels=preference_labels,
|
|
232
232
|
kl=kl,
|
|
233
|
-
)
|
|
233
|
+
)[0]
|
|
234
234
|
elif provider == "huggingface":
|
|
235
235
|
return torch_kto_loss(
|
|
236
236
|
x=_input,
|
|
@@ -238,7 +238,7 @@ def bench_speed_kto_loss(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOu
|
|
|
238
238
|
y=target,
|
|
239
239
|
preference_labels=preference_labels,
|
|
240
240
|
kl=kl,
|
|
241
|
-
)
|
|
241
|
+
)[0]
|
|
242
242
|
|
|
243
243
|
if mode == "forward":
|
|
244
244
|
ms_50, ms_20, ms_80 = triton.testing.do_bench(
|
|
@@ -14,7 +14,7 @@ app = modal.App("liger_tests", image=image)
|
|
|
14
14
|
repo = modal.Mount.from_local_dir(ROOT_PATH, remote_path=REMOTE_ROOT_PATH)
|
|
15
15
|
|
|
16
16
|
|
|
17
|
-
@app.function(gpu="A10G", mounts=[repo], timeout=60 *
|
|
17
|
+
@app.function(gpu="A10G", mounts=[repo], timeout=60 * 30)
|
|
18
18
|
def liger_tests():
|
|
19
19
|
import subprocess
|
|
20
20
|
|
|
@@ -14,7 +14,7 @@ app = modal.App("liger_tests_bwd", image=image)
|
|
|
14
14
|
repo = modal.Mount.from_local_dir(ROOT_PATH, remote_path=REMOTE_ROOT_PATH)
|
|
15
15
|
|
|
16
16
|
|
|
17
|
-
@app.function(gpu="A10G", mounts=[repo], timeout=60 *
|
|
17
|
+
@app.function(gpu="A10G", mounts=[repo], timeout=60 * 30)
|
|
18
18
|
def liger_bwd_tests():
|
|
19
19
|
import subprocess
|
|
20
20
|
|
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "liger_kernel"
|
|
7
|
-
version = "0.5.
|
|
7
|
+
version = "0.5.6"
|
|
8
8
|
description = "Efficient Triton kernels for LLM Training"
|
|
9
9
|
urls = { "Homepage" = "https://github.com/linkedin/Liger-Kernel" }
|
|
10
10
|
readme = { file = "README.md", content-type = "text/markdown" }
|
|
@@ -39,8 +39,9 @@ class LigerFusedLinearCPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
39
39
|
|
|
40
40
|
return loss, chosen_rewards, rejected_rewards
|
|
41
41
|
|
|
42
|
-
@
|
|
42
|
+
@classmethod
|
|
43
43
|
def forward(
|
|
44
|
+
cls,
|
|
44
45
|
ctx,
|
|
45
46
|
_input,
|
|
46
47
|
weight,
|
|
@@ -52,27 +53,48 @@ class LigerFusedLinearCPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
52
53
|
label_smoothing=0.0,
|
|
53
54
|
compute_nll_loss=True,
|
|
54
55
|
compiled=True,
|
|
56
|
+
average_log_prob=False,
|
|
57
|
+
chunk_size=1,
|
|
55
58
|
):
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
59
|
+
"""
|
|
60
|
+
Fused linear layer with CPO loss.
|
|
61
|
+
Args:
|
|
62
|
+
_input (torch.Tensor): Input tensor. Shape: (batch_size * seq_len, hidden_size)
|
|
63
|
+
weight (torch.Tensor): Weight tensor. Shape: (vocab_size, hidden_size)
|
|
64
|
+
target (torch.LongTensor): Target tensor. Shape: (batch_size * seq_len,)
|
|
65
|
+
bias (torch.Tensor, optional): Bias tensor. Shape: (vocab_size,)
|
|
66
|
+
ignore_index (int): Index to ignore in loss computation
|
|
67
|
+
beta (float): Weight for the odds ratio loss
|
|
68
|
+
alpha (float): Weight for the alpha parameter
|
|
69
|
+
label_smoothing (float): Label smoothing factor
|
|
70
|
+
compute_nll_loss (bool): Whether to compute the NLL loss
|
|
71
|
+
compiled (bool): Whether to use torch compile
|
|
72
|
+
average_log_prob (bool): Whether to average the log probability per non-masked token
|
|
73
|
+
chunk_size (int): Size of chunks for processing.
|
|
74
|
+
Returns:
|
|
75
|
+
torch.Tensor: Computed loss
|
|
76
|
+
"""
|
|
77
|
+
return super().forward(
|
|
78
|
+
cls=cls,
|
|
79
|
+
ctx=ctx,
|
|
80
|
+
_input=_input,
|
|
81
|
+
weight=weight,
|
|
82
|
+
target=target,
|
|
83
|
+
bias=bias,
|
|
63
84
|
ignore_index=ignore_index,
|
|
64
85
|
alpha=alpha,
|
|
65
86
|
beta=beta,
|
|
66
87
|
label_smoothing=label_smoothing,
|
|
67
88
|
compute_nll_loss=compute_nll_loss,
|
|
68
|
-
average_log_prob=
|
|
89
|
+
average_log_prob=average_log_prob,
|
|
69
90
|
compiled=compiled,
|
|
91
|
+
chunk_size=chunk_size,
|
|
70
92
|
)
|
|
71
93
|
|
|
72
94
|
@staticmethod
|
|
73
95
|
def backward(ctx, *grad_output):
|
|
74
96
|
grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
|
|
75
|
-
return *grads, None, None, None, None, None, None
|
|
97
|
+
return *grads, None, None, None, None, None, None, None, None
|
|
76
98
|
|
|
77
99
|
|
|
78
100
|
class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
@@ -88,11 +110,19 @@ class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
|
88
110
|
label_smoothing: float = 0.0,
|
|
89
111
|
compute_nll_loss: bool = True,
|
|
90
112
|
compiled: bool = True,
|
|
113
|
+
average_log_prob: bool = False,
|
|
114
|
+
chunk_size: int = 1,
|
|
91
115
|
):
|
|
92
116
|
"""
|
|
93
117
|
Args:
|
|
94
118
|
ignore_index (int): Index to ignore in the loss.
|
|
95
119
|
beta (float): Weight for the odds ratio loss.
|
|
120
|
+
alpha (float): Weight for the alpha parameter.
|
|
121
|
+
label_smoothing (float): Label smoothing factor.
|
|
122
|
+
compute_nll_loss (bool): Whether to compute the NLL loss.
|
|
123
|
+
compiled (bool): Whether to use the torch compiled kernel.
|
|
124
|
+
average_log_prob (bool): Whether to average the log probability per non-masked token.
|
|
125
|
+
chunk_size (int): Size of chunks for processing.
|
|
96
126
|
"""
|
|
97
127
|
super().__init__()
|
|
98
128
|
self.ignore_index = ignore_index
|
|
@@ -101,8 +131,16 @@ class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
|
101
131
|
self.label_smoothing = label_smoothing
|
|
102
132
|
self.compute_nll_loss = compute_nll_loss
|
|
103
133
|
self.compiled = compiled
|
|
134
|
+
self.average_log_prob = average_log_prob
|
|
135
|
+
self.chunk_size = chunk_size
|
|
104
136
|
|
|
105
|
-
def forward(
|
|
137
|
+
def forward(
|
|
138
|
+
self,
|
|
139
|
+
lin_weight,
|
|
140
|
+
_input,
|
|
141
|
+
target,
|
|
142
|
+
bias=None,
|
|
143
|
+
):
|
|
106
144
|
return LigerFusedLinearCPOFunction.apply(
|
|
107
145
|
_input,
|
|
108
146
|
lin_weight,
|
|
@@ -114,4 +152,6 @@ class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
|
114
152
|
self.label_smoothing,
|
|
115
153
|
self.compute_nll_loss,
|
|
116
154
|
self.compiled,
|
|
155
|
+
self.average_log_prob,
|
|
156
|
+
self.chunk_size,
|
|
117
157
|
)
|