liger-kernel 0.5.4__tar.gz → 0.5.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/.github/workflows/amd-ci.yml +4 -1
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/PKG-INFO +3 -2
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/README.md +2 -1
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/data/all_benchmark_data.csv +30 -31
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_distill_jsd_loss.py +2 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_kto_loss.py +4 -4
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/pyproject.toml +1 -1
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/cpo_loss.py +51 -11
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/dpo_loss.py +30 -4
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/fused_linear_distillation.py +3 -3
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/fused_linear_preference.py +2 -2
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/fused_linear_rlhf.py +33 -6
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +112 -17
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/grpo_loss.py +37 -3
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/jsd_loss.py +31 -6
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/kto_loss.py +50 -12
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/orpo_loss.py +37 -5
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/simpo_loss.py +47 -11
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/cross_entropy.py +4 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/__init__.py +1 -0
- liger_kernel-0.5.5/src/liger_kernel/transformers/model/qwen2_5_vl.py +205 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/monkey_patch.py +68 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/utils.py +1 -3
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel.egg-info/PKG-INFO +3 -2
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel.egg-info/SOURCES.txt +2 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/chunked_loss/test_jsd_loss.py +49 -10
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/chunked_loss/test_kto_loss.py +85 -8
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/convergence/bf16/test_mini_models.py +86 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/convergence/bf16/test_mini_models_multimodal.py +100 -1
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/convergence/bf16/test_mini_models_with_logits.py +108 -22
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/convergence/fp32/test_mini_models.py +83 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/convergence/fp32/test_mini_models_multimodal.py +99 -1
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/convergence/fp32/test_mini_models_with_logits.py +83 -0
- liger_kernel-0.5.5/test/resources/fake_configs/Qwen/Qwen2.5-VL-7B-Instruct/tokenizer_config.json +63 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_cross_entropy.py +39 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_monkey_patch.py +68 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/utils.py +18 -1
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/.github/ISSUE_TEMPLATE/bug_report.yaml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/.github/ISSUE_TEMPLATE/feature_request.yaml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/.github/pull_request_template.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/.github/workflows/docs.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/.github/workflows/intel-ci.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/.github/workflows/nvi-ci.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/.github/workflows/publish-nightly.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/.github/workflows/publish-release.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/.gitignore +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/LICENSE +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/Makefile +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/NOTICE +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/README.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/benchmarks_visualizer.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_cpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_dpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_embedding.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_fused_linear_cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_fused_linear_jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_geglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_group_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_kl_div.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_layer_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_orpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_qwen2vl_mrope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_rms_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_rope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_simpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_swiglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/benchmark_tvd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/benchmark/scripts/utils.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/dev/fmt-requirements.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/dev/modal/tests.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/dev/modal/tests_bwd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/Examples.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/Getting-Started.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/High-Level-APIs.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/Low-Level-APIs.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/acknowledgement.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/contributing.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/images/banner.GIF +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/images/compose.gif +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/images/e2e-memory.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/images/e2e-tps.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/images/logo-banner.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/images/patch.gif +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/images/post-training.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/index.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/docs/license.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/alignment/accelerate_config.yaml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/alignment/run_orpo.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/README.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/callback.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/config/fsdp_config.json +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/img/gemma_7b_mem.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/img/gemma_7b_tp.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/img/llama_mem_alloc.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/img/llama_tps.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/img/qwen_mem_alloc.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/img/qwen_tps.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/launch_on_modal.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/requirements.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/run_benchmarks.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/run_gemma.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/run_llama.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/run_qwen.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/run_qwen2_vl.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/training.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/huggingface/training_multimodal.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/lightning/README.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/lightning/requirements.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/lightning/training.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/README.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/callback.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/docs/images/Memory_Stage1_num_head_3.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/docs/images/Memory_Stage1_num_head_5.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/docs/images/Memory_Stage2_num_head_3.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/docs/images/Memory_Stage2_num_head_5.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/docs/images/Throughput_Stage1_num_head_3.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/docs/images/Throughput_Stage1_num_head_5.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/docs/images/Throughput_Stage2_num_head_3.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/docs/images/Throughput_Stage2_num_head_5.png +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/fsdp/acc-fsdp.conf +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/medusa_util.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/requirements.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/scripts/llama3_8b_medusa.sh +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/examples/medusa/train.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/licenses/LICENSE-Apache-2.0 +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/licenses/LICENSE-MIT-AutoAWQ +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/licenses/LICENSE-MIT-Efficient-Cross-Entropy +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/licenses/LICENSE-MIT-llmc +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/licenses/LICENSE-MIT-triton +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/mkdocs.yml +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/setup.cfg +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/setup.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/README.md +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/functional.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/env_report.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/experimental/embedding.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/experimental/mm_int8int2.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/fused_linear_cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/fused_linear_jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/geglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/group_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/kl_div.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/layer_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/qwen2vl_mrope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/rms_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/rope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/swiglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/tvd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/ops/utils.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/auto_model.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/experimental/embedding.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/functional.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/fused_linear_jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/geglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/group_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/kl_div.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/layer_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/model/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/model/gemma.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/model/gemma2.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/model/llama.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/model/mistral.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/model/mixtral.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/model/mllama.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/model/olmo2.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/model/phi3.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/model/qwen2.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/model/qwen2_vl.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/qwen2vl_mrope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/rms_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/rope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/swiglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/trainer/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/trainer/orpo_trainer.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/trainer_integration.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/transformers/tvd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/triton/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/triton/monkey_patch.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel.egg-info/dependency_links.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel.egg-info/requires.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel.egg-info/top_level.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/chunked_loss/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/chunked_loss/test_cpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/chunked_loss/test_dpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/chunked_loss/test_grpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/chunked_loss/test_orpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/chunked_loss/test_simpo_loss.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/conftest.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/convergence/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/convergence/bf16/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/convergence/fp32/__init__.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/resources/fake_configs/Qwen/Qwen2-VL-7B-Instruct/tokenizer_config.json +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/resources/fake_configs/meta-llama/Llama-3.2-11B-Vision-Instruct/tokenizer_config.json +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/resources/scripts/generate_tokenized_dataset.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/resources/tiny_shakespeare.txt +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/resources/tiny_shakespeare_tokenized/data-00000-of-00001.arrow +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/resources/tiny_shakespeare_tokenized/dataset_info.json +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/resources/tiny_shakespeare_tokenized/state.json +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_auto_model.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_embedding.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_flex_attention.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_fused_linear_cross_entropy.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_fused_linear_jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_geglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_group_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_jsd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_kl_div.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_layer_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_mm_int8int2.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_qwen2vl_mrope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_rms_norm.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_rope.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_swiglu.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_trainer_integration.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_transformers.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/transformers/test_tvd.py +0 -0
- {liger_kernel-0.5.4 → liger_kernel-0.5.5}/test/triton/test_triton_monkey_patch.py +0 -0
|
@@ -47,6 +47,9 @@ jobs:
|
|
|
47
47
|
tests:
|
|
48
48
|
runs-on: linux-mi300-gpu-1
|
|
49
49
|
needs: [checkstyle]
|
|
50
|
+
strategy:
|
|
51
|
+
matrix:
|
|
52
|
+
rocm_version: ['6.2', '6.3']
|
|
50
53
|
|
|
51
54
|
steps:
|
|
52
55
|
- name: Checkout code
|
|
@@ -60,7 +63,7 @@ jobs:
|
|
|
60
63
|
- name: Setup Dependencies
|
|
61
64
|
run: |
|
|
62
65
|
python -m pip install --upgrade pip
|
|
63
|
-
pip install -e .[dev] --extra-index-url https://download.pytorch.org/whl/nightly/
|
|
66
|
+
pip install -e .[dev] --extra-index-url https://download.pytorch.org/whl/nightly/rocm${{ matrix.rocm_version }}
|
|
64
67
|
|
|
65
68
|
- name: List Python Environments
|
|
66
69
|
run: python -m pip list
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: liger_kernel
|
|
3
|
-
Version: 0.5.
|
|
3
|
+
Version: 0.5.5
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -154,7 +154,7 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
154
154
|
We provide optimized post training kernels like DPO, ORPO, SimPO, and more which can reduce memory usage by up to 80%. You can easily use them as python modules.
|
|
155
155
|
|
|
156
156
|
```python
|
|
157
|
-
from liger_kernel.chunked_loss import
|
|
157
|
+
from liger_kernel.chunked_loss import LigerFusedLinearORPOLoss
|
|
158
158
|
orpo_loss = LigerFusedLinearORPOLoss()
|
|
159
159
|
y = orpo_loss(lm_head.weight, x, target)
|
|
160
160
|
```
|
|
@@ -314,6 +314,7 @@ loss.backward()
|
|
|
314
314
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
315
315
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
316
316
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
317
|
+
| Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
317
318
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
318
319
|
| Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
|
319
320
|
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
@@ -104,7 +104,7 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
104
104
|
We provide optimized post training kernels like DPO, ORPO, SimPO, and more which can reduce memory usage by up to 80%. You can easily use them as python modules.
|
|
105
105
|
|
|
106
106
|
```python
|
|
107
|
-
from liger_kernel.chunked_loss import
|
|
107
|
+
from liger_kernel.chunked_loss import LigerFusedLinearORPOLoss
|
|
108
108
|
orpo_loss = LigerFusedLinearORPOLoss()
|
|
109
109
|
y = orpo_loss(lm_head.weight, x, target)
|
|
110
110
|
```
|
|
@@ -264,6 +264,7 @@ loss.backward()
|
|
|
264
264
|
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
265
265
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
266
266
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
267
|
+
| Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
267
268
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
268
269
|
| Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
|
269
270
|
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
@@ -751,36 +751,6 @@ fused_linear_simpo_loss,huggingface,full,memory,MB,B,B,2,8645.314453125,8645.314
|
|
|
751
751
|
fused_linear_simpo_loss,huggingface,full,memory,MB,B,B,4,12184.330078125,12184.330078125,12184.330078125,"{""T"": 1024, ""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16""}",NVIDIA A100-SXM4-80GB,2024-11-15 14:30:01,0.4.1
|
|
752
752
|
fused_linear_simpo_loss,huggingface,full,memory,MB,B,B,8,19262.361328125,19262.361328125,19262.361328125,"{""T"": 1024, ""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16""}",NVIDIA A100-SXM4-80GB,2024-11-15 14:30:01,0.4.1
|
|
753
753
|
fused_linear_simpo_loss,huggingface,full,memory,MB,B,B,16,33418.42578125,33418.42578125,33418.42578125,"{""T"": 1024, ""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16""}",NVIDIA A100-SXM4-80GB,2024-11-15 14:30:01,0.4.1
|
|
754
|
-
kto_loss,liger,forward,speed,ms,B,Batch Size (B),2,7.841599941253662,7.801983833312988,7.849664211273193,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:06,0.5.2
|
|
755
|
-
kto_loss,liger,forward,speed,ms,B,Batch Size (B),4,15.568096160888672,15.555737495422363,16.054176330566406,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:06,0.5.2
|
|
756
|
-
kto_loss,liger,forward,speed,ms,B,Batch Size (B),8,31.145376205444336,30.750951766967773,31.5398006439209,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:06,0.5.2
|
|
757
|
-
kto_loss,liger,forward,speed,ms,B,Batch Size (B),16,61.49708938598633,61.49708938598633,61.49708938598633,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:06,0.5.2
|
|
758
|
-
kto_loss,liger,forward,speed,ms,B,Batch Size (B),32,122.01449584960938,122.01449584960938,122.01449584960938,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:06,0.5.2
|
|
759
|
-
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),2,7.892335891723633,7.8687615394592285,8.03729248046875,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:28,0.5.2
|
|
760
|
-
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),4,14.16302490234375,13.813311576843262,15.860223770141602,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:28,0.5.2
|
|
761
|
-
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),8,25.56470489501953,25.564167022705078,25.641658782958984,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:28,0.5.2
|
|
762
|
-
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),16,53.0928955078125,53.0928955078125,53.0928955078125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:28,0.5.2
|
|
763
|
-
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),32,108.76080322265625,108.76080322265625,108.76080322265625,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:28,0.5.2
|
|
764
|
-
kto_loss,liger,full,speed,ms,B,Batch Size (B),2,8.662687301635742,8.488287925720215,9.611334800720215,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:50,0.5.2
|
|
765
|
-
kto_loss,liger,full,speed,ms,B,Batch Size (B),4,18.40096092224121,17.99224281311035,18.57883644104004,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:50,0.5.2
|
|
766
|
-
kto_loss,liger,full,speed,ms,B,Batch Size (B),8,32.09159851074219,31.708070755004883,32.475128173828125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:50,0.5.2
|
|
767
|
-
kto_loss,liger,full,speed,ms,B,Batch Size (B),16,69.30239868164062,69.30239868164062,69.30239868164062,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:50,0.5.2
|
|
768
|
-
kto_loss,liger,full,speed,ms,B,Batch Size (B),32,124.2437744140625,124.2437744140625,124.2437744140625,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:33:50,0.5.2
|
|
769
|
-
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),2,11.449472427368164,11.407564163208008,11.773555755615234,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:11,0.5.2
|
|
770
|
-
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),4,20.871471405029297,20.862951278686523,20.879276275634766,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:11,0.5.2
|
|
771
|
-
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),8,41.16409683227539,40.760780334472656,41.567413330078125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:11,0.5.2
|
|
772
|
-
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),16,77.720703125,77.720703125,77.720703125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:11,0.5.2
|
|
773
|
-
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),32,156.25794982910156,156.25794982910156,156.25794982910156,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:11,0.5.2
|
|
774
|
-
kto_loss,liger,full,memory,MB,B,Batch Size (B),2,2027.48583984375,2027.48583984375,2027.48583984375,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:36,0.5.2
|
|
775
|
-
kto_loss,liger,full,memory,MB,B,Batch Size (B),4,2789.736328125,2789.736328125,2789.736328125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:36,0.5.2
|
|
776
|
-
kto_loss,liger,full,memory,MB,B,Batch Size (B),8,2801.751953125,2801.751953125,2801.751953125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:36,0.5.2
|
|
777
|
-
kto_loss,liger,full,memory,MB,B,Batch Size (B),16,2825.783203125,2825.783203125,2825.783203125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:36,0.5.2
|
|
778
|
-
kto_loss,liger,full,memory,MB,B,Batch Size (B),32,2873.845703125,2873.845703125,2873.845703125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:36,0.5.2
|
|
779
|
-
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),2,3786.7373046875,3786.7373046875,3786.7373046875,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:59,0.5.2
|
|
780
|
-
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),4,5544.25390625,5544.25390625,5544.25390625,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:59,0.5.2
|
|
781
|
-
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),8,9057.287109375,9057.287109375,9057.287109375,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:59,0.5.2
|
|
782
|
-
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),16,16087.353515625,16087.353515625,16087.353515625,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:59,0.5.2
|
|
783
|
-
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),32,30147.486328125,30147.486328125,30147.486328125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA A100-SXM4-80GB,2024-12-23 23:34:59,0.5.2
|
|
784
754
|
distill_jsd_loss,liger,forward,speed,ms,BT,B x T,1024,7.735536098480225,7.729177474975586,7.798131465911865,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 07:58:46,0.4.2
|
|
785
755
|
distill_jsd_loss,liger,forward,speed,ms,BT,B x T,2048,15.20411205291748,15.165056228637695,15.226079940795898,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 07:58:46,0.4.2
|
|
786
756
|
distill_jsd_loss,liger,forward,speed,ms,BT,B x T,4096,30.159456253051758,30.126911163330078,30.165311813354492,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 07:58:46,0.4.2
|
|
@@ -805,4 +775,33 @@ distill_jsd_loss,torch,full,memory,MB,BT,B x T,1024,16174.0390625,16174.0390625,
|
|
|
805
775
|
distill_jsd_loss,torch,full,memory,MB,BT,B x T,2048,23713.05078125,23713.05078125,23713.05078125,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 08:01:32,0.4.2
|
|
806
776
|
distill_jsd_loss,torch,full,memory,MB,BT,B x T,4096,38791.07421875,38791.07421875,38791.07421875,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 08:01:32,0.4.2
|
|
807
777
|
distill_jsd_loss,torch,full,memory,MB,BT,B x T,8192,68947.1015625,68947.1015625,68947.1015625,"{""H"": 4096, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": false, ""weight_hard_loss"": 0.5, ""weight_soft_loss"": 0.5, ""ignore_index"": -100}",NVIDIA H100 80GB HBM3,2024-12-03 08:01:32,0.4.2
|
|
808
|
-
|
|
778
|
+
kto_loss,liger,forward,speed,ms,B,Batch Size (B),2,3.9951679706573486,3.991487979888916,4.002252578735352,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:22:44,0.5.4
|
|
779
|
+
kto_loss,liger,forward,speed,ms,B,Batch Size (B),4,7.8037919998168945,7.788575649261475,7.808595180511475,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:22:44,0.5.4
|
|
780
|
+
kto_loss,liger,forward,speed,ms,B,Batch Size (B),8,15.43172836303711,15.430015563964844,15.4335355758667,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:22:44,0.5.4
|
|
781
|
+
kto_loss,liger,forward,speed,ms,B,Batch Size (B),16,30.66864013671875,30.66431999206543,30.670501708984375,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:22:44,0.5.4
|
|
782
|
+
kto_loss,liger,forward,speed,ms,B,Batch Size (B),32,61.1163215637207,61.1163215637207,61.1163215637207,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:22:44,0.5.4
|
|
783
|
+
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),2,3.8766400814056396,3.8680384159088135,3.8897151947021484,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:01,0.5.4
|
|
784
|
+
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),4,7.213727951049805,7.206470489501953,7.229574680328369,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:01,0.5.4
|
|
785
|
+
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),8,13.828800201416016,13.810944557189941,13.834943771362305,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:01,0.5.4
|
|
786
|
+
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),16,27.0930233001709,27.08517074584961,27.09713363647461,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:01,0.5.4
|
|
787
|
+
kto_loss,huggingface,forward,speed,ms,B,Batch Size (B),32,54.13715362548828,54.13715362548828,54.13715362548828,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:01,0.5.4
|
|
788
|
+
kto_loss,liger,full,speed,ms,B,Batch Size (B),2,4.782928466796875,4.677459239959717,5.3430914878845215,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:18,0.5.4
|
|
789
|
+
kto_loss,liger,full,speed,ms,B,Batch Size (B),4,8.517248153686523,8.481344223022461,8.561504364013672,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:18,0.5.4
|
|
790
|
+
kto_loss,liger,full,speed,ms,B,Batch Size (B),8,16.547504425048828,16.513471603393555,16.678144454956055,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:18,0.5.4
|
|
791
|
+
kto_loss,liger,full,speed,ms,B,Batch Size (B),16,31.891263961791992,31.819705963134766,32.274131774902344,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:18,0.5.4
|
|
792
|
+
kto_loss,liger,full,speed,ms,B,Batch Size (B),32,62.953758239746094,62.953758239746094,62.953758239746094,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:18,0.5.4
|
|
793
|
+
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),2,6.201632022857666,6.163315296173096,6.314668655395508,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:35,0.5.4
|
|
794
|
+
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),4,11.156224250793457,11.142304420471191,11.207296371459961,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:35,0.5.4
|
|
795
|
+
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),8,21.249855041503906,21.231891632080078,21.264543533325195,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:35,0.5.4
|
|
796
|
+
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),16,41.55686569213867,41.536956787109375,41.57677459716797,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:35,0.5.4
|
|
797
|
+
kto_loss,huggingface,full,speed,ms,B,Batch Size (B),32,81.56924438476562,81.56924438476562,81.56924438476562,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:35,0.5.4
|
|
798
|
+
kto_loss,liger,full,memory,MB,B,Batch Size (B),2,2585.73876953125,2585.73876953125,2585.73876953125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:55,0.5.4
|
|
799
|
+
kto_loss,liger,full,memory,MB,B,Batch Size (B),4,3348.9892578125,3348.9892578125,3348.9892578125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:55,0.5.4
|
|
800
|
+
kto_loss,liger,full,memory,MB,B,Batch Size (B),8,3361.0048828125,3361.0048828125,3361.0048828125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:55,0.5.4
|
|
801
|
+
kto_loss,liger,full,memory,MB,B,Batch Size (B),16,3385.0361328125,3385.0361328125,3385.0361328125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:55,0.5.4
|
|
802
|
+
kto_loss,liger,full,memory,MB,B,Batch Size (B),32,3433.0986328125,3433.0986328125,3433.0986328125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:23:55,0.5.4
|
|
803
|
+
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),2,4341.74951171875,4341.74951171875,4341.74951171875,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:24:11,0.5.4
|
|
804
|
+
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),4,6099.26513671875,6099.26513671875,6099.26513671875,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:24:11,0.5.4
|
|
805
|
+
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),8,9613.298828125,9613.298828125,9613.298828125,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:24:11,0.5.4
|
|
806
|
+
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),16,16643.365234375,16643.365234375,16643.365234375,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:24:11,0.5.4
|
|
807
|
+
kto_loss,huggingface,full,memory,MB,B,Batch Size (B),32,30703.498046875,30703.498046875,30703.498046875,"{""T"": 512, ""H"": 1024, ""V"": 128256, ""mode"": ""forward"", ""dtype"": ""torch.bfloat16"", ""bias"": true, ""beta"": 0.1, ""ignore_index"": 42}",NVIDIA H100 80GB HBM3,2025-03-03 08:24:11,0.5.4
|
|
@@ -149,7 +149,7 @@ def bench_memory_kto_loss(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunO
|
|
|
149
149
|
y=target,
|
|
150
150
|
preference_labels=preference_labels,
|
|
151
151
|
kl=kl,
|
|
152
|
-
)
|
|
152
|
+
)[0]
|
|
153
153
|
elif provider == "huggingface":
|
|
154
154
|
return torch_kto_loss(
|
|
155
155
|
x=_input,
|
|
@@ -157,7 +157,7 @@ def bench_memory_kto_loss(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunO
|
|
|
157
157
|
y=target,
|
|
158
158
|
preference_labels=preference_labels,
|
|
159
159
|
kl=kl,
|
|
160
|
-
)
|
|
160
|
+
)[0]
|
|
161
161
|
|
|
162
162
|
def full():
|
|
163
163
|
y = fwd()
|
|
@@ -230,7 +230,7 @@ def bench_speed_kto_loss(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOu
|
|
|
230
230
|
y=target,
|
|
231
231
|
preference_labels=preference_labels,
|
|
232
232
|
kl=kl,
|
|
233
|
-
)
|
|
233
|
+
)[0]
|
|
234
234
|
elif provider == "huggingface":
|
|
235
235
|
return torch_kto_loss(
|
|
236
236
|
x=_input,
|
|
@@ -238,7 +238,7 @@ def bench_speed_kto_loss(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOu
|
|
|
238
238
|
y=target,
|
|
239
239
|
preference_labels=preference_labels,
|
|
240
240
|
kl=kl,
|
|
241
|
-
)
|
|
241
|
+
)[0]
|
|
242
242
|
|
|
243
243
|
if mode == "forward":
|
|
244
244
|
ms_50, ms_20, ms_80 = triton.testing.do_bench(
|
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "liger_kernel"
|
|
7
|
-
version = "0.5.
|
|
7
|
+
version = "0.5.5"
|
|
8
8
|
description = "Efficient Triton kernels for LLM Training"
|
|
9
9
|
urls = { "Homepage" = "https://github.com/linkedin/Liger-Kernel" }
|
|
10
10
|
readme = { file = "README.md", content-type = "text/markdown" }
|
|
@@ -39,8 +39,9 @@ class LigerFusedLinearCPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
39
39
|
|
|
40
40
|
return loss, chosen_rewards, rejected_rewards
|
|
41
41
|
|
|
42
|
-
@
|
|
42
|
+
@classmethod
|
|
43
43
|
def forward(
|
|
44
|
+
cls,
|
|
44
45
|
ctx,
|
|
45
46
|
_input,
|
|
46
47
|
weight,
|
|
@@ -52,27 +53,48 @@ class LigerFusedLinearCPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
52
53
|
label_smoothing=0.0,
|
|
53
54
|
compute_nll_loss=True,
|
|
54
55
|
compiled=True,
|
|
56
|
+
average_log_prob=False,
|
|
57
|
+
chunk_size=1,
|
|
55
58
|
):
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
59
|
+
"""
|
|
60
|
+
Fused linear layer with CPO loss.
|
|
61
|
+
Args:
|
|
62
|
+
_input (torch.Tensor): Input tensor. Shape: (batch_size * seq_len, hidden_size)
|
|
63
|
+
weight (torch.Tensor): Weight tensor. Shape: (vocab_size, hidden_size)
|
|
64
|
+
target (torch.LongTensor): Target tensor. Shape: (batch_size * seq_len,)
|
|
65
|
+
bias (torch.Tensor, optional): Bias tensor. Shape: (vocab_size,)
|
|
66
|
+
ignore_index (int): Index to ignore in loss computation
|
|
67
|
+
beta (float): Weight for the odds ratio loss
|
|
68
|
+
alpha (float): Weight for the alpha parameter
|
|
69
|
+
label_smoothing (float): Label smoothing factor
|
|
70
|
+
compute_nll_loss (bool): Whether to compute the NLL loss
|
|
71
|
+
compiled (bool): Whether to use torch compile
|
|
72
|
+
average_log_prob (bool): Whether to average the log probability per non-masked token
|
|
73
|
+
chunk_size (int): Size of chunks for processing.
|
|
74
|
+
Returns:
|
|
75
|
+
torch.Tensor: Computed loss
|
|
76
|
+
"""
|
|
77
|
+
return super().forward(
|
|
78
|
+
cls=cls,
|
|
79
|
+
ctx=ctx,
|
|
80
|
+
_input=_input,
|
|
81
|
+
weight=weight,
|
|
82
|
+
target=target,
|
|
83
|
+
bias=bias,
|
|
63
84
|
ignore_index=ignore_index,
|
|
64
85
|
alpha=alpha,
|
|
65
86
|
beta=beta,
|
|
66
87
|
label_smoothing=label_smoothing,
|
|
67
88
|
compute_nll_loss=compute_nll_loss,
|
|
68
|
-
average_log_prob=
|
|
89
|
+
average_log_prob=average_log_prob,
|
|
69
90
|
compiled=compiled,
|
|
91
|
+
chunk_size=chunk_size,
|
|
70
92
|
)
|
|
71
93
|
|
|
72
94
|
@staticmethod
|
|
73
95
|
def backward(ctx, *grad_output):
|
|
74
96
|
grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
|
|
75
|
-
return *grads, None, None, None, None, None, None
|
|
97
|
+
return *grads, None, None, None, None, None, None, None, None
|
|
76
98
|
|
|
77
99
|
|
|
78
100
|
class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
@@ -88,11 +110,19 @@ class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
|
88
110
|
label_smoothing: float = 0.0,
|
|
89
111
|
compute_nll_loss: bool = True,
|
|
90
112
|
compiled: bool = True,
|
|
113
|
+
average_log_prob: bool = False,
|
|
114
|
+
chunk_size: int = 1,
|
|
91
115
|
):
|
|
92
116
|
"""
|
|
93
117
|
Args:
|
|
94
118
|
ignore_index (int): Index to ignore in the loss.
|
|
95
119
|
beta (float): Weight for the odds ratio loss.
|
|
120
|
+
alpha (float): Weight for the alpha parameter.
|
|
121
|
+
label_smoothing (float): Label smoothing factor.
|
|
122
|
+
compute_nll_loss (bool): Whether to compute the NLL loss.
|
|
123
|
+
compiled (bool): Whether to use the torch compiled kernel.
|
|
124
|
+
average_log_prob (bool): Whether to average the log probability per non-masked token.
|
|
125
|
+
chunk_size (int): Size of chunks for processing.
|
|
96
126
|
"""
|
|
97
127
|
super().__init__()
|
|
98
128
|
self.ignore_index = ignore_index
|
|
@@ -101,8 +131,16 @@ class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
|
101
131
|
self.label_smoothing = label_smoothing
|
|
102
132
|
self.compute_nll_loss = compute_nll_loss
|
|
103
133
|
self.compiled = compiled
|
|
134
|
+
self.average_log_prob = average_log_prob
|
|
135
|
+
self.chunk_size = chunk_size
|
|
104
136
|
|
|
105
|
-
def forward(
|
|
137
|
+
def forward(
|
|
138
|
+
self,
|
|
139
|
+
lin_weight,
|
|
140
|
+
_input,
|
|
141
|
+
target,
|
|
142
|
+
bias=None,
|
|
143
|
+
):
|
|
106
144
|
return LigerFusedLinearCPOFunction.apply(
|
|
107
145
|
_input,
|
|
108
146
|
lin_weight,
|
|
@@ -114,4 +152,6 @@ class LigerFusedLinearCPOLoss(torch.nn.Module):
|
|
|
114
152
|
self.label_smoothing,
|
|
115
153
|
self.compute_nll_loss,
|
|
116
154
|
self.compiled,
|
|
155
|
+
self.average_log_prob,
|
|
156
|
+
self.chunk_size,
|
|
117
157
|
)
|
|
@@ -52,8 +52,9 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
52
52
|
loss = -F.logsigmoid(logits_diff).sum() / (full_target.shape[0] // 2)
|
|
53
53
|
return loss, chosen_rewards, rejected_rewards
|
|
54
54
|
|
|
55
|
-
@
|
|
55
|
+
@classmethod
|
|
56
56
|
def forward(
|
|
57
|
+
cls,
|
|
57
58
|
ctx,
|
|
58
59
|
_input,
|
|
59
60
|
weight,
|
|
@@ -67,14 +68,34 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
67
68
|
compute_nll_loss=False,
|
|
68
69
|
compiled=True,
|
|
69
70
|
use_ref_model=True,
|
|
71
|
+
chunk_size=1,
|
|
70
72
|
):
|
|
71
|
-
|
|
73
|
+
"""
|
|
74
|
+
Fused linear layer with DPO loss.
|
|
75
|
+
Args:
|
|
76
|
+
_input (torch.Tensor): Input tensor. Shape: (batch_size * seq_len, hidden_size)
|
|
77
|
+
weight (torch.Tensor): Weight tensor. Shape: (vocab_size, hidden_size)
|
|
78
|
+
target (torch.LongTensor): Target tensor. Shape: (batch_size * seq_len,)
|
|
79
|
+
bias (torch.Tensor, optional): Bias tensor. Shape: (vocab_size,)
|
|
80
|
+
ref_input (torch.Tensor, optional): Reference model input tensor. Shape: (batch_size * seq_len, hidden_size)
|
|
81
|
+
ref_weight (torch.Tensor, optional): Reference model weight tensor. Shape: (vocab_size, hidden_size)
|
|
82
|
+
ref_bias (torch.Tensor, optional): Reference model bias tensor. Shape: (vocab_size,)
|
|
83
|
+
ignore_index (int): Index to ignore in loss computation
|
|
84
|
+
beta (float): Weight for the odds ratio loss
|
|
85
|
+
compute_nll_loss (bool): Whether to compute the NLL loss
|
|
86
|
+
compiled (bool): Whether to use torch compile
|
|
87
|
+
use_ref_model (bool): Whether to use a reference model
|
|
88
|
+
chunk_size (int): Size of chunks for processing.
|
|
89
|
+
Returns:
|
|
90
|
+
torch.Tensor: Computed loss
|
|
91
|
+
"""
|
|
92
|
+
return super().forward(
|
|
93
|
+
cls=cls,
|
|
72
94
|
ctx=ctx,
|
|
73
95
|
_input=_input,
|
|
74
96
|
weight=weight,
|
|
75
97
|
target=target,
|
|
76
98
|
bias=bias,
|
|
77
|
-
loss_fn=LigerFusedLinearDPOFunction.preference_loss_fn,
|
|
78
99
|
ignore_index=ignore_index,
|
|
79
100
|
beta=beta,
|
|
80
101
|
compute_nll_loss=compute_nll_loss,
|
|
@@ -83,12 +104,13 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
|
83
104
|
ref_input=ref_input,
|
|
84
105
|
ref_weight=ref_weight,
|
|
85
106
|
ref_bias=ref_bias,
|
|
107
|
+
chunk_size=chunk_size,
|
|
86
108
|
)
|
|
87
109
|
|
|
88
110
|
@staticmethod
|
|
89
111
|
def backward(ctx, *grad_output):
|
|
90
112
|
grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
|
|
91
|
-
return *grads, None, None, None, None, None, None, None, None
|
|
113
|
+
return *grads, None, None, None, None, None, None, None, None, None
|
|
92
114
|
|
|
93
115
|
|
|
94
116
|
class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
@@ -103,6 +125,7 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
103
125
|
compute_nll_loss: bool = False,
|
|
104
126
|
compiled: bool = True,
|
|
105
127
|
use_ref_model: bool = True,
|
|
128
|
+
chunk_size: int = 1,
|
|
106
129
|
):
|
|
107
130
|
"""
|
|
108
131
|
Args:
|
|
@@ -111,6 +134,7 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
111
134
|
compute_nll_loss (bool): Whether to compute the NLL loss.
|
|
112
135
|
compiled (bool): Whether to use the torch compiled kernel.
|
|
113
136
|
use_ref_model (bool): Whether to use a reference model for the DPO loss.
|
|
137
|
+
chunk_size (int): Size of chunks for processing.
|
|
114
138
|
"""
|
|
115
139
|
super().__init__()
|
|
116
140
|
self.ignore_index = ignore_index
|
|
@@ -118,6 +142,7 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
118
142
|
self.compute_nll_loss = compute_nll_loss
|
|
119
143
|
self.compiled = compiled
|
|
120
144
|
self.use_ref_model = use_ref_model
|
|
145
|
+
self.chunk_size = chunk_size
|
|
121
146
|
|
|
122
147
|
def forward(
|
|
123
148
|
self,
|
|
@@ -142,4 +167,5 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
|
142
167
|
self.compute_nll_loss,
|
|
143
168
|
self.compiled,
|
|
144
169
|
self.use_ref_model,
|
|
170
|
+
self.chunk_size,
|
|
145
171
|
)
|
{liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/fused_linear_distillation.py
RENAMED
|
@@ -125,6 +125,7 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
125
125
|
|
|
126
126
|
@staticmethod
|
|
127
127
|
def forward(
|
|
128
|
+
cls,
|
|
128
129
|
ctx,
|
|
129
130
|
student_input,
|
|
130
131
|
student_weight,
|
|
@@ -133,7 +134,6 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
133
134
|
target,
|
|
134
135
|
student_bias=None,
|
|
135
136
|
teacher_bias=None,
|
|
136
|
-
loss_fn=None,
|
|
137
137
|
chunk_size=1024,
|
|
138
138
|
ignore_index=-100,
|
|
139
139
|
weight_hard_loss=0.5,
|
|
@@ -175,7 +175,7 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
175
175
|
|
|
176
176
|
loss_func_to_call = partial(
|
|
177
177
|
LigerFusedLinearDistillationBase._compute_loss,
|
|
178
|
-
distillation_loss_fn=
|
|
178
|
+
distillation_loss_fn=cls.distillation_loss_fn,
|
|
179
179
|
full_target=target,
|
|
180
180
|
ignore_index=ignore_index,
|
|
181
181
|
weight_hard_loss=weight_hard_loss,
|
|
@@ -263,4 +263,4 @@ class LigerFusedLinearDistillationBase(torch.autograd.Function):
|
|
|
263
263
|
grad_weight = grad_weight * grad_output
|
|
264
264
|
grad_bias = grad_bias * grad_output if grad_bias is not None else None
|
|
265
265
|
|
|
266
|
-
return grad_input, grad_weight, None, grad_bias
|
|
266
|
+
return grad_input, grad_weight, None, None, None, grad_bias
|
{liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/fused_linear_preference.py
RENAMED
|
@@ -16,12 +16,12 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
|
16
16
|
|
|
17
17
|
@staticmethod
|
|
18
18
|
def forward(
|
|
19
|
+
cls,
|
|
19
20
|
ctx,
|
|
20
21
|
_input,
|
|
21
22
|
weight,
|
|
22
23
|
target,
|
|
23
24
|
bias=None,
|
|
24
|
-
loss_fn=None,
|
|
25
25
|
chunk_size=1,
|
|
26
26
|
ignore_index=-100,
|
|
27
27
|
alpha=1.0,
|
|
@@ -89,7 +89,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
|
89
89
|
|
|
90
90
|
compute_loss = partial(
|
|
91
91
|
LigerFusedLinearPreferenceBase._compute_loss,
|
|
92
|
-
preference_loss_fn=
|
|
92
|
+
preference_loss_fn=cls.preference_loss_fn,
|
|
93
93
|
ignore_index=ignore_index,
|
|
94
94
|
alpha=alpha,
|
|
95
95
|
beta=beta,
|
{liger_kernel-0.5.4 → liger_kernel-0.5.5}/src/liger_kernel/chunked_loss/fused_linear_rlhf.py
RENAMED
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
from abc import abstractmethod
|
|
1
2
|
from functools import partial
|
|
2
3
|
|
|
3
4
|
import torch
|
|
@@ -5,15 +6,22 @@ import torch.nn.functional as F
|
|
|
5
6
|
|
|
6
7
|
|
|
7
8
|
class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
9
|
+
@abstractmethod
|
|
10
|
+
def rlhf_loss_fn(*args, **kwargs):
|
|
11
|
+
"""
|
|
12
|
+
To be extended by subclasses.
|
|
13
|
+
"""
|
|
14
|
+
raise NotImplementedError("RLHF loss function must be implemented.")
|
|
15
|
+
|
|
8
16
|
@staticmethod
|
|
9
17
|
def forward(
|
|
18
|
+
cls,
|
|
10
19
|
ctx,
|
|
11
20
|
_input,
|
|
12
21
|
weight,
|
|
13
22
|
attention_mask,
|
|
14
23
|
rewards,
|
|
15
24
|
bias=None,
|
|
16
|
-
loss_fn=None,
|
|
17
25
|
num_generations=4,
|
|
18
26
|
beta=0.1,
|
|
19
27
|
compiled=True,
|
|
@@ -21,8 +29,27 @@ class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
|
21
29
|
ref_input=None,
|
|
22
30
|
ref_weight=None,
|
|
23
31
|
ref_bias=None,
|
|
32
|
+
chunk_size=1,
|
|
24
33
|
):
|
|
25
|
-
"""Chunked forward pass for RLHF loss computation.
|
|
34
|
+
"""Chunked forward pass for RLHF loss computation.
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
cls: The class
|
|
38
|
+
ctx: Context for backward
|
|
39
|
+
_input: Input tensor
|
|
40
|
+
weight: Weight tensor
|
|
41
|
+
attention_mask: Attention mask tensor
|
|
42
|
+
rewards: Rewards tensor
|
|
43
|
+
bias: Bias tensor
|
|
44
|
+
num_generations: Number of generations per prompt
|
|
45
|
+
beta: Weight for the KL penalty
|
|
46
|
+
compiled: Whether to use torch compile
|
|
47
|
+
use_ref_model: Whether to use a reference model
|
|
48
|
+
ref_input: Reference model input tensor
|
|
49
|
+
ref_weight: Reference model weight tensor
|
|
50
|
+
ref_bias: Reference model bias tensor
|
|
51
|
+
chunk_size: Size of chunks for processing in other loss modules
|
|
52
|
+
"""
|
|
26
53
|
# Save for backward
|
|
27
54
|
ctx.beta = beta
|
|
28
55
|
ctx.rewards = rewards
|
|
@@ -41,7 +68,7 @@ class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
|
41
68
|
use_ref_model=use_ref_model,
|
|
42
69
|
ref_weight=ref_weight,
|
|
43
70
|
ref_bias=ref_bias,
|
|
44
|
-
rlhf_loss_fn=
|
|
71
|
+
rlhf_loss_fn=cls.rlhf_loss_fn,
|
|
45
72
|
)
|
|
46
73
|
|
|
47
74
|
def fused_fwd_bwd(input_chunk, attention_mask_chunk, rewards_chunk, ref_input_chunk):
|
|
@@ -98,7 +125,7 @@ class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
|
98
125
|
if compiled:
|
|
99
126
|
accumulate_chunk = torch.compile(accumulate_chunk)
|
|
100
127
|
|
|
101
|
-
# Process input in chunks
|
|
128
|
+
# Process input in chunks based on num_generations
|
|
102
129
|
chunks = max(1, _input.shape[0] // num_generations)
|
|
103
130
|
_input_chunks = torch.chunk(_input, chunks=chunks, dim=0)
|
|
104
131
|
_attention_mask_chunks = torch.chunk(attention_mask, chunks=chunks, dim=0)
|
|
@@ -202,12 +229,12 @@ class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
|
|
202
229
|
None, # grad_attention_mask
|
|
203
230
|
None, # grad_rewards
|
|
204
231
|
grad_bias,
|
|
205
|
-
None, #
|
|
206
|
-
None, # grad_chunk_size
|
|
232
|
+
None, # grad_num_generations
|
|
207
233
|
None, # grad_beta
|
|
208
234
|
None, # grad_compiled
|
|
209
235
|
None, # grad_use_ref_model
|
|
210
236
|
None, # grad_ref_input
|
|
211
237
|
None, # grad_ref_weight
|
|
212
238
|
None, # grad_ref_bias
|
|
239
|
+
None, # grad_chunk_size
|
|
213
240
|
)
|