liger-kernel 0.4.0__tar.gz → 0.4.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {liger_kernel-0.4.0/src/liger_kernel.egg-info → liger_kernel-0.4.2}/PKG-INFO +18 -82
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/README.md +17 -81
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/pyproject.toml +1 -1
- liger_kernel-0.4.2/src/liger_kernel/chunked_loss/dpo_loss.py +57 -0
- liger_kernel-0.4.2/src/liger_kernel/chunked_loss/fused_linear_preference.py +206 -0
- liger_kernel-0.4.2/src/liger_kernel/chunked_loss/orpo_loss.py +63 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/env_report.py +2 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/cross_entropy.py +143 -30
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/fused_linear_cross_entropy.py +20 -2
- liger_kernel-0.4.2/src/liger_kernel/ops/group_norm.py +322 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/rms_norm.py +27 -6
- liger_kernel-0.4.2/src/liger_kernel/transformers/cross_entropy.py +53 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/functional.py +34 -1
- liger_kernel-0.4.2/src/liger_kernel/transformers/fused_linear_cross_entropy.py +48 -0
- liger_kernel-0.4.2/src/liger_kernel/transformers/group_norm.py +56 -0
- liger_kernel-0.4.2/src/liger_kernel/transformers/model/__init__.py +0 -0
- liger_kernel-0.4.2/src/liger_kernel/transformers/model/gemma2.py +277 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/model/qwen2_vl.py +43 -17
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/monkey_patch.py +106 -64
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/rms_norm.py +11 -3
- {liger_kernel-0.4.0 → liger_kernel-0.4.2/src/liger_kernel.egg-info}/PKG-INFO +18 -82
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel.egg-info/SOURCES.txt +7 -0
- liger_kernel-0.4.0/src/liger_kernel/transformers/cross_entropy.py +0 -21
- liger_kernel-0.4.0/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -21
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/LICENSE +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/NOTICE +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/setup.cfg +0 -0
- {liger_kernel-0.4.0/src/liger_kernel/ops → liger_kernel-0.4.2/src/liger_kernel/chunked_loss}/__init__.py +0 -0
- {liger_kernel-0.4.0/src/liger_kernel/transformers/model → liger_kernel-0.4.2/src/liger_kernel/ops}/__init__.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/experimental/embedding.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/experimental/mm_int8int2.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/fused_linear_jsd.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/geglu.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/jsd.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/kl_div.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/layer_norm.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/rope.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/swiglu.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/ops/utils.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/__init__.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/auto_model.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/experimental/embedding.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/fused_linear_jsd.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/geglu.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/jsd.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/kl_div.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/layer_norm.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/model/gemma.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/model/llama.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/model/mistral.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/model/mixtral.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/model/mllama.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/model/phi3.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/model/qwen2.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/rope.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/swiglu.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/transformers/trainer_integration.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/triton/__init__.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel/triton/monkey_patch.py +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel.egg-info/dependency_links.txt +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel.egg-info/requires.txt +0 -0
- {liger_kernel-0.4.0 → liger_kernel-0.4.2}/src/liger_kernel.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: liger_kernel
|
|
3
|
-
Version: 0.4.
|
|
3
|
+
Version: 0.4.2
|
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
|
@@ -99,7 +99,8 @@ Requires-Dist: seaborn; extra == "dev"
|
|
|
99
99
|
|
|
100
100
|
<details>
|
|
101
101
|
<summary>Latest News 🔥</summary>
|
|
102
|
-
|
|
102
|
+
|
|
103
|
+
- [2024/11/6] We release [v0.4.0](https://github.com/linkedin/Liger-Kernel/releases/tag/v0.4.0): Full AMD support, Tech Report, Modal CI, Llama-3.2-Vision!
|
|
103
104
|
- [2024/10/21] We have released the tech report of Liger Kernel on Arxiv: https://arxiv.org/pdf/2410.10989
|
|
104
105
|
- [2024/9/6] We release v0.2.1 ([X post](https://x.com/liger_kernel/status/1832168197002510649)). 2500+ Stars, 10+ New Contributors, 50+ PRs, 50k Downloads in two weeks!
|
|
105
106
|
- [2024/8/31] CUDA MODE talk, [Liger-Kernel: Real-world Triton kernel for LLM Training](https://youtu.be/gWble4FreV4?si=dxPeIchhkJ36Mbns), [Slides](https://github.com/cuda-mode/lectures?tab=readme-ov-file#lecture-28-liger-kernel)
|
|
@@ -127,18 +128,12 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
127
128
|
|
|
128
129
|
## Examples
|
|
129
130
|
|
|
130
|
-
### Basic
|
|
131
|
-
|
|
132
|
-
| **Example** | **Description** | **Lightning Studio** |
|
|
133
|
-
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
|
|
134
|
-
| [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train LLaMA 3-8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP | TBA |
|
|
135
|
-
| [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 | TBA |
|
|
136
131
|
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
| **
|
|
140
|
-
|
|
141
|
-
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP |
|
|
132
|
+
| **Use Case** | **Description** |
|
|
133
|
+
|------------------------------------------------|---------------------------------------------------------------------------------------------------|
|
|
134
|
+
| [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train LLaMA 3-8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP |
|
|
135
|
+
| [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 |
|
|
136
|
+
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP | |
|
|
142
137
|
|
|
143
138
|
## Key Features
|
|
144
139
|
|
|
@@ -149,13 +144,6 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
149
144
|
- **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP, DeepSpeed, DDP, etc.).
|
|
150
145
|
- **Trainer Framework Integration**: [Axolotl](https://github.com/axolotl-ai-cloud/axolotl), [LLaMa-Factory](https://github.com/hiyouga/LLaMA-Factory), [SFTTrainer](https://github.com/huggingface/trl/releases/tag/v0.10.1), [Hugging Face Trainer](https://github.com/huggingface/transformers/pull/32860), [SWIFT](https://github.com/modelscope/ms-swift)
|
|
151
146
|
|
|
152
|
-
## Target Audiences
|
|
153
|
-
|
|
154
|
-
- **Researchers**: Looking to compose models using efficient and reliable kernels for frontier experiments.
|
|
155
|
-
- **ML Practitioners**: Focused on maximizing GPU training efficiency with optimal, high-performance kernels.
|
|
156
|
-
- **Curious Novices**: Eager to learn how to write reliable Triton kernels to enhance training efficiency.
|
|
157
|
-
|
|
158
|
-
|
|
159
147
|
## Installation
|
|
160
148
|
|
|
161
149
|
### Dependencies
|
|
@@ -261,23 +249,6 @@ loss = loss_fn(model.weight, input, target)
|
|
|
261
249
|
loss.backward()
|
|
262
250
|
```
|
|
263
251
|
|
|
264
|
-
|
|
265
|
-
## Structure
|
|
266
|
-
|
|
267
|
-
### Source Code
|
|
268
|
-
|
|
269
|
-
- `ops/`: Core Triton operations.
|
|
270
|
-
- `transformers/`: PyTorch `nn.Module` implementations built on Triton operations, compliant with the `transformers` API.
|
|
271
|
-
|
|
272
|
-
### Tests
|
|
273
|
-
|
|
274
|
-
- `transformers/`: Correctness tests for the Triton-based layers.
|
|
275
|
-
- `convergence/`: Patches Hugging Face models with all kernels, runs multiple iterations, and compares weights, logits, and loss layer-by-layer.
|
|
276
|
-
|
|
277
|
-
### Benchmark
|
|
278
|
-
|
|
279
|
-
- `benchmark/`: Execution time and memory benchmarks compared to Hugging Face layers.
|
|
280
|
-
|
|
281
252
|
## APIs
|
|
282
253
|
|
|
283
254
|
### AutoModel
|
|
@@ -296,7 +267,7 @@ loss.backward()
|
|
|
296
267
|
| Mistral | `liger_kernel.transformers.apply_liger_kernel_to_mistral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
297
268
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
298
269
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
299
|
-
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss |
|
|
270
|
+
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
300
271
|
| Qwen2 & Qwen2.5 | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
301
272
|
| Qwen2-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
302
273
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
@@ -320,6 +291,7 @@ loss.backward()
|
|
|
320
291
|
|
|
321
292
|
- **RMSNorm**: [RMSNorm](https://arxiv.org/pdf/1910.07467), which normalizes activations using their root mean square, is implemented by fusing the normalization and scaling steps into a single Triton kernel, and achieves ~3X speedup with ~3X peak memory reduction.
|
|
322
293
|
- **LayerNorm**: [LayerNorm](https://arxiv.org/pdf/1607.06450), which centers and normalizes activations across the feature dimension, is implemented by fusing the centering, normalization and scaling steps into a single Triton kernel, and achieves ~2X speedup.
|
|
294
|
+
- **GroupNorm**: [GroupNorm](https://arxiv.org/pdf/1803.08494), which normalizes activations across the group dimension for a given sample. Channels are grouped in K groups over which the normalization is performed, is implemented by fusing the centering, normalization and scaling steps into a single Triton kernel, and can achieve up to ~2X speedup as the number of channels/groups increases.
|
|
323
295
|
- **RoPE**: [Rotary Positional Embedding](https://arxiv.org/pdf/2104.09864) is implemented by fusing the query and key embedding rotary into a single kernel with inplace replacement, and achieves ~3X speedup with ~3X peak memory reduction.
|
|
324
296
|
- **SwiGLU**: [Swish Gated Linear Units](https://arxiv.org/pdf/2002.05202), given by
|
|
325
297
|
$$\text{SwiGLU}(x)=\text{Swish}_{\beta}(xW+b)\otimes(xV+c)$$
|
|
@@ -332,7 +304,7 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
|
|
|
332
304
|
- **FusedLinearCrossEntropy**: Peak memory usage of cross entropy loss is further improved by fusing the model head with the CE loss and chunking the input for block-wise loss and gradient calculation, a technique inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy). It achieves >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocabulary sizes.** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
|
|
333
305
|
- **KLDivergence**: [KL Divergence](https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html) is implemented by fusing the forward into a single triton kernel, with reduction done outside the kernel. It achieves ~1.5X speed and ~15% memory reduction for 128K vocab size.
|
|
334
306
|
- **JSD**: [Generalized JSD](https://arxiv.org/pdf/2306.13649) (Jensen-Shannon divergence), is implemented by computing both the loss and gradient in the forward pass. It achieves ~1.5X speed and ~54% memory reduction for 128k vocab size.
|
|
335
|
-
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the
|
|
307
|
+
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the JSD and chunking the input for block-wise loss and gradient calculation. It achieves ~85% memory reduction for 128k vocab size where batch size $\times$ sequence length is 8192.
|
|
336
308
|
|
|
337
309
|
|
|
338
310
|
### Experimental Kernels
|
|
@@ -345,54 +317,17 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
|
|
|
345
317
|
- **Embedding**: [Embedding](https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html) is implemented by fusing embedding lookup and output operations. It achieves a peak speedup of ~1.5x in the forward pass and an overall speedup of ~1.1x.
|
|
346
318
|
- **Matmul int2xint8**: is implemented by using the cache tiled matrix multiplication and by fusing the matmul with the unpacking process which achieves a considerable speed up and performs on par with @torch.compile
|
|
347
319
|
<!-- TODO: be more specific about batch size -->
|
|
348
|
-
> **Note:**
|
|
349
|
-
> Reported speedups and memory reductions are with respect to the LLaMA 3-8B Hugging Face layer implementations. All models use 4K hidden size and 4K sequence length and are evaluated based on memory usage and wall time for the forward+backward pass on a single NVIDIA A100 80G GPU using small batch sizes. Liger kernels exhibit more efficient scaling to larger batch sizes, detailed further in the [Benchmark](./benchmark) folder.
|
|
350
320
|
|
|
351
|
-
## Contributing
|
|
321
|
+
## Contributing, Acknowledgements, and License
|
|
352
322
|
|
|
353
|
-
[
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
### Design
|
|
359
|
-
|
|
360
|
-
- [@claire_yishan](https://twitter.com/claire_yishan) for the LOGO design
|
|
361
|
-
- [Wave Snippets](https://www.wavesnippets.com/) for generating the animated code snippets
|
|
362
|
-
|
|
363
|
-
### Code
|
|
364
|
-
|
|
365
|
-
We referenced or used the following projects:
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
| # | Project | Description | Location | License |
|
|
370
|
-
|---|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|
|
371
|
-
| 1 | [Unsloth](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/utils.py#L43) | `calculate_settings` to determine block size and warp; We reuse it for Norm and MLP | [Liger Kernel Utils](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/utils.py#L23) | [Apache](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/LICENSE) |
|
|
372
|
-
| 2 | [Unsloth](https://github.com/unslothai/unsloth/blob/976d11a10d54383aeb7a692c69e01151a20bfd72/unsloth/kernels/rms_layernorm.py#L48) | We modified and added dW calculation on top of Unsloth implementation | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) | [Apache](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/LICENSE) |
|
|
373
|
-
| 3 | [Triton tutorial](https://triton-lang.org/main/index.html) | We modified on top of triton tutorials | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) | [MIT](https://github.com/triton-lang/triton/blob/main/LICENSE) |
|
|
374
|
-
| 4 | [tiny shakespeare dataset](https://huggingface.co/datasets/karpathy/tiny_shakespeare) | We use tiny shakespeare dataset to conduct convergence test on mini model | [Liger Kernel Convergence](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | N/A |
|
|
375
|
-
| 5 | [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy) | We use the idea of gradient-in-forward and chunking | [Liger Kernel Linear Cross Entropy](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/fused_linear_cross_entropy.py) | [MIT](https://github.com/mgmalek/efficient_cross_entropy/blob/main/LICENSE) |
|
|
376
|
-
| 6 | [Flash attn](https://github.com/Dao-AILab/flash-attention) | We take many optimization ideas from the work, such as tiling and recomputation | | [BSD](https://github.com/Dao-AILab/flash-attention/blob/main/LICENSE) |
|
|
377
|
-
| 7 | [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) | We reference the design of automodel | [Liger Kernel Auto Model](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/transformers/auto_model.py) | [MIT](https://github.com/casper-hansen/AutoAWQ/blob/main/LICENSE) |
|
|
378
|
-
| 8 | [llm.c](https://github.com/karpathy/llm.c) | We reference the design of end-to-end testing | [Liger Kernel Convergence Tests](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | [MIT](https://github.com/karpathy/llm.c/blob/master/LICENSE) |
|
|
379
|
-
|
|
380
|
-
Many thanks to the contributors to these projects for their invaluable work that helped make Liger possible.
|
|
381
|
-
|
|
382
|
-
## License
|
|
383
|
-
|
|
384
|
-
This project is licensed under the [BSD 2-CLAUSE](https://github.com/linkedin/Liger-Kernel/blob/main/LICENSE) License (see `LICENSE` for details).
|
|
385
|
-
It also includes components from projects licensed under:
|
|
386
|
-
|
|
387
|
-
- Apache License 2.0 (see `LICENSE-APACHE-2.0` for details).
|
|
388
|
-
- MIT License (see `LICENSE-MIT-AutoAWQ` for details).
|
|
389
|
-
- MIT License (see `LICENSE-MIT-Efficient Cross Entropy` for details).
|
|
390
|
-
- MIT License (see `LICENSE-MIT-llmc` for details).
|
|
391
|
-
- MIT License (see `LICENSE-MIT-triton` for details).
|
|
323
|
+
- [Contributing Guidelines](https://github.com/linkedin/Liger-Kernel/blob/main/docs/CONTRIBUTING.md)
|
|
324
|
+
- [Acknowledgements](https://github.com/linkedin/Liger-Kernel/blob/main/docs/Acknowledgement.md)
|
|
325
|
+
- [License Information](https://github.com/linkedin/Liger-Kernel/blob/main/docs/License.md)
|
|
392
326
|
|
|
393
327
|
## Contact
|
|
394
328
|
|
|
395
|
-
- For
|
|
329
|
+
- For issues, create a Github ticket in this repository
|
|
330
|
+
- For open discussion, join [our discord channel](https://discord.gg/gpumode)
|
|
396
331
|
- For formal collaboration, send an email to byhsu@linkedin.com
|
|
397
332
|
|
|
398
333
|
## Cite this work
|
|
@@ -425,3 +360,4 @@ Biblatex entry:
|
|
|
425
360
|
↑ Back to Top ↑
|
|
426
361
|
</a>
|
|
427
362
|
</p>
|
|
363
|
+
|
|
@@ -52,7 +52,8 @@
|
|
|
52
52
|
|
|
53
53
|
<details>
|
|
54
54
|
<summary>Latest News 🔥</summary>
|
|
55
|
-
|
|
55
|
+
|
|
56
|
+
- [2024/11/6] We release [v0.4.0](https://github.com/linkedin/Liger-Kernel/releases/tag/v0.4.0): Full AMD support, Tech Report, Modal CI, Llama-3.2-Vision!
|
|
56
57
|
- [2024/10/21] We have released the tech report of Liger Kernel on Arxiv: https://arxiv.org/pdf/2410.10989
|
|
57
58
|
- [2024/9/6] We release v0.2.1 ([X post](https://x.com/liger_kernel/status/1832168197002510649)). 2500+ Stars, 10+ New Contributors, 50+ PRs, 50k Downloads in two weeks!
|
|
58
59
|
- [2024/8/31] CUDA MODE talk, [Liger-Kernel: Real-world Triton kernel for LLM Training](https://youtu.be/gWble4FreV4?si=dxPeIchhkJ36Mbns), [Slides](https://github.com/cuda-mode/lectures?tab=readme-ov-file#lecture-28-liger-kernel)
|
|
@@ -80,18 +81,12 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
80
81
|
|
|
81
82
|
## Examples
|
|
82
83
|
|
|
83
|
-
### Basic
|
|
84
|
-
|
|
85
|
-
| **Example** | **Description** | **Lightning Studio** |
|
|
86
|
-
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
|
|
87
|
-
| [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train LLaMA 3-8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP | TBA |
|
|
88
|
-
| [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 | TBA |
|
|
89
84
|
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
| **
|
|
93
|
-
|
|
94
|
-
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP |
|
|
85
|
+
| **Use Case** | **Description** |
|
|
86
|
+
|------------------------------------------------|---------------------------------------------------------------------------------------------------|
|
|
87
|
+
| [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train LLaMA 3-8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP |
|
|
88
|
+
| [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 |
|
|
89
|
+
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP | |
|
|
95
90
|
|
|
96
91
|
## Key Features
|
|
97
92
|
|
|
@@ -102,13 +97,6 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
|
102
97
|
- **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP, DeepSpeed, DDP, etc.).
|
|
103
98
|
- **Trainer Framework Integration**: [Axolotl](https://github.com/axolotl-ai-cloud/axolotl), [LLaMa-Factory](https://github.com/hiyouga/LLaMA-Factory), [SFTTrainer](https://github.com/huggingface/trl/releases/tag/v0.10.1), [Hugging Face Trainer](https://github.com/huggingface/transformers/pull/32860), [SWIFT](https://github.com/modelscope/ms-swift)
|
|
104
99
|
|
|
105
|
-
## Target Audiences
|
|
106
|
-
|
|
107
|
-
- **Researchers**: Looking to compose models using efficient and reliable kernels for frontier experiments.
|
|
108
|
-
- **ML Practitioners**: Focused on maximizing GPU training efficiency with optimal, high-performance kernels.
|
|
109
|
-
- **Curious Novices**: Eager to learn how to write reliable Triton kernels to enhance training efficiency.
|
|
110
|
-
|
|
111
|
-
|
|
112
100
|
## Installation
|
|
113
101
|
|
|
114
102
|
### Dependencies
|
|
@@ -214,23 +202,6 @@ loss = loss_fn(model.weight, input, target)
|
|
|
214
202
|
loss.backward()
|
|
215
203
|
```
|
|
216
204
|
|
|
217
|
-
|
|
218
|
-
## Structure
|
|
219
|
-
|
|
220
|
-
### Source Code
|
|
221
|
-
|
|
222
|
-
- `ops/`: Core Triton operations.
|
|
223
|
-
- `transformers/`: PyTorch `nn.Module` implementations built on Triton operations, compliant with the `transformers` API.
|
|
224
|
-
|
|
225
|
-
### Tests
|
|
226
|
-
|
|
227
|
-
- `transformers/`: Correctness tests for the Triton-based layers.
|
|
228
|
-
- `convergence/`: Patches Hugging Face models with all kernels, runs multiple iterations, and compares weights, logits, and loss layer-by-layer.
|
|
229
|
-
|
|
230
|
-
### Benchmark
|
|
231
|
-
|
|
232
|
-
- `benchmark/`: Execution time and memory benchmarks compared to Hugging Face layers.
|
|
233
|
-
|
|
234
205
|
## APIs
|
|
235
206
|
|
|
236
207
|
### AutoModel
|
|
@@ -249,7 +220,7 @@ loss.backward()
|
|
|
249
220
|
| Mistral | `liger_kernel.transformers.apply_liger_kernel_to_mistral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
250
221
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
251
222
|
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
252
|
-
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss |
|
|
223
|
+
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
253
224
|
| Qwen2 & Qwen2.5 | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
254
225
|
| Qwen2-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
255
226
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
@@ -273,6 +244,7 @@ loss.backward()
|
|
|
273
244
|
|
|
274
245
|
- **RMSNorm**: [RMSNorm](https://arxiv.org/pdf/1910.07467), which normalizes activations using their root mean square, is implemented by fusing the normalization and scaling steps into a single Triton kernel, and achieves ~3X speedup with ~3X peak memory reduction.
|
|
275
246
|
- **LayerNorm**: [LayerNorm](https://arxiv.org/pdf/1607.06450), which centers and normalizes activations across the feature dimension, is implemented by fusing the centering, normalization and scaling steps into a single Triton kernel, and achieves ~2X speedup.
|
|
247
|
+
- **GroupNorm**: [GroupNorm](https://arxiv.org/pdf/1803.08494), which normalizes activations across the group dimension for a given sample. Channels are grouped in K groups over which the normalization is performed, is implemented by fusing the centering, normalization and scaling steps into a single Triton kernel, and can achieve up to ~2X speedup as the number of channels/groups increases.
|
|
276
248
|
- **RoPE**: [Rotary Positional Embedding](https://arxiv.org/pdf/2104.09864) is implemented by fusing the query and key embedding rotary into a single kernel with inplace replacement, and achieves ~3X speedup with ~3X peak memory reduction.
|
|
277
249
|
- **SwiGLU**: [Swish Gated Linear Units](https://arxiv.org/pdf/2002.05202), given by
|
|
278
250
|
$$\text{SwiGLU}(x)=\text{Swish}_{\beta}(xW+b)\otimes(xV+c)$$
|
|
@@ -285,7 +257,7 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
|
|
|
285
257
|
- **FusedLinearCrossEntropy**: Peak memory usage of cross entropy loss is further improved by fusing the model head with the CE loss and chunking the input for block-wise loss and gradient calculation, a technique inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy). It achieves >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocabulary sizes.** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
|
|
286
258
|
- **KLDivergence**: [KL Divergence](https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html) is implemented by fusing the forward into a single triton kernel, with reduction done outside the kernel. It achieves ~1.5X speed and ~15% memory reduction for 128K vocab size.
|
|
287
259
|
- **JSD**: [Generalized JSD](https://arxiv.org/pdf/2306.13649) (Jensen-Shannon divergence), is implemented by computing both the loss and gradient in the forward pass. It achieves ~1.5X speed and ~54% memory reduction for 128k vocab size.
|
|
288
|
-
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the
|
|
260
|
+
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the JSD and chunking the input for block-wise loss and gradient calculation. It achieves ~85% memory reduction for 128k vocab size where batch size $\times$ sequence length is 8192.
|
|
289
261
|
|
|
290
262
|
|
|
291
263
|
### Experimental Kernels
|
|
@@ -298,54 +270,17 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
|
|
|
298
270
|
- **Embedding**: [Embedding](https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html) is implemented by fusing embedding lookup and output operations. It achieves a peak speedup of ~1.5x in the forward pass and an overall speedup of ~1.1x.
|
|
299
271
|
- **Matmul int2xint8**: is implemented by using the cache tiled matrix multiplication and by fusing the matmul with the unpacking process which achieves a considerable speed up and performs on par with @torch.compile
|
|
300
272
|
<!-- TODO: be more specific about batch size -->
|
|
301
|
-
> **Note:**
|
|
302
|
-
> Reported speedups and memory reductions are with respect to the LLaMA 3-8B Hugging Face layer implementations. All models use 4K hidden size and 4K sequence length and are evaluated based on memory usage and wall time for the forward+backward pass on a single NVIDIA A100 80G GPU using small batch sizes. Liger kernels exhibit more efficient scaling to larger batch sizes, detailed further in the [Benchmark](./benchmark) folder.
|
|
303
273
|
|
|
304
|
-
## Contributing
|
|
274
|
+
## Contributing, Acknowledgements, and License
|
|
305
275
|
|
|
306
|
-
[
|
|
307
|
-
|
|
308
|
-
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
### Design
|
|
312
|
-
|
|
313
|
-
- [@claire_yishan](https://twitter.com/claire_yishan) for the LOGO design
|
|
314
|
-
- [Wave Snippets](https://www.wavesnippets.com/) for generating the animated code snippets
|
|
315
|
-
|
|
316
|
-
### Code
|
|
317
|
-
|
|
318
|
-
We referenced or used the following projects:
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
| # | Project | Description | Location | License |
|
|
323
|
-
|---|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|
|
324
|
-
| 1 | [Unsloth](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/utils.py#L43) | `calculate_settings` to determine block size and warp; We reuse it for Norm and MLP | [Liger Kernel Utils](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/utils.py#L23) | [Apache](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/LICENSE) |
|
|
325
|
-
| 2 | [Unsloth](https://github.com/unslothai/unsloth/blob/976d11a10d54383aeb7a692c69e01151a20bfd72/unsloth/kernels/rms_layernorm.py#L48) | We modified and added dW calculation on top of Unsloth implementation | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) | [Apache](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/LICENSE) |
|
|
326
|
-
| 3 | [Triton tutorial](https://triton-lang.org/main/index.html) | We modified on top of triton tutorials | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) | [MIT](https://github.com/triton-lang/triton/blob/main/LICENSE) |
|
|
327
|
-
| 4 | [tiny shakespeare dataset](https://huggingface.co/datasets/karpathy/tiny_shakespeare) | We use tiny shakespeare dataset to conduct convergence test on mini model | [Liger Kernel Convergence](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | N/A |
|
|
328
|
-
| 5 | [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy) | We use the idea of gradient-in-forward and chunking | [Liger Kernel Linear Cross Entropy](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/fused_linear_cross_entropy.py) | [MIT](https://github.com/mgmalek/efficient_cross_entropy/blob/main/LICENSE) |
|
|
329
|
-
| 6 | [Flash attn](https://github.com/Dao-AILab/flash-attention) | We take many optimization ideas from the work, such as tiling and recomputation | | [BSD](https://github.com/Dao-AILab/flash-attention/blob/main/LICENSE) |
|
|
330
|
-
| 7 | [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) | We reference the design of automodel | [Liger Kernel Auto Model](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/transformers/auto_model.py) | [MIT](https://github.com/casper-hansen/AutoAWQ/blob/main/LICENSE) |
|
|
331
|
-
| 8 | [llm.c](https://github.com/karpathy/llm.c) | We reference the design of end-to-end testing | [Liger Kernel Convergence Tests](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | [MIT](https://github.com/karpathy/llm.c/blob/master/LICENSE) |
|
|
332
|
-
|
|
333
|
-
Many thanks to the contributors to these projects for their invaluable work that helped make Liger possible.
|
|
334
|
-
|
|
335
|
-
## License
|
|
336
|
-
|
|
337
|
-
This project is licensed under the [BSD 2-CLAUSE](https://github.com/linkedin/Liger-Kernel/blob/main/LICENSE) License (see `LICENSE` for details).
|
|
338
|
-
It also includes components from projects licensed under:
|
|
339
|
-
|
|
340
|
-
- Apache License 2.0 (see `LICENSE-APACHE-2.0` for details).
|
|
341
|
-
- MIT License (see `LICENSE-MIT-AutoAWQ` for details).
|
|
342
|
-
- MIT License (see `LICENSE-MIT-Efficient Cross Entropy` for details).
|
|
343
|
-
- MIT License (see `LICENSE-MIT-llmc` for details).
|
|
344
|
-
- MIT License (see `LICENSE-MIT-triton` for details).
|
|
276
|
+
- [Contributing Guidelines](https://github.com/linkedin/Liger-Kernel/blob/main/docs/CONTRIBUTING.md)
|
|
277
|
+
- [Acknowledgements](https://github.com/linkedin/Liger-Kernel/blob/main/docs/Acknowledgement.md)
|
|
278
|
+
- [License Information](https://github.com/linkedin/Liger-Kernel/blob/main/docs/License.md)
|
|
345
279
|
|
|
346
280
|
## Contact
|
|
347
281
|
|
|
348
|
-
- For
|
|
282
|
+
- For issues, create a Github ticket in this repository
|
|
283
|
+
- For open discussion, join [our discord channel](https://discord.gg/gpumode)
|
|
349
284
|
- For formal collaboration, send an email to byhsu@linkedin.com
|
|
350
285
|
|
|
351
286
|
## Cite this work
|
|
@@ -378,3 +313,4 @@ Biblatex entry:
|
|
|
378
313
|
↑ Back to Top ↑
|
|
379
314
|
</a>
|
|
380
315
|
</p>
|
|
316
|
+
|
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "liger_kernel"
|
|
7
|
-
version = "0.4.
|
|
7
|
+
version = "0.4.2"
|
|
8
8
|
description = "Efficient Triton kernels for LLM Training"
|
|
9
9
|
urls = { "Homepage" = "https://github.com/linkedin/Liger-Kernel" }
|
|
10
10
|
readme = { file = "README.md", content-type = "text/markdown" }
|
|
@@ -0,0 +1,57 @@
|
|
|
1
|
+
import torch.nn.functional as F
|
|
2
|
+
|
|
3
|
+
from liger_kernel.chunked_loss.fused_linear_preference import (
|
|
4
|
+
LigerFusedLinearPreferenceBase,
|
|
5
|
+
)
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
9
|
+
|
|
10
|
+
@staticmethod
|
|
11
|
+
def preference_loss_fn(chosen_logps, rejected_logps, beta=0.1):
|
|
12
|
+
"""
|
|
13
|
+
Compute DPO loss (Direct Preference Optimization).
|
|
14
|
+
Args:
|
|
15
|
+
chosen_logps (torch.Tensor): Avg log probabilities of chosen tokens. Shape: (batch_size,).
|
|
16
|
+
rejected_logps (torch.Tensor): Avg log probabilities of rejected tokens. Shape: (batch_size,).
|
|
17
|
+
beta (float): Weight for the direct preference loss.
|
|
18
|
+
"""
|
|
19
|
+
logits_diff = beta * (chosen_logps - rejected_logps)
|
|
20
|
+
losses = -F.logsigmoid(logits_diff)
|
|
21
|
+
return losses.sum()
|
|
22
|
+
|
|
23
|
+
@staticmethod
|
|
24
|
+
def forward(
|
|
25
|
+
ctx,
|
|
26
|
+
_input,
|
|
27
|
+
weight,
|
|
28
|
+
target,
|
|
29
|
+
bias=None,
|
|
30
|
+
ignore_index=-100,
|
|
31
|
+
beta=0.1,
|
|
32
|
+
compute_nll_loss=True,
|
|
33
|
+
compiled=True,
|
|
34
|
+
):
|
|
35
|
+
"""
|
|
36
|
+
Fused linear layer with DPO (Direct Preference Optimization) loss.
|
|
37
|
+
Handles both the forward and backward pass of the final linear layer with DPO loss.
|
|
38
|
+
"""
|
|
39
|
+
return LigerFusedLinearPreferenceBase.forward(
|
|
40
|
+
ctx=ctx,
|
|
41
|
+
_input=_input,
|
|
42
|
+
weight=weight,
|
|
43
|
+
target=target,
|
|
44
|
+
bias=bias,
|
|
45
|
+
loss_fn=LigerFusedLinearDPOFunction.preference_loss_fn,
|
|
46
|
+
compute_nll_loss=compute_nll_loss,
|
|
47
|
+
ignore_index=ignore_index,
|
|
48
|
+
beta=beta,
|
|
49
|
+
compiled=compiled,
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
@staticmethod
|
|
53
|
+
def backward(ctx, grad_output):
|
|
54
|
+
# Get gradients for _input, weight, bias, and target from the base class
|
|
55
|
+
grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
|
|
56
|
+
# Return these gradients, followed by None for the remaining inputs
|
|
57
|
+
return *grads, None, None, None, None
|
|
@@ -0,0 +1,206 @@
|
|
|
1
|
+
from abc import abstractmethod
|
|
2
|
+
from functools import partial
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from torch.nn import functional as F
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
9
|
+
|
|
10
|
+
@abstractmethod
|
|
11
|
+
def preference_loss_fn(chosen_logps, rejected_logps, beta=0.1):
|
|
12
|
+
"""
|
|
13
|
+
Compute preference loss.
|
|
14
|
+
Args:
|
|
15
|
+
chosen_logps (torch.Tensor): Avg log probabilities of chosen tokens. Shape: (batch_size,).
|
|
16
|
+
rejected_logps (torch.Tensor): Avg log probabilities of rejected tokens. Shape: (batch_size,).
|
|
17
|
+
beta (float): Weight for the odds ratio loss.
|
|
18
|
+
"""
|
|
19
|
+
raise NotImplementedError("Preference loss function must be implemented.")
|
|
20
|
+
|
|
21
|
+
@staticmethod
|
|
22
|
+
def forward(
|
|
23
|
+
ctx,
|
|
24
|
+
_input,
|
|
25
|
+
weight,
|
|
26
|
+
target,
|
|
27
|
+
bias=None,
|
|
28
|
+
loss_fn=None,
|
|
29
|
+
chunk_size=1,
|
|
30
|
+
compute_nll_loss=True,
|
|
31
|
+
ignore_index=-100,
|
|
32
|
+
beta=0.1,
|
|
33
|
+
compiled=True,
|
|
34
|
+
):
|
|
35
|
+
"""
|
|
36
|
+
Base class for fused linear layer with preference loss.
|
|
37
|
+
Expects _input to be stacked with chosen and rejected inputs on the batch dimension.
|
|
38
|
+
|
|
39
|
+
Args:
|
|
40
|
+
_input (torch.Tensor): Input tensor. Shape: (batch_size, seq_len, hidden_size).
|
|
41
|
+
weight (torch.Tensor): Weight tensor. Shape: (vocab_size, hidden_size).
|
|
42
|
+
target (torch.Tensor): Target tensor. Shape: (batch_size, seq_len).
|
|
43
|
+
bias (torch.Tensor, optional): Bias tensor. Shape: (vocab_size,).
|
|
44
|
+
loss_fn (callable): Loss function to compute the loss on a chunk of input/target.
|
|
45
|
+
chunk_size (int): Size of a chunk (# of batches of stacked chosen and rejected inputs).
|
|
46
|
+
compute_nll_loss (bool): Whether to compute NLL loss.
|
|
47
|
+
ignore_index (int): Index to ignore for loss computation.
|
|
48
|
+
beta (float): Weight for the odds ratio loss.
|
|
49
|
+
compiled (bool): Whether to use torch compile for chunk accumulation.
|
|
50
|
+
"""
|
|
51
|
+
# TODO: Tune CHUNK_SIZE to fully utilize the GPU
|
|
52
|
+
CHUNK_SIZE = chunk_size
|
|
53
|
+
|
|
54
|
+
grad_weight = torch.zeros_like(weight)
|
|
55
|
+
grad_chosen_inputs = []
|
|
56
|
+
grad_rejected_inputs = []
|
|
57
|
+
grad_bias = torch.zeros_like(bias) if bias is not None else None
|
|
58
|
+
loss_acc = torch.zeros((), device=_input.device)
|
|
59
|
+
|
|
60
|
+
chunks = max(1, _input.shape[0] // (2 * CHUNK_SIZE))
|
|
61
|
+
loss_func_to_call = partial(
|
|
62
|
+
LigerFusedLinearPreferenceBase._compute_loss,
|
|
63
|
+
preference_loss_fn=loss_fn,
|
|
64
|
+
ignore_index=ignore_index,
|
|
65
|
+
beta=beta,
|
|
66
|
+
compute_nll_loss=compute_nll_loss,
|
|
67
|
+
full_target=target,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
def accumulate_chunk(input_chunk, target_chunk):
|
|
71
|
+
if bias is not None:
|
|
72
|
+
(chunk_grad_input, chunk_grad_weight, chunk_grad_bias), (
|
|
73
|
+
chunk_loss,
|
|
74
|
+
(chunk_or_loss, chunk_chosen_logps, chunk_rejected_logps),
|
|
75
|
+
) = torch.func.grad_and_value(
|
|
76
|
+
loss_func_to_call, argnums=(0, 1, 3), has_aux=True
|
|
77
|
+
)(
|
|
78
|
+
input_chunk, weight, target_chunk, bias
|
|
79
|
+
)
|
|
80
|
+
grad_bias.add_(chunk_grad_bias)
|
|
81
|
+
else:
|
|
82
|
+
(chunk_grad_input, chunk_grad_weight), (
|
|
83
|
+
chunk_loss,
|
|
84
|
+
(chunk_or_loss, chunk_chosen_logps, chunk_rejected_logps),
|
|
85
|
+
) = torch.func.grad_and_value(
|
|
86
|
+
loss_func_to_call, argnums=(0, 1), has_aux=True
|
|
87
|
+
)(
|
|
88
|
+
input_chunk, weight, target_chunk
|
|
89
|
+
)
|
|
90
|
+
grad_weight.add_(chunk_grad_weight)
|
|
91
|
+
loss_acc.add_(chunk_loss)
|
|
92
|
+
return chunk_grad_input
|
|
93
|
+
|
|
94
|
+
len_chosen = target.shape[0] // 2
|
|
95
|
+
_chosen_input_chunks = torch.chunk(_input[:len_chosen], chunks=chunks, dim=0)
|
|
96
|
+
_chosen_target_chunks = torch.chunk(target[:len_chosen], chunks=chunks, dim=0)
|
|
97
|
+
_rejected_input_chunks = torch.chunk(_input[len_chosen:], chunks=chunks, dim=0)
|
|
98
|
+
_rejected_target_chunks = torch.chunk(target[len_chosen:], chunks=chunks, dim=0)
|
|
99
|
+
|
|
100
|
+
for (
|
|
101
|
+
chosen_input_chunk,
|
|
102
|
+
rejected_input_chunk,
|
|
103
|
+
chosen_target_chunk,
|
|
104
|
+
rejected_target_chunk,
|
|
105
|
+
) in zip(
|
|
106
|
+
_chosen_input_chunks,
|
|
107
|
+
_rejected_input_chunks,
|
|
108
|
+
_chosen_target_chunks,
|
|
109
|
+
_rejected_target_chunks,
|
|
110
|
+
):
|
|
111
|
+
input_chunk = torch.cat([chosen_input_chunk, rejected_input_chunk], dim=0)
|
|
112
|
+
target_chunk = torch.cat(
|
|
113
|
+
[chosen_target_chunk, rejected_target_chunk], dim=0
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
if compiled:
|
|
117
|
+
accumulate_chunk = torch.compile(accumulate_chunk)
|
|
118
|
+
grad_input = accumulate_chunk(input_chunk, target_chunk)
|
|
119
|
+
|
|
120
|
+
grad_chosen_inputs.append(grad_input[: chosen_target_chunk.shape[0]])
|
|
121
|
+
grad_rejected_inputs.append(grad_input[chosen_target_chunk.shape[0] :])
|
|
122
|
+
|
|
123
|
+
# combine grad_chosen_inputs and grad_rejected_inputs
|
|
124
|
+
grad_inputs = grad_chosen_inputs + grad_rejected_inputs
|
|
125
|
+
|
|
126
|
+
ctx.save_for_backward(
|
|
127
|
+
torch.cat(grad_inputs, dim=0),
|
|
128
|
+
grad_weight,
|
|
129
|
+
grad_bias,
|
|
130
|
+
)
|
|
131
|
+
return loss_acc
|
|
132
|
+
|
|
133
|
+
@staticmethod
|
|
134
|
+
def backward(ctx, grad_output):
|
|
135
|
+
grad_input, grad_weight, grad_bias = ctx.saved_tensors
|
|
136
|
+
if torch.ne(grad_output, torch.tensor(1.0, device=grad_output.device)):
|
|
137
|
+
grad_input = grad_input * grad_output
|
|
138
|
+
grad_weight = grad_weight * grad_output
|
|
139
|
+
grad_bias = grad_bias * grad_output if grad_bias is not None else None
|
|
140
|
+
|
|
141
|
+
return grad_input, grad_weight, None, grad_bias, None, None, None
|
|
142
|
+
|
|
143
|
+
@staticmethod
|
|
144
|
+
def _compute_loss(
|
|
145
|
+
input_chunk,
|
|
146
|
+
weight,
|
|
147
|
+
target_chunk,
|
|
148
|
+
bias=None,
|
|
149
|
+
preference_loss_fn=None,
|
|
150
|
+
full_target=None,
|
|
151
|
+
ignore_index=-100,
|
|
152
|
+
beta=0.1,
|
|
153
|
+
compute_nll_loss=True,
|
|
154
|
+
**loss_kwargs,
|
|
155
|
+
):
|
|
156
|
+
"""
|
|
157
|
+
Compute the total loss for a chunk of input and target, while using an alignment/preference loss function.
|
|
158
|
+
Args:
|
|
159
|
+
preference_loss_fn (callable): Loss function to compute the loss on a chunk of input/target.
|
|
160
|
+
input_chunk (torch.Tensor): Chunk of input tensor. Shape: (2 * chunk_size, sequence_length, hidden_size).
|
|
161
|
+
weight (torch.Tensor): Weight tensor. Shape: (vocab_size, hidden_size).
|
|
162
|
+
target_chunk (torch.Tensor): Chunk of target tensor. Shape: (2 * chunk_size, sequence_length).
|
|
163
|
+
bias (torch.Tensor, optional): Bias tensor. Shape: (vocab_size,).
|
|
164
|
+
full_target (torch.Tensor): Full target tensor. Shape: (batch_size, sequence_length).
|
|
165
|
+
ignore_index (int): Index to ignore for loss computation.
|
|
166
|
+
beta (float): Weight for the odds ratio loss.
|
|
167
|
+
loss_kwargs (dict): Additional arguments for the loss function.
|
|
168
|
+
"""
|
|
169
|
+
len_chosen_chunk = target_chunk.shape[0] // 2
|
|
170
|
+
|
|
171
|
+
logits_chunk = input_chunk @ weight.t() # chunk_size x V
|
|
172
|
+
if bias is not None:
|
|
173
|
+
logits_chunk = logits_chunk + bias
|
|
174
|
+
log_probs_chunk = F.log_softmax(logits_chunk.float(), dim=-1)
|
|
175
|
+
|
|
176
|
+
chosen_nll_loss = 0.0
|
|
177
|
+
if compute_nll_loss:
|
|
178
|
+
chosen_nll_loss = F.nll_loss(
|
|
179
|
+
log_probs_chunk[:len_chosen_chunk].view(-1, log_probs_chunk.shape[-1]),
|
|
180
|
+
target_chunk[:len_chosen_chunk].view(-1),
|
|
181
|
+
reduction="sum",
|
|
182
|
+
ignore_index=ignore_index,
|
|
183
|
+
)
|
|
184
|
+
chosen_nll_loss = (
|
|
185
|
+
chosen_nll_loss
|
|
186
|
+
/ (full_target[: full_target.shape[0] // 2] != ignore_index).sum()
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
loss_mask = target_chunk != ignore_index
|
|
190
|
+
label_chunk = torch.where(loss_mask, target_chunk, 0)
|
|
191
|
+
|
|
192
|
+
per_token_logps = log_probs_chunk.gather(-1, label_chunk.unsqueeze(-1)).squeeze(
|
|
193
|
+
-1
|
|
194
|
+
)
|
|
195
|
+
average_log_prob = (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
|
|
196
|
+
|
|
197
|
+
chosen_logps = average_log_prob[:len_chosen_chunk]
|
|
198
|
+
rejected_logps = average_log_prob[len_chosen_chunk:]
|
|
199
|
+
|
|
200
|
+
alignment_loss = preference_loss_fn(
|
|
201
|
+
chosen_logps, rejected_logps, beta=beta, **loss_kwargs
|
|
202
|
+
)
|
|
203
|
+
alignment_loss = alignment_loss / (full_target.shape[0] // 2)
|
|
204
|
+
|
|
205
|
+
loss = chosen_nll_loss - alignment_loss
|
|
206
|
+
return loss, (alignment_loss, chosen_logps, rejected_logps)
|