liger-kernel 0.3.1__tar.gz → 0.4.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. liger_kernel-0.4.0/NOTICE +58 -0
  2. {liger_kernel-0.3.1/src/liger_kernel.egg-info → liger_kernel-0.4.0}/PKG-INFO +60 -28
  3. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/README.md +57 -26
  4. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/pyproject.toml +4 -3
  5. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/ops/cross_entropy.py +5 -39
  6. liger_kernel-0.4.0/src/liger_kernel/ops/experimental/mm_int8int2.py +355 -0
  7. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/ops/fused_linear_cross_entropy.py +12 -9
  8. liger_kernel-0.4.0/src/liger_kernel/ops/fused_linear_jsd.py +245 -0
  9. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/ops/geglu.py +2 -2
  10. liger_kernel-0.4.0/src/liger_kernel/ops/jsd.py +176 -0
  11. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/ops/kl_div.py +2 -2
  12. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/ops/rms_norm.py +67 -42
  13. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/ops/swiglu.py +2 -2
  14. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/ops/utils.py +62 -1
  15. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/__init__.py +3 -0
  16. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/functional.py +4 -0
  17. liger_kernel-0.4.0/src/liger_kernel/transformers/fused_linear_jsd.py +98 -0
  18. liger_kernel-0.4.0/src/liger_kernel/transformers/jsd.py +75 -0
  19. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/model/gemma.py +124 -1
  20. liger_kernel-0.4.0/src/liger_kernel/transformers/model/llama.py +277 -0
  21. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/model/mistral.py +3 -0
  22. liger_kernel-0.4.0/src/liger_kernel/transformers/model/mixtral.py +309 -0
  23. liger_kernel-0.4.0/src/liger_kernel/transformers/model/mllama.py +274 -0
  24. liger_kernel-0.4.0/src/liger_kernel/transformers/model/phi3.py +274 -0
  25. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/model/qwen2.py +123 -2
  26. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/model/qwen2_vl.py +8 -1
  27. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/monkey_patch.py +158 -7
  28. {liger_kernel-0.3.1 → liger_kernel-0.4.0/src/liger_kernel.egg-info}/PKG-INFO +60 -28
  29. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel.egg-info/SOURCES.txt +6 -0
  30. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel.egg-info/requires.txt +2 -1
  31. liger_kernel-0.3.1/NOTICE +0 -4
  32. liger_kernel-0.3.1/src/liger_kernel/transformers/model/llama.py +0 -146
  33. liger_kernel-0.3.1/src/liger_kernel/transformers/model/mixtral.py +0 -158
  34. liger_kernel-0.3.1/src/liger_kernel/transformers/model/phi3.py +0 -136
  35. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/LICENSE +0 -0
  36. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/setup.cfg +0 -0
  37. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/env_report.py +0 -0
  38. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/ops/__init__.py +0 -0
  39. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/ops/experimental/embedding.py +0 -0
  40. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/ops/layer_norm.py +0 -0
  41. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/ops/rope.py +0 -0
  42. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/auto_model.py +0 -0
  43. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/cross_entropy.py +0 -0
  44. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/experimental/embedding.py +0 -0
  45. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
  46. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/geglu.py +0 -0
  47. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/kl_div.py +0 -0
  48. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/layer_norm.py +0 -0
  49. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/model/__init__.py +0 -0
  50. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/rms_norm.py +0 -0
  51. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/rope.py +0 -0
  52. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/swiglu.py +0 -0
  53. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/transformers/trainer_integration.py +0 -0
  54. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/triton/__init__.py +0 -0
  55. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel/triton/monkey_patch.py +0 -0
  56. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel.egg-info/dependency_links.txt +0 -0
  57. {liger_kernel-0.3.1 → liger_kernel-0.4.0}/src/liger_kernel.egg-info/top_level.txt +0 -0
@@ -0,0 +1,58 @@
1
+ Copyright 2024 LinkedIn Corporation
2
+ All Rights Reserved.
3
+
4
+ Licensed under the BSD 2-Clause License (the "License"). See License in the project root for license information.
5
+
6
+ This product includes software developed by LinkedIn Corporation.
7
+
8
+ This product contains code derived from the following open source projects:
9
+
10
+ 1. Unsloth
11
+ Copyright (c) 2023 Unsloth AI
12
+ Licensed under the Apache License, Version 2.0
13
+ Source: https://github.com/unslothai/unsloth
14
+
15
+ The `calculate_settings` function to determine block size and warp is reused for Norm and MLP operations.
16
+ Modifications and additions were made to the RMS Norm implementation.
17
+
18
+ 2. Triton
19
+ Copyright (c) 2023 OpenAI
20
+ Licensed under the MIT License
21
+ Source: https://github.com/openai/triton
22
+
23
+ Modifications were made based on Triton tutorials for the RMS Norm implementation.
24
+
25
+ 3. Efficient Cross Entropy
26
+ Copyright (c) 2023 Mohamed Malek
27
+ Licensed under the MIT License
28
+ Source: https://github.com/mgmalek/efficient_cross_entropy
29
+
30
+ The idea of gradient-in-forward and chunking was used in the Linear Cross Entropy implementation.
31
+
32
+ 4. Flash Attention
33
+ Copyright (c) 2023 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré
34
+ Licensed under the BSD 3-Clause License
35
+ Source: https://github.com/Dao-AILab/flash-attention
36
+
37
+ Optimization ideas such as tiling and recomputation were inspired by this work.
38
+
39
+ 5. AutoAWQ
40
+ Copyright (c) 2023 Casper Hansen
41
+ Licensed under the MIT License
42
+ Source: https://github.com/casper-hansen/AutoAWQ
43
+
44
+ The design of the automodel was referenced from this project.
45
+
46
+ 6. llm.c
47
+ Copyright (c) 2023 Andrej Karpathy
48
+ Licensed under the MIT License
49
+ Source: https://github.com/karpathy/llm.c
50
+
51
+ The design of end-to-end testing was referenced from this project.
52
+
53
+ 7. Tiny Shakespeare Dataset
54
+ Source: https://huggingface.co/datasets/karpathy/tiny_shakespeare
55
+
56
+ This dataset is used to conduct convergence tests on mini models.
57
+
58
+ For full license texts, please refer to the respective project repositories.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel
3
- Version: 0.3.1
3
+ Version: 0.4.0
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -31,7 +31,7 @@ Description-Content-Type: text/markdown
31
31
  License-File: LICENSE
32
32
  License-File: NOTICE
33
33
  Requires-Dist: torch>=2.1.2
34
- Requires-Dist: triton>=2.3.0
34
+ Requires-Dist: triton>=2.3.1
35
35
  Provides-Extra: transformers
36
36
  Requires-Dist: transformers~=4.0; extra == "transformers"
37
37
  Provides-Extra: dev
@@ -42,8 +42,11 @@ Requires-Dist: black>=24.4.2; extra == "dev"
42
42
  Requires-Dist: isort>=5.13.2; extra == "dev"
43
43
  Requires-Dist: pytest>=7.1.2; extra == "dev"
44
44
  Requires-Dist: datasets>=2.19.2; extra == "dev"
45
+ Requires-Dist: torchvision>=0.16.2; extra == "dev"
45
46
  Requires-Dist: seaborn; extra == "dev"
46
47
 
48
+ <a name="readme-top"></a>
49
+
47
50
  # Liger Kernel: Efficient Triton Kernels for LLM Training
48
51
 
49
52
 
@@ -52,6 +55,7 @@ Requires-Dist: seaborn; extra == "dev"
52
55
  <th style="padding: 10px;" colspan="2">Stable</th>
53
56
  <th style="padding: 10px;" colspan="2">Nightly</th>
54
57
  <th style="padding: 10px;">Discord</th>
58
+ <th style="padding: 10px;">Gurubase (experimental)</th>
55
59
  </tr>
56
60
  <tr>
57
61
  <td style="padding: 10px;">
@@ -79,6 +83,11 @@ Requires-Dist: seaborn; extra == "dev"
79
83
  <img src="https://dcbadge.vercel.app/api/server/gpumode?style=flat" alt="Join Our Discord">
80
84
  </a>
81
85
  </td>
86
+ <td style="padding: 10px;">
87
+ <a href="https://gurubase.io/g/liger-kernel">
88
+ <img src="https://img.shields.io/badge/Gurubase-Ask%20Liger%20Kernel%20Guru-006BFF" alt="Ask Liger Kernel Guru">
89
+ </a>
90
+ </td>
82
91
  </tr>
83
92
  </table>
84
93
 
@@ -86,11 +95,12 @@ Requires-Dist: seaborn; extra == "dev"
86
95
 
87
96
  <img src="https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/logo-banner.png">
88
97
 
89
- [Installation](#installation) | [Getting Started](#getting-started) | [Examples](#examples) | [APIs](#apis) | [Structure](#structure) | [Contributing](#contributing) | [Acknowledgement](#acknowledgement)
98
+ [Installation](#installation) | [Getting Started](#getting-started) | [Examples](#examples) | [APIs](#apis) | [Cite our work](#cite-this-work)
90
99
 
91
100
  <details>
92
101
  <summary>Latest News 🔥</summary>
93
-
102
+
103
+ - [2024/10/21] We have released the tech report of Liger Kernel on Arxiv: https://arxiv.org/pdf/2410.10989
94
104
  - [2024/9/6] We release v0.2.1 ([X post](https://x.com/liger_kernel/status/1832168197002510649)). 2500+ Stars, 10+ New Contributors, 50+ PRs, 50k Downloads in two weeks!
95
105
  - [2024/8/31] CUDA MODE talk, [Liger-Kernel: Real-world Triton kernel for LLM Training](https://youtu.be/gWble4FreV4?si=dxPeIchhkJ36Mbns), [Slides](https://github.com/cuda-mode/lectures?tab=readme-ov-file#lecture-28-liger-kernel)
96
106
  - [2024/8/23] Official release: check out our [X post](https://x.com/hsu_byron/status/1827072737673982056)
@@ -148,11 +158,18 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
148
158
 
149
159
  ## Installation
150
160
 
151
- ### Dependencies
161
+ ### Dependencies
162
+
163
+ #### CUDA
152
164
 
153
165
  - `torch >= 2.1.2`
154
166
  - `triton >= 2.3.0`
155
167
 
168
+ #### ROCm
169
+
170
+ - `torch >= 2.5.0` Install according to the instruction in Pytorch official webpage.
171
+ - `triton >= 3.0.0` Install from pypi. (e.g. `pip install triton==3.0.0`)
172
+
156
173
  ### Optional Dependencies
157
174
 
158
175
  - `transformers >= 4.x`: Required if you plan to use the transformers models patching APIs. The specific model you are working will dictate the minimum version of transformers.
@@ -182,6 +199,7 @@ pip install -e .
182
199
  pip install -e .[transformers]
183
200
  ```
184
201
 
202
+
185
203
  ## Getting Started
186
204
 
187
205
  There are a couple of ways to apply Liger kernels, depending on the level of customization required.
@@ -274,6 +292,7 @@ loss.backward()
274
292
  | **Model** | **API** | **Supported Operations** |
275
293
  |-------------|--------------------------------------------------------------|-------------------------------------------------------------------------|
276
294
  | LLaMA 2 & 3 | `liger_kernel.transformers.apply_liger_kernel_to_llama` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
295
+ | LLaMA 3.2-Vision | `liger_kernel.transformers.apply_liger_kernel_to_mllama` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
277
296
  | Mistral | `liger_kernel.transformers.apply_liger_kernel_to_mistral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
278
297
  | Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
279
298
  | Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
@@ -296,6 +315,8 @@ loss.backward()
296
315
  | CrossEntropy | `liger_kernel.transformers.LigerCrossEntropyLoss` |
297
316
  | FusedLinearCrossEntropy | `liger_kernel.transformers.LigerFusedLinearCrossEntropyLoss`|
298
317
  | KLDivergence | `liger_kernel.transformers.LigerKLDIVLoss` |
318
+ | JSD | `liger_kernel.transformers.LigerJSD` |
319
+ | FusedLinearJSD | `liger_kernel.transformers.LigerFusedLinearJSD` |
299
320
 
300
321
  - **RMSNorm**: [RMSNorm](https://arxiv.org/pdf/1910.07467), which normalizes activations using their root mean square, is implemented by fusing the normalization and scaling steps into a single Triton kernel, and achieves ~3X speedup with ~3X peak memory reduction.
301
322
  - **LayerNorm**: [LayerNorm](https://arxiv.org/pdf/1607.06450), which centers and normalizes activations across the feature dimension, is implemented by fusing the centering, normalization and scaling steps into a single Triton kernel, and achieves ~2X speedup.
@@ -310,35 +331,23 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
310
331
  <!-- TODO: verify vocab sizes are accurate -->
311
332
  - **FusedLinearCrossEntropy**: Peak memory usage of cross entropy loss is further improved by fusing the model head with the CE loss and chunking the input for block-wise loss and gradient calculation, a technique inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy). It achieves >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocabulary sizes.** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
312
333
  - **KLDivergence**: [KL Divergence](https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html) is implemented by fusing the forward into a single triton kernel, with reduction done outside the kernel. It achieves ~1.5X speed and ~15% memory reduction for 128K vocab size.
334
+ - **JSD**: [Generalized JSD](https://arxiv.org/pdf/2306.13649) (Jensen-Shannon divergence), is implemented by computing both the loss and gradient in the forward pass. It achieves ~1.5X speed and ~54% memory reduction for 128k vocab size.
335
+ - **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the model head with the JSD and chunking the input for block-wise loss and gradient calculation. It achieves ~85% memory reduction for 128k vocab size where batch size $\times$ sequence length is 8192.
336
+
313
337
 
314
338
  ### Experimental Kernels
315
339
 
316
340
  | **Kernel** | **API** |
317
341
  |---------------------------------|-------------------------------------------------------------|
318
342
  | Embedding | `liger_kernel.transformers.experimental.LigerEmbedding` |
319
-
343
+ | Matmul int2xint8 | `liger_kernel.transformers.experimental.matmul`
320
344
 
321
345
  - **Embedding**: [Embedding](https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html) is implemented by fusing embedding lookup and output operations. It achieves a peak speedup of ~1.5x in the forward pass and an overall speedup of ~1.1x.
322
-
346
+ - **Matmul int2xint8**: is implemented by using the cache tiled matrix multiplication and by fusing the matmul with the unpacking process which achieves a considerable speed up and performs on par with @torch.compile
323
347
  <!-- TODO: be more specific about batch size -->
324
348
  > **Note:**
325
349
  > Reported speedups and memory reductions are with respect to the LLaMA 3-8B Hugging Face layer implementations. All models use 4K hidden size and 4K sequence length and are evaluated based on memory usage and wall time for the forward+backward pass on a single NVIDIA A100 80G GPU using small batch sizes. Liger kernels exhibit more efficient scaling to larger batch sizes, detailed further in the [Benchmark](./benchmark) folder.
326
350
 
327
- ## Note on ML Compiler
328
-
329
- ### Torch Compile
330
-
331
- Since Liger Kernel is 100% Triton-based, it works seamlessly with [`torch.compile`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html). In the following example, Liger Kernel can further optimize the model on top of Torch Compile, reducing the memory by more than half.
332
-
333
- | Configuration | Throughput (tokens/sec) | Memory Reserved (GB) |
334
- |--------------------------------|----------------------------|-------------------------|
335
- | Torch Compile | 3780 | 66.4 |
336
- | Torch Compile + Liger Kernel | 3702 | 31.0 |
337
-
338
- > **Note:**
339
- > 1. Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Seq Len = 4096, Data Type = `bf16`, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
340
- > 2. Tested on torch `2.5.0.dev20240731+cu118`
341
-
342
351
  ## Contributing
343
352
 
344
353
  [CONTRIBUTING GUIDE](https://github.com/linkedin/Liger-Kernel/blob/main/CONTRIBUTING.md)
@@ -372,7 +381,14 @@ Many thanks to the contributors to these projects for their invaluable work that
372
381
 
373
382
  ## License
374
383
 
375
- [BSD 2-CLAUSE](https://github.com/linkedin/Liger-Kernel/blob/main/LICENSE)
384
+ This project is licensed under the [BSD 2-CLAUSE](https://github.com/linkedin/Liger-Kernel/blob/main/LICENSE) License (see `LICENSE` for details).
385
+ It also includes components from projects licensed under:
386
+
387
+ - Apache License 2.0 (see `LICENSE-APACHE-2.0` for details).
388
+ - MIT License (see `LICENSE-MIT-AutoAWQ` for details).
389
+ - MIT License (see `LICENSE-MIT-Efficient Cross Entropy` for details).
390
+ - MIT License (see `LICENSE-MIT-llmc` for details).
391
+ - MIT License (see `LICENSE-MIT-triton` for details).
376
392
 
377
393
  ## Contact
378
394
 
@@ -383,13 +399,29 @@ Many thanks to the contributors to these projects for their invaluable work that
383
399
 
384
400
  Biblatex entry:
385
401
  ```bib
386
- @software{liger2024,
387
- title = {Liger-Kernel: Efficient Triton Kernels for LLM Training},
388
- author = {Hsu, Pin-Lun and Dai, Yun and Kothapalli, Vignesh and Song, Qingquan and Tang, Shao and Zhu, Siyu},
389
- url = {https://github.com/linkedin/Liger-Kernel},
390
- year = {2024}
402
+ @article{hsu2024ligerkernelefficienttriton,
403
+ title={Liger Kernel: Efficient Triton Kernels for LLM Training},
404
+ author={Pin-Lun Hsu and Yun Dai and Vignesh Kothapalli and Qingquan Song and Shao Tang and Siyu Zhu and Steven Shimizu and Shivam Sahni and Haowen Ning and Yanning Chen},
405
+ year={2024},
406
+ eprint={2410.10989},
407
+ archivePrefix={arXiv},
408
+ primaryClass={cs.LG},
409
+ url={https://arxiv.org/abs/2410.10989},
410
+ journal={arXiv preprint arXiv:2410.10989},
391
411
  }
392
412
  ```
393
413
 
394
414
  ## Star History
395
415
  [![Star History Chart](https://api.star-history.com/svg?repos=linkedin/Liger-Kernel&type=Date)](https://star-history.com/#linkedin/Liger-Kernel&Date)
416
+
417
+ ## Contributors
418
+
419
+ <a href="https://github.com/linkedin/Liger-Kernel/graphs/contributors">
420
+ <img alt="contributors" src="https://contrib.rocks/image?repo=linkedin/Liger-Kernel"/>
421
+ </a>
422
+
423
+ <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
424
+ <a href="#readme-top" style="text-decoration: none; color: #007bff; font-weight: bold;">
425
+ ↑ Back to Top ↑
426
+ </a>
427
+ </p>
@@ -1,3 +1,5 @@
1
+ <a name="readme-top"></a>
2
+
1
3
  # Liger Kernel: Efficient Triton Kernels for LLM Training
2
4
 
3
5
 
@@ -6,6 +8,7 @@
6
8
  <th style="padding: 10px;" colspan="2">Stable</th>
7
9
  <th style="padding: 10px;" colspan="2">Nightly</th>
8
10
  <th style="padding: 10px;">Discord</th>
11
+ <th style="padding: 10px;">Gurubase (experimental)</th>
9
12
  </tr>
10
13
  <tr>
11
14
  <td style="padding: 10px;">
@@ -33,6 +36,11 @@
33
36
  <img src="https://dcbadge.vercel.app/api/server/gpumode?style=flat" alt="Join Our Discord">
34
37
  </a>
35
38
  </td>
39
+ <td style="padding: 10px;">
40
+ <a href="https://gurubase.io/g/liger-kernel">
41
+ <img src="https://img.shields.io/badge/Gurubase-Ask%20Liger%20Kernel%20Guru-006BFF" alt="Ask Liger Kernel Guru">
42
+ </a>
43
+ </td>
36
44
  </tr>
37
45
  </table>
38
46
 
@@ -40,11 +48,12 @@
40
48
 
41
49
  <img src="https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/logo-banner.png">
42
50
 
43
- [Installation](#installation) | [Getting Started](#getting-started) | [Examples](#examples) | [APIs](#apis) | [Structure](#structure) | [Contributing](#contributing) | [Acknowledgement](#acknowledgement)
51
+ [Installation](#installation) | [Getting Started](#getting-started) | [Examples](#examples) | [APIs](#apis) | [Cite our work](#cite-this-work)
44
52
 
45
53
  <details>
46
54
  <summary>Latest News 🔥</summary>
47
-
55
+
56
+ - [2024/10/21] We have released the tech report of Liger Kernel on Arxiv: https://arxiv.org/pdf/2410.10989
48
57
  - [2024/9/6] We release v0.2.1 ([X post](https://x.com/liger_kernel/status/1832168197002510649)). 2500+ Stars, 10+ New Contributors, 50+ PRs, 50k Downloads in two weeks!
49
58
  - [2024/8/31] CUDA MODE talk, [Liger-Kernel: Real-world Triton kernel for LLM Training](https://youtu.be/gWble4FreV4?si=dxPeIchhkJ36Mbns), [Slides](https://github.com/cuda-mode/lectures?tab=readme-ov-file#lecture-28-liger-kernel)
50
59
  - [2024/8/23] Official release: check out our [X post](https://x.com/hsu_byron/status/1827072737673982056)
@@ -102,11 +111,18 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
102
111
 
103
112
  ## Installation
104
113
 
105
- ### Dependencies
114
+ ### Dependencies
115
+
116
+ #### CUDA
106
117
 
107
118
  - `torch >= 2.1.2`
108
119
  - `triton >= 2.3.0`
109
120
 
121
+ #### ROCm
122
+
123
+ - `torch >= 2.5.0` Install according to the instruction in Pytorch official webpage.
124
+ - `triton >= 3.0.0` Install from pypi. (e.g. `pip install triton==3.0.0`)
125
+
110
126
  ### Optional Dependencies
111
127
 
112
128
  - `transformers >= 4.x`: Required if you plan to use the transformers models patching APIs. The specific model you are working will dictate the minimum version of transformers.
@@ -136,6 +152,7 @@ pip install -e .
136
152
  pip install -e .[transformers]
137
153
  ```
138
154
 
155
+
139
156
  ## Getting Started
140
157
 
141
158
  There are a couple of ways to apply Liger kernels, depending on the level of customization required.
@@ -228,6 +245,7 @@ loss.backward()
228
245
  | **Model** | **API** | **Supported Operations** |
229
246
  |-------------|--------------------------------------------------------------|-------------------------------------------------------------------------|
230
247
  | LLaMA 2 & 3 | `liger_kernel.transformers.apply_liger_kernel_to_llama` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
248
+ | LLaMA 3.2-Vision | `liger_kernel.transformers.apply_liger_kernel_to_mllama` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
231
249
  | Mistral | `liger_kernel.transformers.apply_liger_kernel_to_mistral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
232
250
  | Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
233
251
  | Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
@@ -250,6 +268,8 @@ loss.backward()
250
268
  | CrossEntropy | `liger_kernel.transformers.LigerCrossEntropyLoss` |
251
269
  | FusedLinearCrossEntropy | `liger_kernel.transformers.LigerFusedLinearCrossEntropyLoss`|
252
270
  | KLDivergence | `liger_kernel.transformers.LigerKLDIVLoss` |
271
+ | JSD | `liger_kernel.transformers.LigerJSD` |
272
+ | FusedLinearJSD | `liger_kernel.transformers.LigerFusedLinearJSD` |
253
273
 
254
274
  - **RMSNorm**: [RMSNorm](https://arxiv.org/pdf/1910.07467), which normalizes activations using their root mean square, is implemented by fusing the normalization and scaling steps into a single Triton kernel, and achieves ~3X speedup with ~3X peak memory reduction.
255
275
  - **LayerNorm**: [LayerNorm](https://arxiv.org/pdf/1607.06450), which centers and normalizes activations across the feature dimension, is implemented by fusing the centering, normalization and scaling steps into a single Triton kernel, and achieves ~2X speedup.
@@ -264,35 +284,23 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
264
284
  <!-- TODO: verify vocab sizes are accurate -->
265
285
  - **FusedLinearCrossEntropy**: Peak memory usage of cross entropy loss is further improved by fusing the model head with the CE loss and chunking the input for block-wise loss and gradient calculation, a technique inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy). It achieves >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocabulary sizes.** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
266
286
  - **KLDivergence**: [KL Divergence](https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html) is implemented by fusing the forward into a single triton kernel, with reduction done outside the kernel. It achieves ~1.5X speed and ~15% memory reduction for 128K vocab size.
287
+ - **JSD**: [Generalized JSD](https://arxiv.org/pdf/2306.13649) (Jensen-Shannon divergence), is implemented by computing both the loss and gradient in the forward pass. It achieves ~1.5X speed and ~54% memory reduction for 128k vocab size.
288
+ - **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the model head with the JSD and chunking the input for block-wise loss and gradient calculation. It achieves ~85% memory reduction for 128k vocab size where batch size $\times$ sequence length is 8192.
289
+
267
290
 
268
291
  ### Experimental Kernels
269
292
 
270
293
  | **Kernel** | **API** |
271
294
  |---------------------------------|-------------------------------------------------------------|
272
295
  | Embedding | `liger_kernel.transformers.experimental.LigerEmbedding` |
273
-
296
+ | Matmul int2xint8 | `liger_kernel.transformers.experimental.matmul`
274
297
 
275
298
  - **Embedding**: [Embedding](https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html) is implemented by fusing embedding lookup and output operations. It achieves a peak speedup of ~1.5x in the forward pass and an overall speedup of ~1.1x.
276
-
299
+ - **Matmul int2xint8**: is implemented by using the cache tiled matrix multiplication and by fusing the matmul with the unpacking process which achieves a considerable speed up and performs on par with @torch.compile
277
300
  <!-- TODO: be more specific about batch size -->
278
301
  > **Note:**
279
302
  > Reported speedups and memory reductions are with respect to the LLaMA 3-8B Hugging Face layer implementations. All models use 4K hidden size and 4K sequence length and are evaluated based on memory usage and wall time for the forward+backward pass on a single NVIDIA A100 80G GPU using small batch sizes. Liger kernels exhibit more efficient scaling to larger batch sizes, detailed further in the [Benchmark](./benchmark) folder.
280
303
 
281
- ## Note on ML Compiler
282
-
283
- ### Torch Compile
284
-
285
- Since Liger Kernel is 100% Triton-based, it works seamlessly with [`torch.compile`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html). In the following example, Liger Kernel can further optimize the model on top of Torch Compile, reducing the memory by more than half.
286
-
287
- | Configuration | Throughput (tokens/sec) | Memory Reserved (GB) |
288
- |--------------------------------|----------------------------|-------------------------|
289
- | Torch Compile | 3780 | 66.4 |
290
- | Torch Compile + Liger Kernel | 3702 | 31.0 |
291
-
292
- > **Note:**
293
- > 1. Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Seq Len = 4096, Data Type = `bf16`, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
294
- > 2. Tested on torch `2.5.0.dev20240731+cu118`
295
-
296
304
  ## Contributing
297
305
 
298
306
  [CONTRIBUTING GUIDE](https://github.com/linkedin/Liger-Kernel/blob/main/CONTRIBUTING.md)
@@ -326,7 +334,14 @@ Many thanks to the contributors to these projects for their invaluable work that
326
334
 
327
335
  ## License
328
336
 
329
- [BSD 2-CLAUSE](https://github.com/linkedin/Liger-Kernel/blob/main/LICENSE)
337
+ This project is licensed under the [BSD 2-CLAUSE](https://github.com/linkedin/Liger-Kernel/blob/main/LICENSE) License (see `LICENSE` for details).
338
+ It also includes components from projects licensed under:
339
+
340
+ - Apache License 2.0 (see `LICENSE-APACHE-2.0` for details).
341
+ - MIT License (see `LICENSE-MIT-AutoAWQ` for details).
342
+ - MIT License (see `LICENSE-MIT-Efficient Cross Entropy` for details).
343
+ - MIT License (see `LICENSE-MIT-llmc` for details).
344
+ - MIT License (see `LICENSE-MIT-triton` for details).
330
345
 
331
346
  ## Contact
332
347
 
@@ -337,13 +352,29 @@ Many thanks to the contributors to these projects for their invaluable work that
337
352
 
338
353
  Biblatex entry:
339
354
  ```bib
340
- @software{liger2024,
341
- title = {Liger-Kernel: Efficient Triton Kernels for LLM Training},
342
- author = {Hsu, Pin-Lun and Dai, Yun and Kothapalli, Vignesh and Song, Qingquan and Tang, Shao and Zhu, Siyu},
343
- url = {https://github.com/linkedin/Liger-Kernel},
344
- year = {2024}
355
+ @article{hsu2024ligerkernelefficienttriton,
356
+ title={Liger Kernel: Efficient Triton Kernels for LLM Training},
357
+ author={Pin-Lun Hsu and Yun Dai and Vignesh Kothapalli and Qingquan Song and Shao Tang and Siyu Zhu and Steven Shimizu and Shivam Sahni and Haowen Ning and Yanning Chen},
358
+ year={2024},
359
+ eprint={2410.10989},
360
+ archivePrefix={arXiv},
361
+ primaryClass={cs.LG},
362
+ url={https://arxiv.org/abs/2410.10989},
363
+ journal={arXiv preprint arXiv:2410.10989},
345
364
  }
346
365
  ```
347
366
 
348
367
  ## Star History
349
368
  [![Star History Chart](https://api.star-history.com/svg?repos=linkedin/Liger-Kernel&type=Date)](https://star-history.com/#linkedin/Liger-Kernel&Date)
369
+
370
+ ## Contributors
371
+
372
+ <a href="https://github.com/linkedin/Liger-Kernel/graphs/contributors">
373
+ <img alt="contributors" src="https://contrib.rocks/image?repo=linkedin/Liger-Kernel"/>
374
+ </a>
375
+
376
+ <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
377
+ <a href="#readme-top" style="text-decoration: none; color: #007bff; font-weight: bold;">
378
+ ↑ Back to Top ↑
379
+ </a>
380
+ </p>
@@ -4,14 +4,14 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "liger_kernel"
7
- version = "0.3.1"
7
+ version = "0.4.0"
8
8
  description = "Efficient Triton kernels for LLM Training"
9
9
  urls = { "Homepage" = "https://github.com/linkedin/Liger-Kernel" }
10
10
  readme = { file = "README.md", content-type = "text/markdown" }
11
11
  license = { file = "LICENSE" }
12
12
  dependencies = [
13
13
  "torch>=2.1.2",
14
- "triton>=2.3.0",
14
+ "triton>=2.3.1",
15
15
  ]
16
16
 
17
17
  [project.optional-dependencies]
@@ -27,6 +27,7 @@ dev = [
27
27
  "isort>=5.13.2",
28
28
  "pytest>=7.1.2",
29
29
  "datasets>=2.19.2",
30
+ "torchvision>=0.16.2",
30
31
  "seaborn",
31
32
  ]
32
33
 
@@ -36,7 +37,7 @@ include = ["liger_kernel", "liger_kernel.*"]
36
37
 
37
38
  [tool.pytest.ini_options]
38
39
  pythonpath = [
39
- "src",
40
+ "src",
40
41
  "."
41
42
  ]
42
43
  asyncio_mode = "auto"
@@ -2,6 +2,8 @@ import torch
2
2
  import triton
3
3
  import triton.language as tl
4
4
 
5
+ from liger_kernel.ops.utils import element_mul_kernel, is_hip
6
+
5
7
 
6
8
  @triton.jit
7
9
  def liger_cross_entropy_kernel(
@@ -126,7 +128,7 @@ def liger_cross_entropy_kernel(
126
128
  # So we can safely calculate log (softmax(X_y)) without overflow
127
129
  loss = -(ori_X_y - m - tl.log(d))
128
130
 
129
- # Orginal loss = H(q, p), with label smoothing regularization = H(q', p) and (label_smoothing / V) = eps
131
+ # Original loss = H(q, p), with label smoothing regularization = H(q', p) and (label_smoothing / V) = eps
130
132
  # H(q', p) = (1 - label_smoothing) * H(q, p) + label_smoothing * H(u, p)
131
133
  # = (1 - label_smoothing) * H(q, p) + eps * sum(logsoftmax(x_i))
132
134
  # By using m (global max of xi) and d (sum of e^(xi-m)), we can simplify as:
@@ -159,42 +161,6 @@ def liger_cross_entropy_kernel(
159
161
  MAX_FUSED_SIZE = 65536 // 2 # the best size we found by manually tuning
160
162
 
161
163
 
162
- @triton.jit
163
- def element_mul_kernel(
164
- X_ptr,
165
- X_stride,
166
- grad_output_ptr,
167
- n_cols,
168
- BLOCK_SIZE: tl.constexpr,
169
- ):
170
- """
171
- This function multiplies each element of the tensor pointed by X_ptr with the value pointed by grad_output_ptr.
172
- The multiplication is performed in-place on the tensor pointed by X_ptr.
173
-
174
- Parameters:
175
- X_ptr: Pointer to the input tensor.
176
- X_stride (int): The stride of the input tensor.
177
- grad_output_ptr: Pointer to the gradient output value.
178
- n_cols (int): The number of columns in the input tensor.
179
- BLOCK_SIZE (int): The block size for Triton operations.
180
- """
181
-
182
- # Get the program ID and convert it to int64 to avoid overflow
183
- program_id = tl.program_id(0).to(tl.int64)
184
-
185
- # Locate the start index
186
- X_ptr += program_id * X_stride
187
-
188
- # Load the gradient output value
189
- grad_output = tl.load(grad_output_ptr)
190
-
191
- # Perform the element-wise multiplication
192
- for i in range(0, n_cols, BLOCK_SIZE):
193
- X_offsets = i + tl.arange(0, BLOCK_SIZE)
194
- X_block = tl.load(X_ptr + X_offsets, mask=X_offsets < n_cols)
195
- tl.store(X_ptr + X_offsets, X_block * grad_output, mask=X_offsets < n_cols)
196
-
197
-
198
164
  def cross_entropy_forward(_input, target, ignore_index, label_smoothing, reduction):
199
165
  BT, V = _input.shape
200
166
  n_rows = BT
@@ -228,7 +194,7 @@ def cross_entropy_forward(_input, target, ignore_index, label_smoothing, reducti
228
194
  BLOCK_SIZE=BLOCK_SIZE,
229
195
  # TODO: 32 seems to give the best performance
230
196
  # Performance is quite sensitive to num_warps
231
- num_warps=32,
197
+ num_warps=32 if not is_hip() else 16,
232
198
  )
233
199
 
234
200
  loss = torch.sum(loss_1d)
@@ -253,7 +219,7 @@ def cross_entropy_backward(_input, grad_output):
253
219
  grad_output,
254
220
  V,
255
221
  BLOCK_SIZE=BLOCK_SIZE,
256
- num_warps=32,
222
+ num_warps=32 if not is_hip() else 16,
257
223
  )
258
224
 
259
225
  return _input