liger-kernel 0.0.1__tar.gz → 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/PKG-INFO +1 -1
  2. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/README.md +41 -42
  3. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/setup.py +1 -1
  4. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/rms_norm.py +38 -20
  5. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/swiglu.py +16 -16
  6. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/__init__.py +1 -0
  7. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/monkey_patch.py +30 -0
  8. liger_kernel-0.1.0/src/liger_kernel/transformers/trainer_integration.py +45 -0
  9. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/triton/monkey_patch.py +0 -2
  10. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/PKG-INFO +1 -1
  11. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/SOURCES.txt +1 -0
  12. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/LICENSE +0 -0
  13. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/NOTICE +0 -0
  14. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/setup.cfg +0 -0
  15. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/__init__.py +0 -0
  16. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/cross_entropy.py +0 -0
  17. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/fused_linear_cross_entropy.py +0 -0
  18. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/geglu.py +0 -0
  19. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/rope.py +0 -0
  20. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/utils.py +0 -0
  21. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/cross_entropy.py +0 -0
  22. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
  23. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/geglu.py +0 -0
  24. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/model/__init__.py +0 -0
  25. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/model/llama.py +0 -0
  26. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/rms_norm.py +0 -0
  27. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/rope.py +0 -0
  28. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/swiglu.py +0 -0
  29. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/triton/__init__.py +0 -0
  30. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/dependency_links.txt +0 -0
  31. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/requires.txt +0 -0
  32. {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel
3
- Version: 0.0.1
3
+ Version: 0.1.0
4
4
  Provides-Extra: dev
5
5
  License-File: LICENSE
6
6
  License-File: NOTICE
@@ -1,29 +1,17 @@
1
- # Liger Kernel
1
+ # Liger Kernel: Efficient Triton Kernels for LLM Training
2
2
 
3
3
  [![Downloads](https://static.pepy.tech/badge/liger-kernel)](https://pepy.tech/project/liger-kernel) [![PyPI version](https://badge.fury.io/py/liger-kernel.svg)](https://badge.fury.io/py/liger-kernel) [![PyPI version](https://badge.fury.io/py/liger-kernel-nightly.svg)](https://badge.fury.io/py/liger-kernel-nightly)
4
4
 
5
5
 
6
- [Installation](#installation) | [Getting Started](#getting-started) | [Structure](#structure) | [APIs](#apis) | [Contributing](#contributing)
6
+ [Installation](#installation) | [Getting Started](#getting-started) | [Examples](#examples) | [APIs](#apis) | [Structure](#structure) | [Contributing](#contributing)
7
7
 
8
8
  **Liger (Linkedin GPU Efficient Runtime) Kernel** is a collection of Triton kernels designed specifically for LLM training. We have implemented **Hugging Face Compatible** `RMSNorm`, `RoPE`, `SwiGLU`, `CrossEntropy`, `FusedLinearCrossEntropy`, and more to come. It can effectively increase multi-GPU **training throughput by 20%** and reduces **memory usage by 60%**. The kernel works out of the box with [flash attention](https://github.com/Dao-AILab/flash-attention), PyTorch FSDP, and Microsoft DeepSpeed. We welcome contributions from the community to gather the best kernels for LLM training.
9
9
 
10
10
 
11
- ### Basic
12
11
 
13
- | **Example** | **Description** | **Lightning Studio** |
14
- |------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
15
- | **[Hugging Face Trainer](#liger-kernel)** | Increase 20% throughput and reduce memory usage by 60% with LLaMA 3 8B on the MMLU dataset using 8 A100s | TBA |
16
- | **[Lightning Trainer](#liger-kernel)** | Increase 15% throughput and reduce memory usage by 40% with LLaMA 3 8B on the Alpaca dataset using 4 A100s | TBA |
12
+ ## Supercharge Your Model with Liger Kernel
17
13
 
18
- ### Advanced
19
-
20
- | **Example** | **Description** | **Lightning Studio** |
21
- |------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
22
- | **[Medusa Multi-head LLM](#liger-kernel)** | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s | TBA |
23
-
24
- ## Overview
25
-
26
- ### Supercharge Your Model with Liger Kernel
14
+ ![Banner](/docs/images/banner.GIF)
27
15
 
28
16
  Gain +20% throughput and reduce memory usage by 60%. Achieve longer context lengths and larger batch sizes. It’s also useful if you want to scale up your model to multi-head training or large vocabulary sizes.
29
17
 
@@ -33,16 +21,24 @@ Gain +20% throughput and reduce memory usage by 60%. Achieve longer context leng
33
21
 
34
22
 
35
23
  > - Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Data Type = bf16, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
36
- > - HuggingFace models start to OOM at a 4K context length, whereas Liger Kernel scales up to 16K.
37
- > - **Fused Linear Cross Entropy Loss** is enabled to significantly reduce memory usage.
24
+ > - Hugging Face models start to OOM at a 4K context length, whereas Liger Kernel scales up to 16K.
38
25
 
39
- ### Patch HF model with one line or use individual kernels
26
+ ## Examples
40
27
 
41
- | Patch Existing HF Model | Compose Your Own Model |
42
- |--------------------------|-------------------------|
43
- | ![Patch](docs/images/patch.gif) | ![Compose](docs/images/compose.gif) |
28
+ ### Basic
29
+
30
+ | **Example** | **Description** | **Lightning Studio** |
31
+ |------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
32
+ | [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train llama3 8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP | TBA |
33
+ | [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 | TBA |
44
34
 
45
- ### Key Features
35
+ ### Advanced
36
+
37
+ | **Example** | **Description** | **Lightning Studio** |
38
+ |------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
39
+ | [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP | TBA |
40
+
41
+ ## Key Features
46
42
 
47
43
  - **Ease of use:** Simply patch your Hugging Face model with one line of code, or compose your own model using our kernels.
48
44
  - **Time- and memory-efficient:** In the same spirit as Flash-Attn, but for layers like **RMSNorm**, **RoPE**, **CrossEntropy**! Increases multi-GPU training throughput by 20% and reduces memory usage by 60% with **kernel fusion**, **in-place replacement**, and **chunking** techniques.
@@ -50,7 +46,7 @@ Gain +20% throughput and reduce memory usage by 60%. Achieve longer context leng
50
46
  - **Lightweight:** The kernels have minimal dependencies, requiring only Torch and Triton—no extra libraries needed! Say goodbye to dependency headaches!
51
47
  - **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP and DeepSpeed).
52
48
 
53
- ### Target Audiences
49
+ ## Target Audiences
54
50
 
55
51
  - **Researchers**: Looking to compose models using efficient and reliable kernels for frontier experiments.
56
52
  - **ML Practitioners**: Focused on maximizing GPU training efficiency with optimal, high-performance kernels.
@@ -81,12 +77,11 @@ $ pip install liger-kernel-nightly
81
77
 
82
78
  ### 1. Patch Existing Hugging Face Models
83
79
 
84
- Using [patching APIs](#patching), you can swap Hugging Face model with optimized Liger Kernels.
80
+ Using [patching APIs](#patching), you can swap Hugging Face models with optimized Liger Kernels.
85
81
 
86
82
  ```python
83
+ import transformers
87
84
  from liger_kernel.transformers import apply_liger_kernel_to_llama
88
- from transformers import Trainer
89
-
90
85
 
91
86
  model = transformers.AutoModelForCausalLM.from_pretrained("<some llama model>")
92
87
 
@@ -94,10 +89,6 @@ model = transformers.AutoModelForCausalLM.from_pretrained("<some llama model>")
94
89
  apply_liger_kernel_to_llama()
95
90
  ```
96
91
 
97
-
98
-
99
-
100
-
101
92
  ### 2. Compose Your Own Model
102
93
 
103
94
  You can take individual [kernels](#kernels) to compose your models.
@@ -145,19 +136,28 @@ loss.backward()
145
136
  | LLaMA (2 & 3) | `liger_kernel.transformers.apply_liger_kernel_to_llama` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
146
137
  | Mistral | `liger_kernel.transformers.apply_liger_kernel_to_mistral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
147
138
  | Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
148
-
139
+ | Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss |
149
140
 
150
141
  ### Kernels
151
142
 
152
- | **Kernel** | **API** | **Description** |
153
- |---------------------------|-------------------------------------------------------------|-----------------|
154
- | RMSNorm | `liger_kernel.transformers.LigerRMSNorm` | [RMSNorm Paper](https://arxiv.org/pdf/1910.07467) |
155
- | RoPE | `liger_kernel.transformers.liger_rotary_pos_emb` | [RoPE Paper](https://arxiv.org/pdf/2104.09864) |
156
- | SwiGLU | `liger_kernel.transformers.LigerSwiGLUMLP` | [SwiGLU Paper](https://arxiv.org/pdf/2002.05202) |
157
- | CrossEntropy | `liger_kernel.transformers.LigerCrossEntropyLoss` | [PyTorch CrossEntropyLoss Documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html) |
158
- | FusedLinearCrossEntropy | `liger_kernel.transformers.LigerFusedLinearCrossEntropyLoss`| Inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy), with additional optimizations |
143
+ | **Kernel** | **API** |
144
+ |---------------------------------|-------------------------------------------------------------|
145
+ | RMSNorm | `liger_kernel.transformers.LigerRMSNorm` |
146
+ | RoPE | `liger_kernel.transformers.liger_rotary_pos_emb` |
147
+ | SwiGLU | `liger_kernel.transformers.LigerSwiGLUMLP` |
148
+ | GeGLU | `liger_kernel.transformers.LigerGEGLUMLP` |
149
+ | CrossEntropy | `liger_kernel.transformers.LigerCrossEntropyLoss` |
150
+ | FusedLinearCrossEntropy | `liger_kernel.transformers.LigerFusedLinearCrossEntropyLoss`|
151
+
152
+ - **RMSNorm**: RMSNorm, which normalizes tensor activations using their root mean square, is accelerated by fusing the normalization and scaling steps into a single triton kernel, achieved ~3X speedup with ~3X peak memory reduction. [RMSNorm Paper](https://arxiv.org/pdf/1910.07467)
153
+ - **RoPE**: Fused the operations of query and key embedding rotary into a single kernel with inplace replacement, achieved ~3X speedup with ~3X peak memory reduction. [RoPE Paper](https://arxiv.org/pdf/2104.09864)
154
+ - **SwiGLU**: Leveraging the fused triton kernel for the elementwise transformation in $$SwiGLU_{\beta=1}$$ ($$\sigma(A) \odot B$$) with inplace replacement, achieved parity speed with ~1.5X peak memory reduction. [SwiGLU Paper](https://arxiv.org/pdf/2002.05202)
155
+ - **GeGLU**: Leveraging the fused triton kernel for the elementwise transformation in GeGLU with [tanh approximation form of GELU](https://pytorch.org/docs/stable/generated/torch.nn.GELU.html) and inplace replacement, achieved parity speed with ~1.5X peak memory reduction. [GeGLU paper](https://arxiv.org/pdf/2002.05202)
156
+ - **CrossEntropy**: Computes both loss and the gradient in the forward path with inplace replacement of input to reduce the peak memory (avoid the materialization of both input logits and gradient), achieved >2X speedup and >4X memory reduction for common vocab sizes. [PyTorch CrossEntropyLoss Documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html)
157
+ - **FusedLinearCrossEntropy**: Further improves upon the basic Liger Cross Entropy kernel on reducing the peak memory usage by fusing the model last output head layer with the CE loss and chunking the input for block-wise loss and gradient calculation, inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy), achieved >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocab size model** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
159
158
 
160
159
 
160
+ > * Reported speedups and memory reductions are compared with Llama3 8B Hugging Face layer implementations with 4k default hidden size and 4k sequence length for single forward and backward pass on single NVIDIA A100 80G GPU with small batch sizes. Liger kernels exhibits more efficient scaling to larger batch sizes of tokens. See [Benchmark](./benchmark) folder for details.
161
161
 
162
162
  ## Note on ML Compiler
163
163
 
@@ -171,9 +171,8 @@ Since Liger Kernel is 100% Triton-based, it works seamlessly with Torch Compile.
171
171
  | Torch Compile + Liger Kernel | 3702 | 31000 |
172
172
 
173
173
  > **Note:**
174
- > 1. **Fused Linear Cross Entropy Loss** is enabled.
175
- > 2. Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Seq Len = 4096, Data Type = bf16, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
176
- > 3. Tested on torch `2.5.0.dev20240731+cu118`
174
+ > 1. Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Seq Len = 4096, Data Type = bf16, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
175
+ > 2. Tested on torch `2.5.0.dev20240731+cu118`
177
176
 
178
177
  ### 2. Lightning Thunder
179
178
 
@@ -1,6 +1,6 @@
1
1
  from setuptools import find_namespace_packages, setup
2
2
 
3
- __version__ = "0.0.1"
3
+ __version__ = "0.1.0"
4
4
 
5
5
  setup(
6
6
  name="liger_kernel",
@@ -20,9 +20,12 @@ def _rms_norm_forward(
20
20
  BLOCK_SIZE: tl.constexpr,
21
21
  ):
22
22
  """
23
+ y_i = (x_i / (RMS)) * wi, RMS = sqrt(sum(x_i^2) / N)
24
+
23
25
  Reference:
24
26
  1. https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
25
27
  2. https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/rms_layernorm.py#L22
28
+ 3. https://arxiv.org/pdf/1910.07467
26
29
  """
27
30
 
28
31
  row_idx = tl.program_id(0)
@@ -36,16 +39,17 @@ def _rms_norm_forward(
36
39
  X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
37
40
  W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
38
41
 
39
- row_var = tl.sum(X_row * X_row, axis=0) / n_cols
40
- inv_var = tl.math.rsqrt(row_var + eps)
42
+ mean_square = tl.sum(X_row * X_row, axis=0) / n_cols
43
+ inv_rms = tl.math.rsqrt(mean_square + eps)
41
44
 
42
- # trick: row_var is tiny compared to X_row because it just has one per row we can save 4 ops (*, sum, /, rqrt) if we cache it
43
- tl.store(r_ptr, inv_var)
45
+ # We can save time by caching rms with minimal memory overhead
46
+ # because rms is much smaller compared to X_row, as rms is for each row.
47
+ # However, on the computation side, it can save 4 operations (*, sum, /, sqrt).
48
+ tl.store(r_ptr, inv_rms)
44
49
 
45
- normed = X_row * inv_var
50
+ Y_row = X_row * inv_rms * W_row
46
51
 
47
- output = normed * W_row
48
- tl.store(Y_ptr + col_offsets, output, mask=mask)
52
+ tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
49
53
 
50
54
 
51
55
  @triton.jit
@@ -65,9 +69,10 @@ def _rms_norm_backward(
65
69
  BLOCK_SIZE: tl.constexpr,
66
70
  ):
67
71
  """
68
- dx = (1 / var(x)) * (dy * w - (1/N) * (dy * w) dot x) * x
69
- dw = sum(dy * (x / var(x)))
72
+ dx = (1 / RMS) * [dy * w - (1 / N) * (1 / RMS^2) * ((dy * w) dot x) * x]. * means element-wise multiplication, whileas dot means dot product
73
+ dw = sum(dy * (x / RMS)). summation over BxT dimension
70
74
  """
75
+
71
76
  row_idx = tl.program_id(0)
72
77
  col_offsets = tl.arange(0, BLOCK_SIZE)
73
78
  mask = col_offsets < n_cols
@@ -81,26 +86,33 @@ def _rms_norm_backward(
81
86
  X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
82
87
  W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
83
88
 
84
- # Get saved row variance
85
- inv_var = tl.load(r_ptr)
86
-
87
- normed = X_row * inv_var
89
+ # Get cached rms
90
+ inv_rms_row = tl.load(r_ptr)
88
91
 
89
- dY_W = dY_row * W_row
90
- dY_normed = dY_row * normed
91
-
92
- rowsum_dY_normed = tl.sum(dY_W * normed, axis=0)
93
- output = inv_var / n_cols * (n_cols * dY_W - normed * rowsum_dY_normed)
94
- tl.store(dY_ptr + col_offsets, output, mask=mask)
92
+ dX_row = (inv_rms_row) * (
93
+ dY_row * W_row
94
+ - (1 / n_cols)
95
+ * inv_rms_row
96
+ * inv_rms_row
97
+ * tl.sum(dY_row * W_row * X_row, axis=0)
98
+ * X_row
99
+ )
100
+ tl.store(dY_ptr + col_offsets, dX_row, mask=mask)
95
101
 
96
102
  # calculate the gradient of W
97
- tl.store(dW_ptr + col_offsets, dY_normed, mask=mask)
103
+ dW_row = dY_row * X_row * inv_rms_row
104
+ tl.store(dW_ptr + col_offsets, dW_row, mask=mask)
98
105
 
99
106
 
100
107
  class LigerRMSNormFunction(torch.autograd.Function):
101
108
  @staticmethod
102
109
  @ensure_contiguous
103
110
  def forward(ctx, X, W, eps):
111
+ """
112
+ X: (B, T, H) or (BxT, H)
113
+ W: (H,)
114
+ """
115
+
104
116
  shape = X.shape
105
117
  dim = shape[-1]
106
118
  X = X.view(-1, dim)
@@ -108,6 +120,7 @@ class LigerRMSNormFunction(torch.autograd.Function):
108
120
  BLOCK_SIZE, num_warps = calculate_settings(n_cols)
109
121
 
110
122
  Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
123
+ # r is to cache (1/rms) for each row
111
124
  r = torch.empty(n_rows, dtype=X.dtype, device=X.device)
112
125
 
113
126
  # Check constraints.
@@ -139,6 +152,10 @@ class LigerRMSNormFunction(torch.autograd.Function):
139
152
  @staticmethod
140
153
  @ensure_contiguous
141
154
  def backward(ctx, dY):
155
+ """
156
+ Y: (B, T, H) or (BxT, H)
157
+ """
158
+
142
159
  shape = dY.shape
143
160
  dim = shape[-1]
144
161
  dY = dY.view(-1, dim)
@@ -146,6 +163,7 @@ class LigerRMSNormFunction(torch.autograd.Function):
146
163
  n_rows, n_cols = dY.shape
147
164
  dW = torch.zeros_like(X)
148
165
 
166
+ # Here we use dY to store the value of dX to save memory
149
167
  _rms_norm_backward[(n_rows,)](
150
168
  dY,
151
169
  dY.stride(0),
@@ -12,43 +12,43 @@ def silu(x):
12
12
 
13
13
  @triton.jit
14
14
  def _swiglu_forward_kernel(
15
- a, b, c, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
15
+ a_ptr, b_ptr, c_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
16
16
  ):
17
17
  program_id = tl.program_id(0)
18
18
 
19
19
  # locate start index
20
- a += program_id * stride
21
- b += program_id * stride
22
- c += program_id * stride
20
+ a_ptr += program_id * stride
21
+ b_ptr += program_id * stride
22
+ c_ptr += program_id * stride
23
23
 
24
24
  col_offsets = tl.arange(0, BLOCK_SIZE)
25
25
  mask = col_offsets < n_cols
26
26
 
27
27
  # sigmoid requires type float32
28
- a_row = tl.load(a + col_offsets, mask=mask, other=0).to(tl.float32)
29
- b_row = tl.load(b + col_offsets, mask=mask, other=0)
28
+ a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
29
+ b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
30
30
  c_row = silu(a_row) * b_row
31
- tl.store(c + col_offsets, c_row, mask=mask)
31
+ tl.store(c_ptr + col_offsets, c_row, mask=mask)
32
32
 
33
33
 
34
34
  @triton.jit
35
35
  def _swiglu_backward_kernel(
36
- dc, a, b, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
36
+ dc_ptr, a_ptr, b_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
37
37
  ):
38
38
  program_id = tl.program_id(0)
39
39
 
40
40
  # locate start index
41
- dc += program_id * stride
42
- a += program_id * stride
43
- b += program_id * stride
41
+ dc_ptr += program_id * stride
42
+ a_ptr += program_id * stride
43
+ b_ptr += program_id * stride
44
44
 
45
45
  col_offsets = tl.arange(0, BLOCK_SIZE)
46
46
  mask = col_offsets < n_cols
47
47
 
48
- dc_row = tl.load(dc + col_offsets, mask=mask, other=0)
48
+ dc_row = tl.load(dc_ptr + col_offsets, mask=mask, other=0)
49
49
  # sigmoid requires type float32
50
- a_row = tl.load(a + col_offsets, mask=mask, other=0).to(tl.float32)
51
- b_row = tl.load(b + col_offsets, mask=mask, other=0)
50
+ a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
51
+ b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
52
52
 
53
53
  # recomputation to save memory
54
54
  sig_a = tl.sigmoid(a_row)
@@ -56,8 +56,8 @@ def _swiglu_backward_kernel(
56
56
  db_row = dc_row * silu_a
57
57
  da_row = dc_row * (silu_a * (1 - sig_a) + sig_a) * b_row
58
58
 
59
- tl.store(a + col_offsets, da_row, mask=mask)
60
- tl.store(b + col_offsets, db_row, mask=mask)
59
+ tl.store(a_ptr + col_offsets, da_row, mask=mask)
60
+ tl.store(b_ptr + col_offsets, db_row, mask=mask)
61
61
 
62
62
 
63
63
  class LigerSiLUMulFunction(torch.autograd.Function):
@@ -1,4 +1,5 @@
1
1
  from liger_kernel.transformers.monkey_patch import ( # noqa: F401
2
+ apply_liger_kernel_to_gemma,
2
3
  apply_liger_kernel_to_llama,
3
4
  apply_liger_kernel_to_mistral,
4
5
  apply_liger_kernel_to_mixtral,
@@ -1,4 +1,5 @@
1
1
  from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
2
+ from liger_kernel.transformers.geglu import LigerGEGLUMLP
2
3
  from liger_kernel.transformers.model.llama import lce_forward
3
4
  from liger_kernel.transformers.rms_norm import LigerRMSNorm
4
5
  from liger_kernel.transformers.rope import liger_rotary_pos_emb
@@ -98,3 +99,32 @@ def apply_liger_kernel_to_mixtral(
98
99
  modeling_mixtral.CrossEntropyLoss = LigerCrossEntropyLoss
99
100
  if swiglu:
100
101
  modeling_mixtral.MixtralBlockSparseTop2MLP = LigerBlockSparseTop2MLP
102
+
103
+
104
+ def apply_liger_kernel_to_gemma(
105
+ rope: bool = True,
106
+ cross_entropy: bool = True,
107
+ rms_norm: bool = True,
108
+ geglu: bool = True,
109
+ ) -> None:
110
+ """
111
+ Apply Liger kernels to replace original implementation in HuggingFace Gemma2 models
112
+ to make GPU go burrr.
113
+
114
+ Args:
115
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
116
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is True.
117
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
118
+ geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
119
+ """
120
+ # TODO(yundai424): add convergence test for gemma
121
+ from transformers.models.gemma import modeling_gemma
122
+
123
+ if rope:
124
+ modeling_gemma.apply_rotary_pos_emb = liger_rotary_pos_emb
125
+ if rms_norm:
126
+ modeling_gemma.GemmaRMSNorm = LigerRMSNorm
127
+ if cross_entropy:
128
+ modeling_gemma.CrossEntropyLoss = LigerCrossEntropyLoss
129
+ if geglu:
130
+ modeling_gemma.GemmaMLP = LigerGEGLUMLP
@@ -0,0 +1,45 @@
1
+ import logging
2
+
3
+ from liger_kernel.transformers.monkey_patch import (
4
+ apply_liger_kernel_to_gemma,
5
+ apply_liger_kernel_to_llama,
6
+ apply_liger_kernel_to_mistral,
7
+ apply_liger_kernel_to_mixtral,
8
+ )
9
+
10
+ logger = logging.getLogger(__name__)
11
+
12
+ # Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
13
+ MODEL_TYPE_TO_APPLY_LIGER_FN = {
14
+ "gemma": apply_liger_kernel_to_gemma,
15
+ "llama": apply_liger_kernel_to_llama,
16
+ "mistral": apply_liger_kernel_to_mistral,
17
+ "mixtral": apply_liger_kernel_to_mixtral,
18
+ }
19
+
20
+
21
+ def _apply_liger_kernel(model_type: str = "", **kwargs) -> None:
22
+ """
23
+ Applies Liger kernels based on the specified model type. The custom
24
+ kernels for the specified model type will be applied with the provided
25
+ keyword arguments, otherwise the default configuration will be used.
26
+
27
+ Args:
28
+ - model_type: the model types as defined in transformers/models/auto/modeling_auto.py
29
+ and specified in the model's config.json
30
+ - kwargs: keyword arguments that are passed to the corresponding apply_liger_kernel_to_* function.
31
+ """
32
+
33
+ if not model_type:
34
+ logger.info("Model type was not provided. No Liger kernels will be applied.")
35
+ return
36
+
37
+ if model_type not in MODEL_TYPE_TO_APPLY_LIGER_FN.keys():
38
+ logger.info(
39
+ f"There are currently no Liger kernels supported for model type: {model_type}."
40
+ )
41
+ return
42
+
43
+ logger.info(f"Applying Liger kernels for model type: {model_type}.")
44
+ # Apply the default combination of liger kernels available for the model
45
+ MODEL_TYPE_TO_APPLY_LIGER_FN[model_type](**kwargs)
@@ -1,12 +1,10 @@
1
1
  import os
2
2
  import random
3
3
 
4
- from overrides import override
5
4
  from triton.runtime.cache import FileCacheManager
6
5
 
7
6
 
8
7
  class LigerTritonFileCacheManager(FileCacheManager):
9
- @override
10
8
  def put(self, data, filename, binary=True) -> str:
11
9
  if not self.cache_dir:
12
10
  raise RuntimeError("Could not create or locate cache dir")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger-kernel
3
- Version: 0.0.1
3
+ Version: 0.1.0
4
4
  Provides-Extra: dev
5
5
  License-File: LICENSE
6
6
  License-File: NOTICE
@@ -23,6 +23,7 @@ src/liger_kernel/transformers/monkey_patch.py
23
23
  src/liger_kernel/transformers/rms_norm.py
24
24
  src/liger_kernel/transformers/rope.py
25
25
  src/liger_kernel/transformers/swiglu.py
26
+ src/liger_kernel/transformers/trainer_integration.py
26
27
  src/liger_kernel/transformers/model/__init__.py
27
28
  src/liger_kernel/transformers/model/llama.py
28
29
  src/liger_kernel/triton/__init__.py
File without changes
File without changes
File without changes