liger-kernel 0.0.1__tar.gz → 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/PKG-INFO +1 -1
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/README.md +41 -42
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/setup.py +1 -1
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/rms_norm.py +38 -20
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/swiglu.py +16 -16
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/__init__.py +1 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/monkey_patch.py +30 -0
- liger_kernel-0.1.0/src/liger_kernel/transformers/trainer_integration.py +45 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/triton/monkey_patch.py +0 -2
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/PKG-INFO +1 -1
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/SOURCES.txt +1 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/LICENSE +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/NOTICE +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/setup.cfg +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/__init__.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/cross_entropy.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/fused_linear_cross_entropy.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/geglu.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/rope.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/utils.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/cross_entropy.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/fused_linear_cross_entropy.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/geglu.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/model/__init__.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/model/llama.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/rms_norm.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/rope.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/transformers/swiglu.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/triton/__init__.py +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/dependency_links.txt +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/requires.txt +0 -0
- {liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel.egg-info/top_level.txt +0 -0
|
@@ -1,29 +1,17 @@
|
|
|
1
|
-
# Liger Kernel
|
|
1
|
+
# Liger Kernel: Efficient Triton Kernels for LLM Training
|
|
2
2
|
|
|
3
3
|
[](https://pepy.tech/project/liger-kernel) [](https://badge.fury.io/py/liger-kernel) [](https://badge.fury.io/py/liger-kernel-nightly)
|
|
4
4
|
|
|
5
5
|
|
|
6
|
-
[Installation](#installation) | [Getting Started](#getting-started) | [
|
|
6
|
+
[Installation](#installation) | [Getting Started](#getting-started) | [Examples](#examples) | [APIs](#apis) | [Structure](#structure) | [Contributing](#contributing)
|
|
7
7
|
|
|
8
8
|
**Liger (Linkedin GPU Efficient Runtime) Kernel** is a collection of Triton kernels designed specifically for LLM training. We have implemented **Hugging Face Compatible** `RMSNorm`, `RoPE`, `SwiGLU`, `CrossEntropy`, `FusedLinearCrossEntropy`, and more to come. It can effectively increase multi-GPU **training throughput by 20%** and reduces **memory usage by 60%**. The kernel works out of the box with [flash attention](https://github.com/Dao-AILab/flash-attention), PyTorch FSDP, and Microsoft DeepSpeed. We welcome contributions from the community to gather the best kernels for LLM training.
|
|
9
9
|
|
|
10
10
|
|
|
11
|
-
### Basic
|
|
12
11
|
|
|
13
|
-
|
|
14
|
-
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
|
|
15
|
-
| **[Hugging Face Trainer](#liger-kernel)** | Increase 20% throughput and reduce memory usage by 60% with LLaMA 3 8B on the MMLU dataset using 8 A100s | TBA |
|
|
16
|
-
| **[Lightning Trainer](#liger-kernel)** | Increase 15% throughput and reduce memory usage by 40% with LLaMA 3 8B on the Alpaca dataset using 4 A100s | TBA |
|
|
12
|
+
## Supercharge Your Model with Liger Kernel
|
|
17
13
|
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
| **Example** | **Description** | **Lightning Studio** |
|
|
21
|
-
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
|
|
22
|
-
| **[Medusa Multi-head LLM](#liger-kernel)** | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s | TBA |
|
|
23
|
-
|
|
24
|
-
## Overview
|
|
25
|
-
|
|
26
|
-
### Supercharge Your Model with Liger Kernel
|
|
14
|
+

|
|
27
15
|
|
|
28
16
|
Gain +20% throughput and reduce memory usage by 60%. Achieve longer context lengths and larger batch sizes. It’s also useful if you want to scale up your model to multi-head training or large vocabulary sizes.
|
|
29
17
|
|
|
@@ -33,16 +21,24 @@ Gain +20% throughput and reduce memory usage by 60%. Achieve longer context leng
|
|
|
33
21
|
|
|
34
22
|
|
|
35
23
|
> - Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Data Type = bf16, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
|
|
36
|
-
> -
|
|
37
|
-
> - **Fused Linear Cross Entropy Loss** is enabled to significantly reduce memory usage.
|
|
24
|
+
> - Hugging Face models start to OOM at a 4K context length, whereas Liger Kernel scales up to 16K.
|
|
38
25
|
|
|
39
|
-
|
|
26
|
+
## Examples
|
|
40
27
|
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
|
28
|
+
### Basic
|
|
29
|
+
|
|
30
|
+
| **Example** | **Description** | **Lightning Studio** |
|
|
31
|
+
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
|
|
32
|
+
| [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train llama3 8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP | TBA |
|
|
33
|
+
| [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 | TBA |
|
|
44
34
|
|
|
45
|
-
###
|
|
35
|
+
### Advanced
|
|
36
|
+
|
|
37
|
+
| **Example** | **Description** | **Lightning Studio** |
|
|
38
|
+
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
|
|
39
|
+
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP | TBA |
|
|
40
|
+
|
|
41
|
+
## Key Features
|
|
46
42
|
|
|
47
43
|
- **Ease of use:** Simply patch your Hugging Face model with one line of code, or compose your own model using our kernels.
|
|
48
44
|
- **Time- and memory-efficient:** In the same spirit as Flash-Attn, but for layers like **RMSNorm**, **RoPE**, **CrossEntropy**! Increases multi-GPU training throughput by 20% and reduces memory usage by 60% with **kernel fusion**, **in-place replacement**, and **chunking** techniques.
|
|
@@ -50,7 +46,7 @@ Gain +20% throughput and reduce memory usage by 60%. Achieve longer context leng
|
|
|
50
46
|
- **Lightweight:** The kernels have minimal dependencies, requiring only Torch and Triton—no extra libraries needed! Say goodbye to dependency headaches!
|
|
51
47
|
- **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP and DeepSpeed).
|
|
52
48
|
|
|
53
|
-
|
|
49
|
+
## Target Audiences
|
|
54
50
|
|
|
55
51
|
- **Researchers**: Looking to compose models using efficient and reliable kernels for frontier experiments.
|
|
56
52
|
- **ML Practitioners**: Focused on maximizing GPU training efficiency with optimal, high-performance kernels.
|
|
@@ -81,12 +77,11 @@ $ pip install liger-kernel-nightly
|
|
|
81
77
|
|
|
82
78
|
### 1. Patch Existing Hugging Face Models
|
|
83
79
|
|
|
84
|
-
Using [patching APIs](#patching), you can swap Hugging Face
|
|
80
|
+
Using [patching APIs](#patching), you can swap Hugging Face models with optimized Liger Kernels.
|
|
85
81
|
|
|
86
82
|
```python
|
|
83
|
+
import transformers
|
|
87
84
|
from liger_kernel.transformers import apply_liger_kernel_to_llama
|
|
88
|
-
from transformers import Trainer
|
|
89
|
-
|
|
90
85
|
|
|
91
86
|
model = transformers.AutoModelForCausalLM.from_pretrained("<some llama model>")
|
|
92
87
|
|
|
@@ -94,10 +89,6 @@ model = transformers.AutoModelForCausalLM.from_pretrained("<some llama model>")
|
|
|
94
89
|
apply_liger_kernel_to_llama()
|
|
95
90
|
```
|
|
96
91
|
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
92
|
### 2. Compose Your Own Model
|
|
102
93
|
|
|
103
94
|
You can take individual [kernels](#kernels) to compose your models.
|
|
@@ -145,19 +136,28 @@ loss.backward()
|
|
|
145
136
|
| LLaMA (2 & 3) | `liger_kernel.transformers.apply_liger_kernel_to_llama` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
|
146
137
|
| Mistral | `liger_kernel.transformers.apply_liger_kernel_to_mistral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
|
147
138
|
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
|
148
|
-
|
|
139
|
+
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss |
|
|
149
140
|
|
|
150
141
|
### Kernels
|
|
151
142
|
|
|
152
|
-
| **Kernel**
|
|
153
|
-
|
|
154
|
-
| RMSNorm
|
|
155
|
-
| RoPE
|
|
156
|
-
| SwiGLU
|
|
157
|
-
|
|
|
158
|
-
|
|
|
143
|
+
| **Kernel** | **API** |
|
|
144
|
+
|---------------------------------|-------------------------------------------------------------|
|
|
145
|
+
| RMSNorm | `liger_kernel.transformers.LigerRMSNorm` |
|
|
146
|
+
| RoPE | `liger_kernel.transformers.liger_rotary_pos_emb` |
|
|
147
|
+
| SwiGLU | `liger_kernel.transformers.LigerSwiGLUMLP` |
|
|
148
|
+
| GeGLU | `liger_kernel.transformers.LigerGEGLUMLP` |
|
|
149
|
+
| CrossEntropy | `liger_kernel.transformers.LigerCrossEntropyLoss` |
|
|
150
|
+
| FusedLinearCrossEntropy | `liger_kernel.transformers.LigerFusedLinearCrossEntropyLoss`|
|
|
151
|
+
|
|
152
|
+
- **RMSNorm**: RMSNorm, which normalizes tensor activations using their root mean square, is accelerated by fusing the normalization and scaling steps into a single triton kernel, achieved ~3X speedup with ~3X peak memory reduction. [RMSNorm Paper](https://arxiv.org/pdf/1910.07467)
|
|
153
|
+
- **RoPE**: Fused the operations of query and key embedding rotary into a single kernel with inplace replacement, achieved ~3X speedup with ~3X peak memory reduction. [RoPE Paper](https://arxiv.org/pdf/2104.09864)
|
|
154
|
+
- **SwiGLU**: Leveraging the fused triton kernel for the elementwise transformation in $$SwiGLU_{\beta=1}$$ ($$\sigma(A) \odot B$$) with inplace replacement, achieved parity speed with ~1.5X peak memory reduction. [SwiGLU Paper](https://arxiv.org/pdf/2002.05202)
|
|
155
|
+
- **GeGLU**: Leveraging the fused triton kernel for the elementwise transformation in GeGLU with [tanh approximation form of GELU](https://pytorch.org/docs/stable/generated/torch.nn.GELU.html) and inplace replacement, achieved parity speed with ~1.5X peak memory reduction. [GeGLU paper](https://arxiv.org/pdf/2002.05202)
|
|
156
|
+
- **CrossEntropy**: Computes both loss and the gradient in the forward path with inplace replacement of input to reduce the peak memory (avoid the materialization of both input logits and gradient), achieved >2X speedup and >4X memory reduction for common vocab sizes. [PyTorch CrossEntropyLoss Documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html)
|
|
157
|
+
- **FusedLinearCrossEntropy**: Further improves upon the basic Liger Cross Entropy kernel on reducing the peak memory usage by fusing the model last output head layer with the CE loss and chunking the input for block-wise loss and gradient calculation, inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy), achieved >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocab size model** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
|
|
159
158
|
|
|
160
159
|
|
|
160
|
+
> * Reported speedups and memory reductions are compared with Llama3 8B Hugging Face layer implementations with 4k default hidden size and 4k sequence length for single forward and backward pass on single NVIDIA A100 80G GPU with small batch sizes. Liger kernels exhibits more efficient scaling to larger batch sizes of tokens. See [Benchmark](./benchmark) folder for details.
|
|
161
161
|
|
|
162
162
|
## Note on ML Compiler
|
|
163
163
|
|
|
@@ -171,9 +171,8 @@ Since Liger Kernel is 100% Triton-based, it works seamlessly with Torch Compile.
|
|
|
171
171
|
| Torch Compile + Liger Kernel | 3702 | 31000 |
|
|
172
172
|
|
|
173
173
|
> **Note:**
|
|
174
|
-
> 1.
|
|
175
|
-
> 2.
|
|
176
|
-
> 3. Tested on torch `2.5.0.dev20240731+cu118`
|
|
174
|
+
> 1. Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Seq Len = 4096, Data Type = bf16, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
|
|
175
|
+
> 2. Tested on torch `2.5.0.dev20240731+cu118`
|
|
177
176
|
|
|
178
177
|
### 2. Lightning Thunder
|
|
179
178
|
|
|
@@ -20,9 +20,12 @@ def _rms_norm_forward(
|
|
|
20
20
|
BLOCK_SIZE: tl.constexpr,
|
|
21
21
|
):
|
|
22
22
|
"""
|
|
23
|
+
y_i = (x_i / (RMS)) * wi, RMS = sqrt(sum(x_i^2) / N)
|
|
24
|
+
|
|
23
25
|
Reference:
|
|
24
26
|
1. https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
|
25
27
|
2. https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/rms_layernorm.py#L22
|
|
28
|
+
3. https://arxiv.org/pdf/1910.07467
|
|
26
29
|
"""
|
|
27
30
|
|
|
28
31
|
row_idx = tl.program_id(0)
|
|
@@ -36,16 +39,17 @@ def _rms_norm_forward(
|
|
|
36
39
|
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
|
|
37
40
|
W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
|
|
38
41
|
|
|
39
|
-
|
|
40
|
-
|
|
42
|
+
mean_square = tl.sum(X_row * X_row, axis=0) / n_cols
|
|
43
|
+
inv_rms = tl.math.rsqrt(mean_square + eps)
|
|
41
44
|
|
|
42
|
-
#
|
|
43
|
-
|
|
45
|
+
# We can save time by caching rms with minimal memory overhead
|
|
46
|
+
# because rms is much smaller compared to X_row, as rms is for each row.
|
|
47
|
+
# However, on the computation side, it can save 4 operations (*, sum, /, sqrt).
|
|
48
|
+
tl.store(r_ptr, inv_rms)
|
|
44
49
|
|
|
45
|
-
|
|
50
|
+
Y_row = X_row * inv_rms * W_row
|
|
46
51
|
|
|
47
|
-
|
|
48
|
-
tl.store(Y_ptr + col_offsets, output, mask=mask)
|
|
52
|
+
tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
|
|
49
53
|
|
|
50
54
|
|
|
51
55
|
@triton.jit
|
|
@@ -65,9 +69,10 @@ def _rms_norm_backward(
|
|
|
65
69
|
BLOCK_SIZE: tl.constexpr,
|
|
66
70
|
):
|
|
67
71
|
"""
|
|
68
|
-
dx = (1 /
|
|
69
|
-
dw = sum(dy * (x /
|
|
72
|
+
dx = (1 / RMS) * [dy * w - (1 / N) * (1 / RMS^2) * ((dy * w) dot x) * x]. * means element-wise multiplication, whileas dot means dot product
|
|
73
|
+
dw = sum(dy * (x / RMS)). summation over BxT dimension
|
|
70
74
|
"""
|
|
75
|
+
|
|
71
76
|
row_idx = tl.program_id(0)
|
|
72
77
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
73
78
|
mask = col_offsets < n_cols
|
|
@@ -81,26 +86,33 @@ def _rms_norm_backward(
|
|
|
81
86
|
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
|
|
82
87
|
W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
|
|
83
88
|
|
|
84
|
-
# Get
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
normed = X_row * inv_var
|
|
89
|
+
# Get cached rms
|
|
90
|
+
inv_rms_row = tl.load(r_ptr)
|
|
88
91
|
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
92
|
+
dX_row = (inv_rms_row) * (
|
|
93
|
+
dY_row * W_row
|
|
94
|
+
- (1 / n_cols)
|
|
95
|
+
* inv_rms_row
|
|
96
|
+
* inv_rms_row
|
|
97
|
+
* tl.sum(dY_row * W_row * X_row, axis=0)
|
|
98
|
+
* X_row
|
|
99
|
+
)
|
|
100
|
+
tl.store(dY_ptr + col_offsets, dX_row, mask=mask)
|
|
95
101
|
|
|
96
102
|
# calculate the gradient of W
|
|
97
|
-
|
|
103
|
+
dW_row = dY_row * X_row * inv_rms_row
|
|
104
|
+
tl.store(dW_ptr + col_offsets, dW_row, mask=mask)
|
|
98
105
|
|
|
99
106
|
|
|
100
107
|
class LigerRMSNormFunction(torch.autograd.Function):
|
|
101
108
|
@staticmethod
|
|
102
109
|
@ensure_contiguous
|
|
103
110
|
def forward(ctx, X, W, eps):
|
|
111
|
+
"""
|
|
112
|
+
X: (B, T, H) or (BxT, H)
|
|
113
|
+
W: (H,)
|
|
114
|
+
"""
|
|
115
|
+
|
|
104
116
|
shape = X.shape
|
|
105
117
|
dim = shape[-1]
|
|
106
118
|
X = X.view(-1, dim)
|
|
@@ -108,6 +120,7 @@ class LigerRMSNormFunction(torch.autograd.Function):
|
|
|
108
120
|
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
109
121
|
|
|
110
122
|
Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
|
|
123
|
+
# r is to cache (1/rms) for each row
|
|
111
124
|
r = torch.empty(n_rows, dtype=X.dtype, device=X.device)
|
|
112
125
|
|
|
113
126
|
# Check constraints.
|
|
@@ -139,6 +152,10 @@ class LigerRMSNormFunction(torch.autograd.Function):
|
|
|
139
152
|
@staticmethod
|
|
140
153
|
@ensure_contiguous
|
|
141
154
|
def backward(ctx, dY):
|
|
155
|
+
"""
|
|
156
|
+
Y: (B, T, H) or (BxT, H)
|
|
157
|
+
"""
|
|
158
|
+
|
|
142
159
|
shape = dY.shape
|
|
143
160
|
dim = shape[-1]
|
|
144
161
|
dY = dY.view(-1, dim)
|
|
@@ -146,6 +163,7 @@ class LigerRMSNormFunction(torch.autograd.Function):
|
|
|
146
163
|
n_rows, n_cols = dY.shape
|
|
147
164
|
dW = torch.zeros_like(X)
|
|
148
165
|
|
|
166
|
+
# Here we use dY to store the value of dX to save memory
|
|
149
167
|
_rms_norm_backward[(n_rows,)](
|
|
150
168
|
dY,
|
|
151
169
|
dY.stride(0),
|
|
@@ -12,43 +12,43 @@ def silu(x):
|
|
|
12
12
|
|
|
13
13
|
@triton.jit
|
|
14
14
|
def _swiglu_forward_kernel(
|
|
15
|
-
|
|
15
|
+
a_ptr, b_ptr, c_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
16
16
|
):
|
|
17
17
|
program_id = tl.program_id(0)
|
|
18
18
|
|
|
19
19
|
# locate start index
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
20
|
+
a_ptr += program_id * stride
|
|
21
|
+
b_ptr += program_id * stride
|
|
22
|
+
c_ptr += program_id * stride
|
|
23
23
|
|
|
24
24
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
25
25
|
mask = col_offsets < n_cols
|
|
26
26
|
|
|
27
27
|
# sigmoid requires type float32
|
|
28
|
-
a_row = tl.load(
|
|
29
|
-
b_row = tl.load(
|
|
28
|
+
a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
|
|
29
|
+
b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
|
|
30
30
|
c_row = silu(a_row) * b_row
|
|
31
|
-
tl.store(
|
|
31
|
+
tl.store(c_ptr + col_offsets, c_row, mask=mask)
|
|
32
32
|
|
|
33
33
|
|
|
34
34
|
@triton.jit
|
|
35
35
|
def _swiglu_backward_kernel(
|
|
36
|
-
|
|
36
|
+
dc_ptr, a_ptr, b_ptr, stride, n_cols: tl.constexpr, BLOCK_SIZE: tl.constexpr
|
|
37
37
|
):
|
|
38
38
|
program_id = tl.program_id(0)
|
|
39
39
|
|
|
40
40
|
# locate start index
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
41
|
+
dc_ptr += program_id * stride
|
|
42
|
+
a_ptr += program_id * stride
|
|
43
|
+
b_ptr += program_id * stride
|
|
44
44
|
|
|
45
45
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
46
46
|
mask = col_offsets < n_cols
|
|
47
47
|
|
|
48
|
-
dc_row = tl.load(
|
|
48
|
+
dc_row = tl.load(dc_ptr + col_offsets, mask=mask, other=0)
|
|
49
49
|
# sigmoid requires type float32
|
|
50
|
-
a_row = tl.load(
|
|
51
|
-
b_row = tl.load(
|
|
50
|
+
a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
|
|
51
|
+
b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
|
|
52
52
|
|
|
53
53
|
# recomputation to save memory
|
|
54
54
|
sig_a = tl.sigmoid(a_row)
|
|
@@ -56,8 +56,8 @@ def _swiglu_backward_kernel(
|
|
|
56
56
|
db_row = dc_row * silu_a
|
|
57
57
|
da_row = dc_row * (silu_a * (1 - sig_a) + sig_a) * b_row
|
|
58
58
|
|
|
59
|
-
tl.store(
|
|
60
|
-
tl.store(
|
|
59
|
+
tl.store(a_ptr + col_offsets, da_row, mask=mask)
|
|
60
|
+
tl.store(b_ptr + col_offsets, db_row, mask=mask)
|
|
61
61
|
|
|
62
62
|
|
|
63
63
|
class LigerSiLUMulFunction(torch.autograd.Function):
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
|
|
2
|
+
from liger_kernel.transformers.geglu import LigerGEGLUMLP
|
|
2
3
|
from liger_kernel.transformers.model.llama import lce_forward
|
|
3
4
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
|
4
5
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb
|
|
@@ -98,3 +99,32 @@ def apply_liger_kernel_to_mixtral(
|
|
|
98
99
|
modeling_mixtral.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
99
100
|
if swiglu:
|
|
100
101
|
modeling_mixtral.MixtralBlockSparseTop2MLP = LigerBlockSparseTop2MLP
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
def apply_liger_kernel_to_gemma(
|
|
105
|
+
rope: bool = True,
|
|
106
|
+
cross_entropy: bool = True,
|
|
107
|
+
rms_norm: bool = True,
|
|
108
|
+
geglu: bool = True,
|
|
109
|
+
) -> None:
|
|
110
|
+
"""
|
|
111
|
+
Apply Liger kernels to replace original implementation in HuggingFace Gemma2 models
|
|
112
|
+
to make GPU go burrr.
|
|
113
|
+
|
|
114
|
+
Args:
|
|
115
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
|
116
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is True.
|
|
117
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
|
118
|
+
geglu (bool): Whether to apply Liger's GeGLU MLP. Default is True.
|
|
119
|
+
"""
|
|
120
|
+
# TODO(yundai424): add convergence test for gemma
|
|
121
|
+
from transformers.models.gemma import modeling_gemma
|
|
122
|
+
|
|
123
|
+
if rope:
|
|
124
|
+
modeling_gemma.apply_rotary_pos_emb = liger_rotary_pos_emb
|
|
125
|
+
if rms_norm:
|
|
126
|
+
modeling_gemma.GemmaRMSNorm = LigerRMSNorm
|
|
127
|
+
if cross_entropy:
|
|
128
|
+
modeling_gemma.CrossEntropyLoss = LigerCrossEntropyLoss
|
|
129
|
+
if geglu:
|
|
130
|
+
modeling_gemma.GemmaMLP = LigerGEGLUMLP
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
from liger_kernel.transformers.monkey_patch import (
|
|
4
|
+
apply_liger_kernel_to_gemma,
|
|
5
|
+
apply_liger_kernel_to_llama,
|
|
6
|
+
apply_liger_kernel_to_mistral,
|
|
7
|
+
apply_liger_kernel_to_mixtral,
|
|
8
|
+
)
|
|
9
|
+
|
|
10
|
+
logger = logging.getLogger(__name__)
|
|
11
|
+
|
|
12
|
+
# Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
|
|
13
|
+
MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
14
|
+
"gemma": apply_liger_kernel_to_gemma,
|
|
15
|
+
"llama": apply_liger_kernel_to_llama,
|
|
16
|
+
"mistral": apply_liger_kernel_to_mistral,
|
|
17
|
+
"mixtral": apply_liger_kernel_to_mixtral,
|
|
18
|
+
}
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def _apply_liger_kernel(model_type: str = "", **kwargs) -> None:
|
|
22
|
+
"""
|
|
23
|
+
Applies Liger kernels based on the specified model type. The custom
|
|
24
|
+
kernels for the specified model type will be applied with the provided
|
|
25
|
+
keyword arguments, otherwise the default configuration will be used.
|
|
26
|
+
|
|
27
|
+
Args:
|
|
28
|
+
- model_type: the model types as defined in transformers/models/auto/modeling_auto.py
|
|
29
|
+
and specified in the model's config.json
|
|
30
|
+
- kwargs: keyword arguments that are passed to the corresponding apply_liger_kernel_to_* function.
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
if not model_type:
|
|
34
|
+
logger.info("Model type was not provided. No Liger kernels will be applied.")
|
|
35
|
+
return
|
|
36
|
+
|
|
37
|
+
if model_type not in MODEL_TYPE_TO_APPLY_LIGER_FN.keys():
|
|
38
|
+
logger.info(
|
|
39
|
+
f"There are currently no Liger kernels supported for model type: {model_type}."
|
|
40
|
+
)
|
|
41
|
+
return
|
|
42
|
+
|
|
43
|
+
logger.info(f"Applying Liger kernels for model type: {model_type}.")
|
|
44
|
+
# Apply the default combination of liger kernels available for the model
|
|
45
|
+
MODEL_TYPE_TO_APPLY_LIGER_FN[model_type](**kwargs)
|
|
@@ -1,12 +1,10 @@
|
|
|
1
1
|
import os
|
|
2
2
|
import random
|
|
3
3
|
|
|
4
|
-
from overrides import override
|
|
5
4
|
from triton.runtime.cache import FileCacheManager
|
|
6
5
|
|
|
7
6
|
|
|
8
7
|
class LigerTritonFileCacheManager(FileCacheManager):
|
|
9
|
-
@override
|
|
10
8
|
def put(self, data, filename, binary=True) -> str:
|
|
11
9
|
if not self.cache_dir:
|
|
12
10
|
raise RuntimeError("Could not create or locate cache dir")
|
|
@@ -23,6 +23,7 @@ src/liger_kernel/transformers/monkey_patch.py
|
|
|
23
23
|
src/liger_kernel/transformers/rms_norm.py
|
|
24
24
|
src/liger_kernel/transformers/rope.py
|
|
25
25
|
src/liger_kernel/transformers/swiglu.py
|
|
26
|
+
src/liger_kernel/transformers/trainer_integration.py
|
|
26
27
|
src/liger_kernel/transformers/model/__init__.py
|
|
27
28
|
src/liger_kernel/transformers/model/llama.py
|
|
28
29
|
src/liger_kernel/triton/__init__.py
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{liger_kernel-0.0.1 → liger_kernel-0.1.0}/src/liger_kernel/ops/fused_linear_cross_entropy.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|